OPTIMIZATION OF MACHINING PARAMETERS AFFECTING SURFACE ROUGHNESS OF Al6082 IN DRY END MILLING OPERATION ON VMC

Similar documents
Parametric Optimization of Surface Roughness & Material Remove Rate of AISI D2 Steel For Turning

TAGUCHI BASED OPTIMIZATION OF CUTTING PARAMETERS ALUMINIUM ALLOY 6351 USING CNC

Parametric Optimization of Lathe Turning for Al-7075 Alloy Using Taguchi: An Experimental Study

EFFECT OF COATING THICKNESS WITH CARBIDE TOOL IN HARD TURNING OF AISID3 COLD WORK STEEL

Experimental Investigation of surface roughness in dry turning of AISI 4340 alloy steel using PVD- and CVD- coated carbide inserts

Optimization and Process Parameters of CNC End Milling For Aluminum Alloy 6082

OPTIMIZATION OF CNC MACHINING PARAMETERS FOR SURFACE ROUGHNESS IN TURNING OF ALUMINIUM 6063 T6 WITH RESPONSE SURFACE METHODOLOGY

Optimization of Cylindrical Grinding Process Parameters on C40E Steel Using Taguchi Technique

International Journal of Innovative Research in Advanced Engineering (IJIRAE) ISSN: Volume 1 Issue 8 (September 2014)

Optimization of CNC Face Milling Process Parameters for Inconel 718 by Using Taguchi Method A Review

Experimental Analysis of Surface Roughness in CNC Turning of Aluminium Using Response Surface Methodology

AN EXPERIMENTAL STUDY ON PERFORMANCE OF TITANIUM ALLOY USING COATED AND UNCOATED INSERTS IN CNC TURNING

International Journal of Advance Engineering and Research Development

Response Surface Methodology in the Study of Induced Machining Vibration and Work Surface Roughness in the Turning of 41Cr4 Alloy Steel

Parametric Optimization of Turning Operation Using Cryogenically Treated and Untreated Tungsten Carbide Tool Inserts

Analysis of Machining Environment on Performance of Turning Process For Al 6063

Optimization of machining parameters of drilling process in Magnesium alloy AZ31

Optimization of Process Parameters for Surface Roughness and Material Removal Rate for SS 316 on CNC Turning Machine

Investigation of Optimum Cutting Parameters for End Milling of H13 Die Steel using Taguchi based Grey Relational Analysis

Optimization of WEDM Process Parameters on Duplex 2205 steel using Grey Relational Analysis

Experimental Study of Machining Characteristics of C 45 Steel using Electro Discharge Machining

Original Research Article

Parametric Optimization for Friction Stir Welding of Al6061 Alloy using Taguchi Technique

Investigation on Surface Quality in Machining of Hybrid Metal Matrix Composite (Al-SiC B4C)

Tool Life Performances on Turning Austenised and Quenched AISI Bearing Steel with Ceramics and CBN/TiC Cutting Tools

RESPONSE PREDICTION IN MACHINING OF AISI 1040 STAINLESS STEEL USING ANN MODEL

Optimization of Different Cutting Parameter for Aluminum-6351

Parametric Optimization of Electric Discharge Drilling Machine Using Al-SiC Metal Matrix Composite

THE APPLICATION OF TAGUCHI S OPTIMIZATION METHOD IN WET TURNING OPERATION OF EN 19 STEEL

Effect of HSS and Tungsten Carbide Tools on Surface Roughness of Aluminium Alloy during Turning Operation

INTERNATIONAL JOURNAL OF DESIGN AND MANUFACTURING TECHNOLOGY (IJDMT)

Analysis of Process Parameters of Non Polluted WEDM

Comparative assessment of standard and wiper insert on surface roughness in turning of Titanium alloy (Ti-6Al-4V)

Effect of Turning Parameters on Power Consumption in EN 24 Alloy Steel using Different Cutting Tools

Optimal Machining Conditions For Turning Of AlSiC Metal Matrix Composites Using ANOVA

Prashant et al, International Journal of Advanced Engineering Research and Studies E-ISSN

Optimization of Process Parameters of CNC Milling for Aluminium Metal Matrix Composite

OPTIMIZATION OF MATERIAL REMOVAL RATE IN MICRO-DRILLING PROCESS FOR A COPPER PLATE

OPTIMIZATION OF CUTTING PARAMETERS BY TURNING OPERATION IN LATHE MACHINE

Analysis of Cutting Forces in High Speed Turning of Inconel 718 by using Ceramic Tools

Authors Pappu Kumar 1, Prof. Prakash Kumar 2 1 Post Graduate Scholar, Deptt. of Production Engg., B.I.T, Sindri, Dhanbad, Jharkhand , India.

EXPERIMENTAL INVESTIGATION ON CUTTING FORCE AND SURFACE ROUGHNESS IN MACHINING OF HARDENED AISI STEEL USING CBN TOOL

Optimization of the Cutting Parameters of SS 304 for CNC Turning Operation

Multi-Objective Optimization in CNC Turning of S45C Carbon Steel using Taguchi and Grey Relational Analysis Method

STUDY OF RADIAL OVERCUT DURING EDM OF H-13 STEEL WITH CRYOGENIC COOLED ELECTRODE USING TAGUCHI METHOD

2017 WJTA-IMCA Conference and Expo October 25-27, 2017 New Orleans, Louisiana Paper

Optimization of MRR and TWR on EDM by using Taguchi s Method and ANOVA Die Steel H13

Optimization of Surface Roughness for hot machining of AISI 4340 steel using DOE method

Investigation of MRR and TWR on High Speed Steel Using Copper and Brass Electrode for EDM

International Journal of Engineering Trends and Technology (IJETT) Volume 49 Number 7 July India.

Comparative Performance Analysis of Cryogenic Treated Carbide Tools

PREDICTION MODELLING FOR THE REMAINING USEFUL LIFE OF WORN TURNING OF EN24 STEEL USING REGRESSION AND ANN

RESPONSE SURFACE METHODOLOGY IN FINISH TURNING INCONEL 718

Experimental investigation on machinability of 15-5PH stainless steel at different level hardness using TiAlN coated carbide tool

Taguchi Analysis on Cutting Forces and Temperature in Turning Titanium Ti-6Al-4V

Study the Effect of Lubricant Emulsion Percentage and Tool Material on Surface Roughness in Machining of EN-AC Alloy

Effect of Approach Angle in Face Milling Using Tungsten Carbide Tool

OPTIMIZATION OF CASTING PARAMETERS ON Al/RHA COMPOSITE USING TAGUCHI METHOD

COMPARISON BETWEEN PVD AND CVD+PVD COATED INSERTS FOR CUTTING FORCES AND TOOL WEAR DURING TURNING OF RAMAX-2

Optimization of Machining Parameters for Tool Wear Rate and Material Removal Rate in CNC turning by Grey Relational Analysis

The Selection of Machining Parameters to Minimize Deformation caused by Heat

SUSTAINABLE MACHINING OF SS 410 ALLOY

Optimization of WEDM Process Parameters on Titanium Alloy Using Taguchi Method

Predicting Surface Roughness, Tool Wear and MMR in Machining Inconel 718: A Review

Parametric Optimization of Electrical Discharge Machining Process for Machining of AISI5160 with Copper Electrode using Taguchi Method

Optimization of Drilling Parameters on Diameter Accuracy in Dry Drilling Process of AISI D2 Tool Steel

Performance of Copper, Copper Tungsten, Graphite and Brass Electrode on MRR, EWR and SR of Aluminium LM6 in EDM Die Sinking

Design of experiment using Taguchi method for milling aluminum via helical ramping entering method

OPTIMIZATION OF CASTING PARAMETERS FOR CASTING OF AL/RHA/RM HYBRID COMPOSITES USING TAGUCHI METHOD

Tool Wear when Finish Turning Inconel 718 under Dry Conditions

Study and Analysis of Material Removal Rate on Lathe Operation with Varing Parameters from CNC Lathe Machine

Experimental Study & Modeling of Surface Roughness in Turning of Hardened AISI 4340 Steel Using Coated Carbide Inserted

IOP Conference Series: Materials Science and Engineering. Related content PAPER OPEN ACCESS

International Journal of Advanced Engineering Technology E-ISSN

STUDY OF DIFFERENT WORK MATERIALS EFFECT ON SURFACE ROUGHNESS IN ELECTROCHEMICAL MACHINING PROCESS

FINITE ELEMENTSIMULATION IN ORTHOGONAL MACHINING OF INCONEL 718 ALLOY

Effect of Gases on the Performance of Cryogenically Treated Tungsten Carbide Inserts in Turning

Optimization of Cutting Condition in the Turning of AISI D2 Steel by using Carbon Nanofiber Nanofluid

Optimization of Titanium Welding used in Aircrafts

Effect of Powder Metallurgical Compact Electrodes on MRR of H-13 Tool Steel during EDM,

Measurement of Cutting Forces While Turning Different Materials by Using Lathe Tool Dynamometer with Different Cutting Tool Nomenclature

Optimization of Electrical Discharge Machining Process Parameters using SCM420 low alloy steel by Response Surface Methodology

Machinability studies on INCONEL 718

STUDIES ON MICROSTRUCTUREAND MECHANICAL PROPERTIES OFMODIFIED LM25 ALUMINIUM ALLOY

OPTIMISATION OF PROCESS FACTORS AND REDUCTION OF PRODUCT CYCLE TIME IN MANUFACTURING OF AN AIRBUS COMPONENT BEAM

Modeling and Analysis for Surface roughness in Machining EN-31 steel using Response Surface Methodology

Experimental investigation and optimization of cutting parameters with multi response characteristics in MQL turning of AISI 4340 using nano fluid

Analytical Models for Tool Wear Prediction during AISI 1045 Turning Operations

Experimental and Finite Element Simulation in Turning Inconel 625 with CNMG Carbide Insert

Cutting Tool Materials and Cutting Fluids. Dr. Mohammad Abuhaiba

Evaluation of Machining Parameters Influencing Thrust Force in Drilling of Al SiC Gr Metal Matrix Composites using RSM

Experimental evaluation of machining parameters in machining of 7075 aluminium alloy with cryogenic liquid nitrogen coolant

Assessment of Deposition Rate in MIG Welding of Stainless Steel

INTERNATIONAL JOURNAL OF ADVANCED RESEARCH IN ENGINEERING AND TECHNOLOGY (IJARET)

- HSS-Blade (EOS art.-no ) - 90 µm mesh for powder sieving recommended (EOS art.-no ) - Argon atmosphere

Copper & Copper Alloys CuNi1Si (OF 2403)

Uddeholm Vanax SuperClean. Uddeholm Vanax SuperClean

Comparative Assessment of Wiper and Conventional Carbide Inserts on Surface Roughness in the Turning of High Strength Steel

Application of Design of Experiment (DOE) Method for Optimum Parameters of Mahindra Bolero Leaf Spring

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET)

Transcription:

OPTIMIZATION OF MACHINING PARAMETERS AFFECTING SURFACE ROUGHNESS OF Al6082 IN DRY END MILLING OPERATION ON VMC Akhilesh Chaudhary 1, Vinit Saluja 2 1Research scholar, Dept. of Mechanical Engineering, Geeta Engineering College, Panipat, UP, India 2Assistant Professor, Dept. of Mechanical Engineering, Geeta Engineering College, Panipat, UP, India ------------------------------------------------------------------------***------------------------------------------------------------------------ Abstract - Every manufacturing industry wants to reduce the manufacturing cost and increase the quality of a product. The aim of this project work is to optimize the selected control factors in order to reduce surface roughness in dry end milling operation. In this project Taguchi method is used to determine the optimum machining parameters more efficiently. The cutting parameters are spindle speed, feed rate and depth of cut. These parameters are investigated at three different levels. On the basis of L 27 orthogonal array of Taguchi method 27 experiments were performed. The machining operation performed on vertical machining centre without using coolant. The surface roughness was measured by the device Surface Roughness Tester. These experimental data were analyzed using Minitab software to identify the most significant factor. The material used in this project is Al6082 Aluminium alloy. Keywords: Surface Roughness, Taguchi, ANOVA, Minitab, End mill. 1. INTRODUCTION work is to optimize the cutting parameter of Al6082 in dry end milling operation. Shetty et al. [1] (2008) were conducted an experiment and used Taguchi and Response Surface Methodologies for minimizing the surface roughness in turning of discontinuously reinforced aluminium composites (DRACs) having aluminium alloy 6061 as the matrix and containing 15 vol.% of silicon carbide particles of mean diameter 25 lm under pressured steam jet approach. They found the optimum condition for minimum surface roughness. Muammer Nalbant et al. [2] (2009) were conducted an experiment and seen the effects of machining on AISI 1030 steel uncoated, PVD- and CVD-coated cemented carbide insert variation in feed rates, cutting speeds while keeping depth of cuts constant. This process was done without using cooling liquids. The result shows that a negative relationship between the average surface roughness and cutting speed for this tool. The surface roughness was decreased by increasing cutting speed. It is impossible to produce perfectly smooth surface by machining or other process. It means that by machining process some roughness is always present on the surface, which can varies according to changes the machining parameter. Surface roughness is very important factor which affect the surface quality of the product. The surface roughness is the finer irregularities (peaks and valleys) of the surface. Surface roughness is a component of surface texture. It is describe by the deviations in the direction of the normal vector of a real surface. These deviations are depends on the surface quality. The surface is rough if these deviations are large and surface is smooth if these deviations are small. 2. LITERATURE REVIEW The many researchers have research on material Al6082, but very few researchers has research work on End milling operation on Al6082. In this present work we are selected the material Al6082. The objective of present Yallese et al. [3] (2010) were conducted the experiment for cutting forces in dry turning operation of AISI 52100 hot work-piece steel (50 HRC). They performed 27 experiments and specified effects of parameters like cutting speed, feed rate and depth of cut. They found that the most important factor affecting the components of the cutting forces was depth of cut. Sahoo [4] (2011) was conducted an experimental study to investigate the effects of cutting speed, feed rate and depth of cut for minimum surface roughness for AISI 1040 steel when the material were machined on a CNC turning machine (lathe). ANOVA software was use to analysed the result for purpose of optimising the parameter. Yansong Guo et al.[5] (2012) were conducted an experiments and seen the effects of an approach which incorporates both energy consumption and surface roughness for optimizing the cutting parameters in finish turning. This was based on a surface roughness model, they were optimized the cutting parameters for surface 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 82

finish with minimum energy consumption. The analysis were done in two-step approach in determining the optimal cutting parameters for finishing turning operations for minimum energy consumption, by specified a surface finish. Kamal Hassan et al.[6] (2012) were conducted an experiment and seen the effects of process parameters on Material Removal Rate (MRR) in turning operation of material C34000. The Cutting speed, feed rate and depth of cut were taken cutting parameters in this experiment and result were analysed ANOVA in MINITAB 16 @ software. The cutting speed and feed rate were most dominated factor for MRR. The conclusion shows that the MRR rate was increased by increasing the cutting speed and feed rate. Upinder Kumar Yadav et al. [7] (2012) were conducted an experiment and optimized machining parameters for surface roughness in CNC turning by Taguchi method. The result shows that the feed rate and cutting speed were most dominant factor for minimum surface roughness and the surface roughness was increased with increasing the feed rate & decreasing the cutting speed. Ilhan Asiltürk et al. [8] (2012) were conducted an experiment and optimized machining parameters for surface roughness in turning operation. Taguchi method was used to found the optimal turning process parameters. The result was analysed by both Taguchi and RSM method and it shows that the feed rate was the most significant factor for surface roughness. Najiha M.S. et al. [9] (2013) were conducted an experiment to determine the optimum cutting parameters for the end milling process of Aluminium alloy 6061T6 under wet cooling conditions. The response surface methodology was used for optimizing the surface roughness. The result shows that the feed rate and the depth of cut was the most significant factors for surface roughness. M Saravana Kumar et al. [10] (2014) were conducted an experiment to determine optimum micro milling parameters of AL-6082 by using DOE concept. The cutting speed, feed rate and depth of cur were chosen the process parameter. The result shows that MRR was decreased with decreasing the tool diameter, spindle speed and feed rate. Nisha Tamta et al. [11] (2015) were conducted an experiment for optimum drilling machining process for Surface roughness (Ra) using Taguch method on material Aluminium Alloy 6082. The result shows that the drilling depth was the most significant factor follow by feed rate for roughness Ra. K. Siva Kumar et al. [12] (2015) were conducted an experiment for optimum cutting parameters in CNC End milling of Aluminium Alloy 6082. RS methodology was selected to optimize the surface roughness. The result shows that the depth of cut was the influencing parameter followed by Speed and feed for Ra. Rishi raj singh et al. [13] (2016) were conducted an experiment to determine optimum parameter for minimum surface roughness in CNC end milling. The response surface methodology was used for this experiment. The result shows that cutting speed to be the most significant and influential machining parameter followed by feed rate. The surface roughness was increased by increasing the feed but decreased by increasing the cutting speed and nose radius. Anurag Salankar et al. [14] (2017) were conducted an experiment on extruded brass-lead alloy and inconel625 made of nickel and chromium due to their high strength, wear resistance and fatigue resistance. The machining was performed on the vertical milling centre using HSS tool material. The result was compared by graphically for different process parameters, performance parameters evaluated and concluding optimizing process parameters. S. Sakthivelu et al. [15] (2017) were conducted an experiment on Aluminium Alloy 7075 T6 in CNC milling machine using High Speed Steel (HSS) cutting tool for high quality of surface finish and metal removal rate. The result shows that depth of cut was the most influencing parameter for material removal rate followed by feed and cutting speed. 3. EXPERIMENTAL DESIGN 3.1 Taguchi Method The Taguchi Methods was developed by was Genichi Taguchi. He was a Japanese engineer who began working for the telecommunications company, Electrical Communications Lab, a part of NT&T, in 1950 s. Taguchi method is used evaluating and implementing improvements in the products, optimization of the objectives function. Optimization means determination of best levels of control factors that maximize the signalto noise ratio. 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 83

3.2 Signal- to- Noise Ratio Signal-to-noise ratio is very important and useful parameter in taking into account of goal and variation in comparing two sets of samples. Signal to- noise ratio is the log functions of a given output. It is used for optimization of objectives function. It is also help in data analysis and prediction of results. Signal to noise ratio formula are as follow- Smaller the better Nominal the best Larger the better 4. EXPERIMENTAL WORK 4.1 Workpiece Material ( ) ( ) ( ) Fig -1: Workpiece 4.2 CNC Vertical machining Centre CNC Vertical Machining Centre is an automatic machine tool which is controlled by computer executes preprogrammed commands. The machine is moved along three x, y and z axis. The table is controlled in x and y axis and machine spindle move along z axis. The G and M codes are used to control the machine. These codes are based on the three dimensional Cartesian coordinate system. In CNC vertical machining centre the cutting tool is hold on a vertical spindle and feed is provided by the machine table. The material used in this research is Aluminium Alloy 6082. It is a medium strength alloy with highly corrosion resistant. The Aluminium alloy 6082 has highest strength of the 6000 series. It is mostly used in high stress application, trusses, bridges, cranes and transport application etc. The material properties are shown in the above table. Table -1: Material Properties Density 2.71 g/cm 3 Young modulus UTS Yield strength Hardness Brinell Material composition 71 GPa 140 to 330 MPa 90 to 280 MPa 91 HB Al- 95.2 to 98.3% Cr- 0.25% max Cu- 0.1% max Fe- 0.5% max Mg- 0.6 to 1.2% Mn- 0.4 to 1% Si- 0.7 to 1.3% max Ti- 0.1% max Zn- 0.2% max Fig -2: Vertical Machining Centre 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 84

Table -2: VMC Specification Machine Specification M/C model no. TURBO-450-R40 Serial no. 6225/1215/66844 Capacity Spindle speed Temperature range Frequency 450 W/hr 6000 rpm 10 0 to 45 0 C 50 HZ Coolant System Tank capacity Type of coolant 450 litter Servo Cut-S Coolant/water ratio 1:20 Coolant around spindle 50 lpm @ 1.8 bar Fig - 4: Surface Roughness Tseter Coolant wash Lubrication System 60 lpm @ 4 bar 4.5 Machining Parameter and Levels of Experiment Tank capacity Type of oil Max. working pressure 4.3 Cutting Tool or End Mill 3 litter Servo way- H68 15 bar In this operation multipoint end milling cutter is used for machining. The material of cutting tool is carbide. The diameter of the cutting tool is 10 mm. Levels Parameter Table -3: Levels of Experiment speed(n) in rpm Feed(f) in mm/ min. Depth of Cut(d) in mm Level 1 800 100 0.5 Level 2 1200 150 1.0 Level 3 1600 200 The spindle speed, depth of cut and feed rate are chosen the machining parameters. Also select the three levels of experiment. 4.6 Experimental Data Fig -3: End Mill By using Minitab software orthogonal array is prepared and conduct the experiment, then with the help of surface roughness tester measured the roughness. Then we get the following experimental data. 4.4 Surface Roughness Tester The portable stylus surface roughness tester is used to measure the surface roughness. The stylus moves on the peaks and valleys of the surface. The vertical motion of the stylus is converted into electrical signal by the transducer. This signal is in analog form. By using analog to digital converter these signal are converted into digital form and display the reading. 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 85

Table -4: Experimental Data Expt. no. Speed (N) Feed (f) Depth of cut (d) Cutter dia. (D) Cutting Speed (V) MRR Avg. Rough. (Ra) RMS Rough. (Rq) rpm mm/min mm mm m/min. mm 3 /sec mm mm db S/N 1 800 100 0.5 10 25.132 08.33 0.93 1.15 0.6303 2 800 100 1.0 10 25.132 16.66 1.06 1.29-0.5061 3 800 100 10 25.132 25.00 0.79 0.98 2.0475 4 800 150 0.5 10 25.132 12.50 1.78 2.38-5.0084 5 800 150 1.0 10 25.132 25.00 1.82 2.26-5.2014 6 800 150 10 25.132 37.50 1.97 2.44-5.8893 7 800 200 0.5 10 25.132 16.67 3.11 3.91-9.8552 8 800 200 1.0 10 25.132 33.33 3.97 4.96-11.9758 9 800 200 10 25.132 50.oo 5.22 6.36-14.3534 10 1200 100 0.5 10 37.698 08.33 0.91 1.12 0.8192 11 1200 100 1.0 10 37.698 16.67 0.60 0.72 4.4370 12 1200 100 10 37.698 25.00 1.79 2.30-5.0571 13 1200 150 0.5 10 37.698 12.50 1.79 2.25-5.0571 14 1200 150 1.0 10 37.698 25.00 0.69 0.86 3.2230 15 1200 150 10 37.698 37.50 0.78 0.96 2.1581 16 1200 200 0.5 10 37.698 16.67 1.89 2.36-5.5292 17 1200 200 1.0 10 37.698 33.33 1.24 2-1.8684 18 1200 200 10 37.698 50.00 2 1.84-3.6369 19 1600 100 0.5 10 50.264 08.33 0.61 0.73 4.2934 20 1600 100 1.0 10 50.264 16.67 0.71 0.87 2.9748 21 1600 100 10 50.264 25.00 0.71 0.83 2.97483 22 1600 150 0.5 10 50.264 12.50 0.80 0.97 1.93820 23 1600 150 1.0 10 50.264 25.00 0.88 1.07 1.11035 24 1600 150 10 50.264 37.50 0.68 0.89 3.34982 25 1600 200 0.5 10 50.264 16.67 0.60 0.74 4.43697 26 1600 200 1.0 10 50.264 33.33 1.03 1.32-0.25674 27 1600 200 10 50.264 50.00 0.83 1.03 1.61844 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 86

5. RESULT ANALYSIS The experimental data are analysed in Minitab software we get the following result. Table -5: Response Table for Signal to Noise Ratios Level N F D 1-5.5680 1.4015-1.4813 2-1.1679-1.0419-0.8959 3 2.4933-4.6023-1.8653 Delta 8.0613 6.0038 0.9694 Rank 1 2 3 Table -6: Response Table for Average Roughness Level N F D 1 2.2944 0.9011 1.3800 2 1.2456 1.2433 1.3333 3 0.7611 2.1567 878 Delta 333 1.2556 0.2544 Rank 1 2 3 It is clear that from both the table, the rank of spindle speed, feed and depth of cut are 1, 2 and 3 respectively. It means that the surface roughness is maximum affected by speed follow by feed and depth of cut. 5.1 Effect of Machining Parameters on Surface Roughness and S/N Ratio Fig -6: Effects of machining parameter on S/N Ratio It is clear from figure -5 surface roughness decreases with increasing spindle speed and increases with increasing feed rate. Also from figure-6 it is clear that S/N ratio increases with increasing spindle speed and decreases with increasing feed rate. 5.2 Surface Plot with machining Parameters Surface plot with variation of machining parameters are given below. Surface Plot of Ra vs f, N 4.5 Ra 3.0 200 0.0 800 1200 N 1600 100 150 f Fig -5: Effects of machining parameter on surface roughness Fig -7: Surface Plot with feed and speed This figure shows that the surface is plot with the variation of feed and depth of cut. Similarly figure -8 and 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 87

International Research Journal of Engineering and Technology (IRJET) e-issn: 2395-0056 Volume: 04 Issue: 08 Aug -2017 p-issn: 2395-0072 www.irjet.net figure -9 shows that the surface is plot with the variation of other machining parameters. experiments are performed. The experimental data is analysed in Minitab software and we get the following result. Surface Plot of Ra vs d, N Factor Speed Feed Depth of cut Speed, feed and depth of cut have rank 1, 2 and 3 respectively. It means that the surface roughness is maximum affected by the speed followed by feed and depth of cut. The surface roughness decreases with increasing spindle speed and increases with increasing feed rate. The optimum values of machining parameter for minimum surface roughness in dry end milling operation are speed 1600 rpm, feed 100 mm per min. and depth of cut 1.0 mm. 4.5 Ra 3.0 1.0 d 0.0 800 1200 N 1600 0.5 REFERENCES Fig -8: Surface Plot with Speed and Depth of Cut Surface Plot of Ra vs d, f [1] R. Shetty, R. Pai, V. Kamath, S.S. Rao, Study on surface roughness minimization in turning of DRACs using surface roughness methodology and Taguchi under pressured steam jet approach, ARPN Journal of Engineering Applied Science (ARPNJEAS), Vol.3, no. 1, 2008,59 67. [2] Muammer Nalbant, Hasan Gokkaya, Ihsan Toktas, Gokhan Sur., The experimental investigation of the effects of uncoated, PVDand CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks, Robotics and Computer-Integrated Manufacturing (RCIM) 25, 2009, pp.211 223. [3] K. Bouacha, M.A. Yallese, T. Mabrouki and Rigal J.F. Rigal, Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool, International Journal of Refractory Metals Hard Materials (IJRMHM) 28, 2010, 349 361. [4] P. Sahoo, Optimization of turning parameters for surface roughness using RSM and GA, Advances in Production Engineering & Management (APEM), 6 (3), 2011, 197-208. [5] Yansong Guo, Jef Loenders, Joost Duflou, Bert Lauwers, Optimization of energy consumption 4.5 Ra 3.0 0.0 1.0 d 100 f 150 200 0.5 Fig -9: Surface Plot with Feed and Depth of Cut 6. CONCLUSIONS In this research work we are selected the material Aluminium alloy 6082 for optimization of machining parameters spindle speed, feed and depth of cut for minimum surface roughness in dry end milling operation. Taguchi method is used to optimize these parameters. According to L27 orthogonal array 27 2017, IRJET Impact Factor value: 5.181 Rank 1 2 3 ISO 9001:2008 Certified Journal Page 88

and surface quality in finish turning, Procedia CIRP 1,2012, pp.529 534. [6] Kamal Hassan, Anish Kumar, M.P.Garg, Experimental investigation of Material removal rate in CNC turning using Taguchi method, International Journal of Engineering Research and Applications (IJERA), Vol. 2, 2012, pp.1581-1590. [7] Upinder Kumar Yadav, Deepak Narang, Pankaj Sharma Attri, Experimental Investigation and Optimization Of Machining Parameters For Surface Roughness In CNC Turning By Taguchi Method, International Journal of Engineering Research and Applications (IJERA) Vol. 2, Issue4, 2012, pp.2060-2065. [8] Asilturk, S. Neseli, Multi response optimisation of CNC turning parameters via Taguchi methodbased response surface analysis, (ELSEVIER Measurement 45), 2012, 785-794. Science & Engineering (IJICSE) Vol. 3, Issue 2, 2016, 28-34. [14] Anurag Salankarand Manish Shete, A Review of Optimization of Process Parameters of Face Milling on Extruded Brass - Lead Alloy and Inconel 625 on VMC850, International Journal of Innovative Research in Science, Engineering and Technology (IJIRSET) Vol 6, Special Issue 1, 2017, 2347 6710. [15] S. Sakthivelu, T. Anandaraj and M. Selwin, Multi- Objective Optimization of Machining Conditionson Surface Roughness and MRR during CNC End Millingof Aluminium Alloy 7075 Using Taguchi Design of Experiments, Mechanics and Mechanical Engineering, Vol. 21, No. 1 (2017), 95 103. [9] Najiha M.S., M.M. Rahman, and A.R. Yusoff, Modeling of The End Milling Process for Aluminum Alloy Aa6061t6 Using Hss Tool, International Journal of Automotive and Mechanical Engineering (IJAME) Vol. 8,2013,pp. 1140-1150. [10] M Saravana Kumar, T T M Kannan, S Giridharan and P Vijaya Kumar, optimization of micro milling parameters of al-6082 by anova methodology, Internal journal of Mechanical Engineering and Robotics Research (IJMERR) Vol. 3, No. 4, 2014, 2278 0149. [11] Nisha Tamta, R S Jadoun, Parametric Optimization of Drilling Machining Process for Surface Roughness on Aluminium Alloy 6082 Using Taguchi Method, SSRG International Journal of Mechanical Engineering (SSRG-IJME) Vol. 2, Issue 7,2015, 2348 8360. [12] K. Siva Kumar and Bathina Sreenivasulu, Optimization and Process Parameters of CNC End Milling For Aluminium Alloy 6082, International Journal of Innovations in Engineering Research And Technology (IJIERT) Vol. 2, Issue 1,2015, 2394-3696. [13] Rishi Raj Singh, Dr. M.P. Singh and Sanjay Singh, Optimization of machining parameters for minimum surface roughness in end milling, International Journal of Innovative Computer 2017, IRJET Impact Factor value: 5.181 ISO 9001:2008 Certified Journal Page 89