DEVELOPMENT OF AN OXIDATION-RESISTANT HIGH-STRENGTH SIXTH- GENERATION SINGLE-CRYSTAL SUPERALLOY TMS-238

Similar documents
HIGH TEMPERATURE CREEP OF Ru-BEARING Ni-BASE SINGLE CRYSTAL SUPERALLOYS

PREDICTION OF INITIAL OXIDATION BEHAVIOR OF NI-BASE SINGLE CRYSTAL SUPERALLOYS: A NEW OXIDATION MAP AND REGRESSION ANALYSIS

DEVELOPMENT OF Ni BASE SUPERALLOY FOR INDUSTRIAL GAS TURBINE

CREEP DEFORMATION MECHANISMS IN SOME MODERN SINGLE-CRYSTAL SUPERALLOYS

Temperature for 1000 hours rupture life at 630 MPa ( o C) 750 Rene 104

RECENT ADVANCES IN CAST SX SUPERALLOYS

THE VIRTUAL GAS TURBINE SYSTEM FOR ALLOY ASSESMENT

INFLUENCE OF THE γ FRACTION ON THE γ/γ TOPOLOGICAL INVERSION DURING HIGH TEMPERATURE CREEP OF SINGLE CRYSTAL SUPERALLOYS

Alloy Design and Innovative Manufacturing Technology of High-Strength Ni-base Wrought Alloy for Efficiency Improvement in Thermal Power Plants

SOLIDIFICATION CHARACTERISTICS OF ADVANCED NICKEL-BASE SINGLE CRYSTAL SUPERALLOYS

Influence of Phosphorus on Deformation Mechanism and Mechanical Properties of IN718 Alloy

Creep and High Temperature Failure. Creep and High Temperature Failure. Creep Curve. Outline

THE EFFECTS OF WATER VAPOR ON THE OXIDATION OF NICKEL-BASE SUPERALLOYS AND COATINGS AT TEMPERATURES FROM 700 C TO 1100 C

Modification of Alloy 706 for High Temperature Steam Turbine Rotor Application

HAYNES 244 alloy a new 760 C capable low thermal expansion alloy

Heat treatment and effects of Cr and Ni in low alloy steel

1 Introduction. Zhen-Xue Shi 1 Shi-Zhong Liu

THICKNESS DEBIT IN CREEP PROPERTIES OF PWA 1484

Physicochemical and technological features of creating metal-based high-superalloys*

S. Neumeier, F. Pyczak, M. Göken University Erlangen-Nürnberg, Institute General Materials Properties, Erlangen, Germany

ALLOYING EFFECTS ON HEAT-TREATED MICROSTRUCTURE IN CO-AL-W-BASE SUPERALLOYS AT 1300 C AND 900 C

THE EFFECT OF TEMPERATURE AND MEAN STRESS ON THE FATIGUE BEHAVIOUR OF TYPE 304L STAINLESS STEEL INTRODUCTION

SEGREGATION OF ELEMENTS IN HIGH REFRACTORY CONTENT SINGLE CRYSTAL NICKEL BASED SUPERALLOYS

A THERMOMECHANICAL FATIGUE CRACK INITIATION MODEL FOR DIRECTIONALLY-SOLIDIFIED NI-BASE SUPERALLOYS

D. BLAVETTE*, P. CARON** and T. KHAN**

ETA PHASE FORMATION DURING THERMAL EXPOSURE AND ITS EFECT ON MECHANICAL PROPERTIES IN NI-BASE SUPERALLOY GTD 111

VDM Alloy 80 A Nicrofer 7520 Ti

Tensile Strength and Pseudo-elasticity of YAG Laser Spot Melted Ti-Ni Shape Memory Alloy Wires

1. Introduction. 2. Experimental procedures

Numerical optimization of solution heat treatments of single crystal nickel-based superalloys: Methods and validation

Electron Beam Melted (EBM) Co-Cr-Mo Alloy for Orthopaedic Implant Applications Abstract Introduction The Electron Beam Melting Process

FACTORS WHICH INFLUENCE DIRECTIONAL COARSENING OF y' DURING. Rebecca A. MacKay* and Lynn J. Ebert**

Development of Microstructure and Mechanical Properties in Laser-FSW Hybrid Welded Inconel 600

THE EFFECTS OF YTTRIUM AND SULFUR ON THE OXIDATION RESISTANCE OF AN ADVANCED SINGLE CRYSTAL NICKEL BASED SUPERALLOY

TENSION/COMPRESSION ASYMMETRY IN CREEP BEHAVIOR OF A Ni-BASED SUPERALLOY

SUPERALLOY : PROCESSING AND PERFORMANCE

EFFECT OF PHOSPHORUS ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF IN718 ALLOY AFTER HOT CORROSION AND OXIDATION

ANALYSIS OF STRAY GRAIN FORMATION IN SINGLE-CRYSTAL NICKEL-BASED SUPERALLOY WELDS

SEGREGATION BEHAVIOR OF PHOSPHORUS AND ITS EFFECT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES IN ALLOY SYSTEM Ni-Cr-Fe-Mo-Nb-Ti-Al*

ON THE DEFORMATION BEHAVIOR OF NICKEL-BASE SUPERALLOYS. D. M. Shah and D. N. Duhl

HEAT-RESISTANT BRAZING FILLER METALS FOR JOINING TITANIUM ALUMINIDE AND TITANIUM ALLOYS

Nanocrystalline structure and Mechanical Properties of Vapor Quenched Al-Zr-Fe Alloy Sheets Prepared by Electron-Beam Deposition

CHAPTER 2 - OBJECTIVES

441 STAINLESS STEEL. Good High-Temperature Oxidation Resistance. Applications Potential

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

MODIFICATION ON STRENGTH AND THERMAL STABILITY OF ALLOY 793

SUPER-NICKEL ALLOY CASTINGS

Technologies for Process Design of Titanium Alloy Forging for Aircraft Parts

Nanoscale Studies of the Chemistry of a René N6 Superalloy

High Temperature Corrosion Behavior of DS GTD-111 in Oxidizing and Sulfidizing Environments

Microstructure and Strength Properties of Austenitic and Ferritic Stainless Steels When Brazed with Ni-Cr-P Amorphous Brazing Foils

LONG TERM THERMAL EXPOSURE OF HAYNES 282 ALLOY

The Effect of La Addition on the Microstructure and Tensile Properties of Hot-Extruded Al 15%Mg 2 Si Composite

Effect of Ti on Charpy Fracture Energy and Other Mechanical Properties of ASTM A 710 Grade B Cu-Precipitation-Strengthened Steel

Freckle Formation and Thermodynamic Assessment for Nb-bearing Superalloys

Recently, more aggressive jet engines and industrial gas

The Microstructure and Mechanical Properties of Inconel 718 Fine Grain Ring Forging

MICROSTRUCTURAL STABILITY AND CREEP DATA ASSESSMENT OF TENARIS GRADES 91 AND 911

THE PHYSICAL METALLURGY OF CAST AND WROUGHT ALLOY 718. Abstract. Introduction

CLAD STAINLESS STEELS AND HIGH-NI-ALLOYS FOR WELDED TUBE APPLICATION

Superplastic Forming Properties of TIMETAL 54M

Effect of Precipitation Hardening on Microstructural Characteristics of 15-5 Ph Steel

Keh-Minn Chang, Hong-Jen Lai and Jeng-Ying Hwang. Idustrial Technology Research Institute Materials Research Laboratories Hsinchu, Taiwan, R.O.C.

The Effects of Superheating Treatment on Distribution of Eutectic Silicon Particles in A357-Continuous Stainless Steel Composite.

EXPERIMENTAL RESEARCH PROGRAM REGARDING THE INFLUENCE OF THERMO-TIME TREATMENT OF MULTICOMPONENT Ni-BASE MELTING ON THEIR PROPERTIES IN SOLID PHASE

Improvement in mechanical properties of C300 maraging steel by application of VAR process

APPLICATIONS OF Fe-C PHASE DIAGRAM

Microstructural Characterization of Aluminum Powder Liquid Coating on IN 738 Superalloy

World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering Vol:8, No:4, 2014

Material data sheet. EOS NickelAlloy IN625. Description, application

ROTARY FORGE PROCESSING OF DIRECT AGED INCONEL 718 FOR AIRCRAFT ENGINE SHAFTS. L.A. Jackman*, G.J. Smith*, A.W. Dix**, and M.L.

THERMAL STABILITY STUDY ON A NEW NI-CR-CO-MO-NB-TI-AL SUPERALLOY

Thema: Erfahrungen mit Thermocalc und Dictra auf dem Gebiet der Bondcoat phasenbestimmung und Diffusion

seibersdorf research Ein Unternehmen der Austrian Research Centers.

MICROCAST-X FINE GRAIN CASTING - A PROGRESS REPORT. 1 1, L.F. Norris, L. Rozenberg

Weldability and weld performance of candidate nickel base superalloys for advanced ultrasupercritical fossil power plants part I: fundamentals

Objective To study the time and temperature variations in the hardness of Al-4% Cu alloy on isothermal aging.

PRODUCTION EVALUATION OF ALLOY. Wei-Di Cao and R.L. Kennedy. Allvac, An Allegheny Technologies Company 2020 Ashcraft Ave. Monroe, NC USA

Design of 10%Cr Martensitic Steels for Improved Creep Resistance in Power Plant Applications

Orientation Dependence of Stress Rupture Properties of a Ni-based Single Crystal Superalloy at 760 C

Microstructure and Microhardness of an Al-Zr-Ti-Fe Alloy

Microstructure and creep resistance of Ti-rich Mo + Mo5Si3 + Mo5SiB2 alloys

More Oxidation and Creep Resistance Upgrade for Type 409. Potential Substitute for 18 Cr-Cb & Type 439. Excellent Forming and Welding Characteristics

ANALYSIS OF HETEROGENEOUS NUCLEATION IN DUCTILE IRON

11.3 The alloying elements in tool steels (e.g., Cr, V, W, and Mo) combine with the carbon to form very hard and wear-resistant carbide compounds.

High Temperature Creep of New L1 2 -containing Cobalt-base Superalloys

Study of microstructure and mechanical properties of high performance Ni-base superalloy GTD-111

AGING BEHAVIOR IN CO-CR-MO-C ALLOYS

15 Cr-Cb ULTRA FORM STAINLESS STEEL

Fundamentals of Plastic Deformation of Metals

High-Entropy Alloys. Breakthrough Materials for Aero Engine Applications? By Daniel Svensson, Gothenburg, 13/2 2015

In the past a few years, TiAl-based intermetallics have been

THE DEVELOPMENT AND CHARACTERIZATION OF A HIGH PERFORMANCEXPERIMENTAL SINGLE CRYSTAL SUPERALLOY. T. Khan, P. Caron and C. Duret

CHAPTER 4 1/1/2016. Mechanical Properties of Metals - I. Processing of Metals - Casting. Hot Rolling of Steel. Casting (Cont..)

NEW HEAT TREATMENT FOR Al HIGH PRESSURE DIE-CASTINGS

AD730 TM - A NEW NICKEL-BASED SUPERALLOY FOR HIGH TEMPERATURE ENGINE ROTATIVE PARTS

Solidification and Crystallisation 5. Formation of and control of granular structure

Wayne A. Demo, Stephen Ferrigno, David Budinger, and Eric Huron GE Engine Services, Cincinnati, OH

ATI 718 ATI 718. Technical Data Sheet. Nickel-Base Superalloy INTRODUCTION FORMS AND CONDITIONS AVAILABLE SPECIFICATIONS. (UNS Designation N07718)

Material data sheet. EOS NickelAlloy HX. Description, application

Transcription:

DEVELOPMENT OF AN OXIDATION-RESISTANT HIGH-STRENGTH SIXTH- GENERATION SINGLE-CRYSTAL SUPERALLOY Kyoko Kawagishi 1, An-Chou Yeh 2,3, Tadaharu Yokokawa 1, Toshiharu Kobayashi 2, Yutaka Koizumi 2 and Hiroshi Harada 2 1 High Temperature Materials Unit, Environment and Energy Materials Division, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan 2 Environment and Energy Materials Division, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan 3 Current affiliation: Materials Science and Engineering Department, National Tsing Hua University, Taiwan (R.O.C.) Keywords: Single Crystal superalloy; 6 th generation, Creep property, Environmental property Abstract For jet engines to meet the ever-increasing demands of ecological compatibility, the compositions of Ni-base single-crystal superalloys have continuously evolved to cope with the increase in turbine entry temperature (TET) owing to the design that improve the thermodynamic efficiency of gas turbine engines. Over the past decade, the addition of Ru has been one of the main subjects of focus to enhance the temperature capability and contribute to the development of new generations of single-crystal superalloys. This paper reposts one of the latest Ru-bearing 6th generation superalloys developed by the National Institute for Materials Science (NIMS),. is a promising candidate alloy for future turbine blade applications because it exhibits excellent and well-balanced mechanical and environmental properties. Introduction Ni-base single-crystal superalloys have excellent hightemperature properties, and advances in the temperature capability of these materials have led to an increase in the efficiency of jet engines and gas turbines. 4 th generation Ni-base superalloys contain 2 3 wt% Ru, which hinders the precipitation of topologically close packed (TCP) phases [1] and improves the high-temperature microstructure stability [2 4]. 4 th generation superalloys have achieved temperature capabilities 30 C higher on average than those of the previous generation superalloys in terms of high-temperature creep strength. 5 th generation superalloys have been invented by the optimization of alloying compositions, and the content of Ru has increased to 5 6wt%; the lattice misfit between the γ and the γ phases has been controlled to balance the interfacial strengthening and coherency, and the dislocation network at the interface of the γ and the γ phases has become finer than that of 4 th generation superalloys in order to inhibit dislocation migration under stress. Thus, the hightemperature creep resistance of 5 th generation superalloys is better than that of 4 th generation superalloys [5]. However, these 4 th and 5 th generations of superalloys are likely to have lower resistance against oxidation than the previous generations owing to the higher content of refractory elements such as Mo, Re and Ru [6, 7]. These refractory-based oxide species have relatively higher vapor pressures and can disrupt the continuity of protective Al 2 O 3 formed on the surface during thermal exposure. To make 4 th and 5 th generation superalloys commercially viable, an improvement in oxidation resistance is imperative. In this study, a 6 th generation superalloy,, which exhibits both high-temperature creep strength and improved oxidation resistance, has been developed. The alloy design procedure involves utilizing the composition of [8] as a base to optimize the alloy chemistry so as to improve the oxidation resistance and creep strength. High-temperature properties such as creep, oxidation and hot-corrosion resistances have been evaluated for this new superalloy; the experimental results have been compared with those of a 2 nd generation superalloy and a 4 th generation superalloy MX- 4/PWA1497. Experimental Procedure, and were designed by using the Alloy Design Program [9] developed by NIMS. [10] is a 4 th generation superalloy containing 5.8 wt% Re and 3.6 wt% Ru. is a 5 th generation superalloy containing higher content of Re and Ru (6.4 wt% Re and 5.0 wt% Ru) to realize better mechanical properties than and to improve the oxidation properties by adding Cr. was designed to have mechanical properties similar to but improved oxidation and hot-corrosion resistances. The Mo and W contents were reduced and the Co and Ta contents were increased. The compositions of alloys used in this study are shown in Table 1. The single-crystal samples used for our experiments were vacuum-induction melted and fabricated using a standard directional solidification casting furnace. Materials were supplied as 10-mm cylindrical bars with orientations within 10 degrees of the [001] orientation. Then samples were solution heat treated and aged with no residual eutectics and no visible TCP phases in the microstructures. Tensile specimens of 4 mm in diameter and 22 mm in gauge length were machined from the heat-treated samples, and tensile tests were conducted at 400 C and 750 C. Tensile creep-upture tests were also conducted on heat-treated samples; specimens were machined into standard creep specimens and tested along the [001] direction to rupture under the following conditions: 800 C/735 MPa, 900 C/392 MPa, 1000 C/245 MPa and 1100 C/137 MPa. High-temperature cyclic oxidation tests were conducted at 1100 C in air for 1 h per cycle. Specimens were machined to 9 mm in diameter and 5 mm in thickness, and the surfaces were finished with 600-grade SiC paper polishing followed by cleaning with acetone. The change in weight of each specimen was measured at the end of each cycle. The hot-corrosion property was also investigated. Specimens measuring 9 mm in diameter by 5 mm in thickness were soaked in 75%Na 2 SO 4 +25%NaCl molten salt at 189

Table 1. Nominal compositions (wt%, Ni bal.). Alloy Co Cr Mo W Al Ti Ta Hf Re Ru 9.6 6.4 0.6 6.4 5.6 1.0 6.5 0.1 3.0 0.0 MX-4/PWA1497 16.5 2.0 2.0 6.0 5.55 0.0 8.25 0.15 5.95 3.0 5.8 3.2 2.8 5.6 5.7 0.0 5.6 0.1 5.8 3.6 5.6 4.6 2.4 5.0 5.6 0.0 5.6 0.1 6.4 5.0 6.5 4.6 1.1 4.0 5.9 0.0 7.6 0.1 6.4 5.0 Table 2. 0.2% yield stress and UTS at 400 C and 750 C (MPa). Alloy 400 C 750 C 0.2% yield UTS 0.2%yield UTS 860 950 950 1150 830 906 868 1241 879 1214 845 1308 925 1373 1041 1348 900 C for 20 h. Metal losses in thickness were calculated from weight losses after this 20-h soak. Results and Analysis In this section, the experimental results are presented and analyzed. Table 2 shows the results of tensile tests conducted at 400 C and 750 C. The 0.2% yield stress and UTS of are comparable with those of at both temperatures; shows some improvement and exhibits the highest yield stress and UTS. Figure 1 shows creep performances of, MX-4/PWA1497,, and TMS- 238 with respect to the Larson-Miller Parameter. The creeprupture lives of are comparable to those of and at 800 C/735 MPa, 900 C/392 MPa, and 1000 C/245 MPa. Interestingly, the creep-rupture life of TMS- 238 is significantly greater than that of and at 1100 C/137 MPa, although the content of Mo in is less than that in and. All the TMS alloys perform better than, and exhibits a performance similarly to MX-4/PWA1497 at 900 C/392 MPa. The advantage of TMS alloys is much more pronounced at lower temperatures/higher stress and higher temperatures/lower stress conditions. Microstructure observations of crept specimens at 1100 C/137 MPa are shown in Fig. 2. Finest lamellar structure found in attributed to its excellent creep property. The oxidation property was investigated and is shown in Fig. 3. showed an improvement over and has excellent oxidation resistance compared with other 4 th and 5 th generation superalloys [11]: however, it shows a large decrease in mass in the cyclic oxidation test because of scale spallation, and the oxidation resistance is still inferior to. shows a relatively stable profile but a slight decrease in mass is found after 50 cycles. Interestingly, shows a constant and gentle increase in mass change until 500 cycles and above. Cross-section images of oxide scales after 1 h of isothermal oxidation at 1100 C were observed and are shown in Fig. 4. TMS- 138A forms a very thick NiO layer at the surface, and spinel layer and thick internal Al 2 O 3 dispersion zones are formed beneath the NiO layer., and show a similar oxide structure consisting of NiO, complex oxides and a protective Al 2 O 3 layer. The scale thicknesses of and are almost equal and thinner than that of. Kirkendall voids were found beneath the Al 2 O 3 layer in and. From these observations, it is clear that has superior oxidation resistance compared with at 1100 C, although it contains less Cr and more Mo and Ru than. It is possible that the higher Ta and lower W content may be beneficial in improving the oxidation resistance of TMS- 238. 190

1000 Stress, (MPa) 500 MX-4/PWA1497 100 22 24 26 28 30 32 LMP = T(20 + logt r ) 10-3 Figure 1. Larson-Miller diagram of creep properties of the investigated alloys. MX-4/PWA1497 Figure 2. 1100 C /137 MPa crept microstructures of the investigated alloys. 191

Specimen Mass Change (mg/cm 2 ) 10 0-10 -20-30 -40 MX-4/PWA1497-50 0 100 200 300 400 500 600 Number of 1h Cycles Figure 3. Results of 1100 C cyclic oxidation tests. Hot corrosion resistance has been evaluated by the crucible test at Figure 4. Microstructures after 1 h exposure at 1100 C. 192

1 900 /20h Metal Loss (mm) 0.1 0.01 1E-3 Alloys Figure 5. Results of hot-corrosion tests. Hot-corrosion resistance was evaluated by a crucible test, and Fig. 5 shows the metal losses of, and after 20 h of soaking. had by far the lowest metal loss; hence, this alloy exhibits the best hot-corrosion resistance. It is likely that a lower Mo content and a higher Re content are responsible for this excellent property. Further investigation is required to elucidate the underlying mechanisms. Figure 6 shows the relationship between creep property and the oxidation resistance. The vertical axis is the oxidation resistance at 1100 C, which was originally defined as including the factors of isothermal mass increase and cyclic mass decrease, and it is expressed as 1 1 Oxidation Resistance log (1) w1 w50 w1 where w 1 is mass gain after the 1 st cycle and w 50 w 1 is the mass change from the 1 st cycle to the 50 th cycle in a 1100 C cyclic oxidation test. In this equation, 1/w 1 is the isothermal oxidation resistance and a 1/ w 50 w 1 is the cyclic oxidation resistance. A larger value means better durability in both factors, and so the total oxidation resistance is expressed as the increase in the value in the vertical axis in Fig. 6. The horizontal axis indicates the rupture life (h) in the creep test at 1100 C/137 MPa. The open squares, diamonds, triangles and inverted triangles are symbols representing commercial 1 st, 2 nd, 3 rd and 4 th generation superalloys. The solid inverted triangle, solid circle and solid double circle stand for NIMS 4 th, 5 th and 6 th generation superalloys. Superalloys were developed focusing on only their mechanical properties up to 4 th generation, as shown by the gray arrows in the figure. However, the solid circle and the solid double circle in Fig. 6 show that superalloys with good oxidation resistance and mechanical properties are being developed owing to the recent efforts to improve the oxidation resistance of these alloys. It is evident that has excellent mechanical and environmental properties and that these are in good balance with each other. Discussion The composition of alloys influence phase stability, / lattice misfit, microstructural evolutions, and oxides formations, which in turn affect surface stability and mechanical properties. The average size of a conventional superalloy such as is 0.5 m. The lower solvus temperature and higher Re content in limits the growth of and slows the rate of diffusion after solution and aging heat treatment. With the addition of Ru, TMS alloys exhibit greater microstructural stability than, although TMS alloys contain a higher amount of refractory elements. This microstructure instability can be attributed to the higher Re and Cr contents, because both elements are very potent 193

10 2 Oxidation Resistance 10 1 10 0 10-1 10-2 Rene N5 PWA1480 Rene N4 1st 2nd PWA1484 MX-4/ PWA1497 3rd CMSX-10K 4th 5th 6th 10-3 0 500 1000 1500 2000 Creep Rupture Life (h) Figure 6. Graph showing comparisons among alloys in terms of a combination of 1100 C/137 MPa creep and 1100 C oxidation resistances. in forming TCP phases; Re tends to heavily segregate into the dendritic core, in which TCP precipitates can first be observed. However, further reducing the residual Re segregation by added solution heat treatment can reduce the tendency for TCP and phase formation in TMS alloys. A previous study [10] suggests that a high Ru content in superalloys may not necessary imply greater microstructural stability, because the overall chemical composition needs to be balanced to prevent precipitations of both TCP and phases. The differences between the creep behaviors of and TMS alloys demonstrate the important role of / lattice misfit in influencing deformation mechanisms. The / lattice misfit of TMS alloys compared with that of is more negative owing to the higher amounts of Re and Ru that partition preferentially into the phase and expand the lattice parameter of. Increasing the / lattice misfit toward the negative not only enhances the rafting kinetics but also refines the dislocation network at the / interface during high-temperature creep. Although the formation of a raft is beneficial against creep in a high-temperature/low-stress condition, the rafted microstructure can be detrimental under intermediate-temperature/intermediatestress creep condition [10]. It is very interesting to note that exhibits both strong creep and oxidation resistances, and the alloy composition has a higher Ta contents; the Mo content is relatively low to minimize the degradation in oxidation resistance typically observed in this class of superalloys that contain large amount of refractory elements. Furthermore, has been designed to exhibit a slightly smaller lattice misfit between the and phases compared with, so as to retain a greater coherency of the microstructure after heat treatment. For, the combination of greater microstructure stability and an optimized refractory content result in an alloy exhibiting impressive resistances against creep, hot corrosion and oxidation. Conclusions Our recent work at NIMS shows that advanced 5 th generation superalloys can be developed having excellent resistance against high-temperature creep, oxidation and corrosion. This paper demonstrates that the superalloy is a promising candidate alloy for turbine blade applications, because this material possesses a balance of the properties desired by gas turbine engine manufacturers to improve engine efficiency. We 194

believe that our 6 th generation single-crystal superalloy has the most excellent and well-balanced mechanical and environmental properties among the existing superalloys. and T. Kobayashi, Oxidation Resistant Ru Containing Ni Base Single Crystal Superalloys, Materials Science and Technology, 25 (2009), pp. 271 275. Acknowledgements The authors acknowledge the financial support partly provided by Rolls-Royce plc for this research. References 1. A. Sato, Y. Koizumi, T. Kobayashi, T. Yokokawa, H. Harada and H. Imai, TTT Diagram for TCP Phases Precipitations of 4 th Generation Ni-Base Superalloys, J Japan Inst Metals, 68 (2004), pp. 507 510. 2. K. O Hara, W.S. Walston, E.W. Ross and R. Darolia, U.S. Patent 5,482,789, Nickel Base Superalloy and Article, 1996. 3. Y. Koizumi, T. Kobayashi, T. Yokokawa, H. Harada, Y. Aoki, M. Arai, S. Masaki and K. Chikugo, Development of 4 th Generation Single Crystal Superalloys, Proceedings (2nd International Symposium on High Temperature Materials, Tsukuba, Japan, 31 May 2 June 2001), pp. 30 31. 4. J. X. Zhang, T. Murakumo, Y. Koizumi, T. Kobayashi, H. Harada and S. Masaki, Interfacial Dislocation Networks Strengthening a Fourth-Generation Single-Crystal TMS- 138 Superalloy, Metall. Mater. Trans. A, 33A (2002), pp. 3741 3746. 5. Y. Koizumi, T. Kobayashi, T. Yokokawa, J. X. Zhang, M. Osawa, H. Harada, Y Aoki and M. Arai, Development of Next-Generation Ni-Base Single Crystal Superalloys, Superalloys 2004, (TMS, 2004), pp. 35 43. 6. S. Walston, A. Cetel, R. MacKay, K. O Hara, D. Duhl and R. Dreshfield, Joint Development of a Fourth Generation Single Crystal Superalloy, Superalloys 2004, (TMS, 2004), pp. 15 24. 7. K. Kawagishi, A. Sato, T. Kobayashi and H. Harada, Effect of Alloying Elements on the Oxidation Resistance of 4th Generation Ni-base Single-crystal Superalloys, J. Japan Inst. Metals, 69 (2005), pp. 249 252. 8. A. Sato, H. Harada, A. C. Yeh, K. Kawagishi, T. Kobayashi, Y. Koizumi, T. Yokokawa and J. X. Zhang, A 5th Generation SC Superalloy with Balanced High Temperature Properties and Processability, Superalloys 2008, (TMS, 2008), pp.131 138. 9. H. Harada, K. Ohno, T. Yamagata, T. Yokokawa and M. Yamazaki, Phase Calculation and Its Use in Alloy Design Program for Nickel-Base Superalloys, Superalloys1988. (TMS, 1988), pp. 733 742. 10. A. C. Yeh, A. Sato, T. Kobayashi and H. Harada, On the Creep and Phase Stability of Advanced Ni-base Single Crystal Superalloys, Materials Science and Engineering A, 490 (2008), pp. 445 451. 11. K. Kawagishi, A. Sato, H. Harada, A. C. Yeh, Y. Koizumi, 195