TESTING THE PERFORMANCE OF SPHERICAL FRUIT GRADER FOR APPLE AND POMEGRANATE

Similar documents
DEVELOPMENT OF A COMMERCIAL SCALE FRUIT GRADER FOR SPHERICAL COMMODITIES

EXPERIMENTAL INVESTIGATIONS ON FRICTION WELDING PROCESS FOR DISSIMILAR MATERIALS USING DESIGN OF EXPERIMENTS

Assessment of seed cum fertilizer drill for wheat sowing after paddy harvesting

Effect of laser-welding parameters on the heat input and weld-bead profile

Development and economic analysis of Agro Processing Centre in production catchment of Vidarbha region

Varietal evaluation of garden pea under semi-arid conditions of Vidharba region

ANALYSIS OF VARIOUS DESIGNING PARAMETERS FOR EARTH AIR TUNNEL HEAT EXCHANGER SYSTEM

Performance evaluation of power chaff cutter

Performance Evaluation Of Portable Mini-Sprinkler Irrigation System

Marketing Efficiency of Green Peas under Different Supply Chains in Punjab

Economics of production of Alphonso mango in Sindhudurg district

Design, Fabrication and Testing of a Double Roll Crusher

International Journal of Commerce and Business Management. Volume 5 Issue 2 October,

DESIGN AND FABRICATION OF SUGARCANE HARVESTER USING SAW CHAIN (SOLAR OPERATED)

Cost Analysis Study of Mango Fruit Processing Industry in Southern India

Physico-mechanical properties of sugar cane stalks related to mechanical harvesting

STATE UNIVERSITY CONSTRUCTION FUND. UNIVERSITY CON DIRECTIVE 5-1 Issue date: October 2014

Bi-Directional Static Load Testing of Drilled Shafts

Performance of Pomegranate Export from India

Integrated Weed Management in Sunflower

SUGGESTED SPECIFICATIONS Pump Frames through 64132

Study on effect of aquaponics farming technique on greenhouse (polyhouse) planted tomatoes.

Supply Chain Management and Indian Fresh Produce Supply Chain: Opportunities and Challenges

PRICE SPREAD AND EFFICIENCY OF MARKETING OF TOMATO IN RAJASTHAN

Development of a Household Poultry De-Feathering Machine with Better Efficiency

Finite Element Analysis and Design Optimization of Platen for Injection Molding Machine

The prediction of some hull manufacturing parameters during early stages of ship design

Growth trends in Export and Import of Horticultural Crops from India and Karnataka: An Economic analysis

MARKETING OPPORTUNITIES FOR INDIAN COMMODITIES IN GULF COOPERATIVE COUNCIL (GCC) COUNTRIES: A SPECIAL FOCUS ON FRUITS AND VEGETABLES.

INTRA AND INTER CLUSTER STUDIES FOR QUANTITATIVE TRAITS IN GARLIC (Allium sativum L)

P.B. UMALE, UMESH R. CHINCHMALATPURE AND S.S. AMBHORE

CONVEYOR PULLEY DESIGN Allan Lill

Design and development of tractor-drawn onion (Allium cepa) harvester. Indian Agricultural Research Institute, Pusa, New Delhi

Seed Market.

SECTION PACKAGE BOOSTER PUMP STATIONS

DESIGN AND FABRICATION OF MULTIPURPOSE SOWING MACHINE

Direction of Trade and Export Competitiveness of Chillies in India

Effect of the physical and mechanical properties of composites on their grinding characteristics

New York Science Journal, 2009, 2(5), ISSN Corrosion In Petroleum Pipelines

Optimization of Process Parameters for Surface Roughness and Material Removal Rate for SS 316 on CNC Turning Machine

PROJECT REPORT 5MT COOL CHAMBER

A Statistical Analysis on Instability and Seasonal Component in the Price Series of Major Domestic Groundnut Markets in India

Resource use efficiency in Alphonso mango production in Sindhudurg district (M.S.)

Development of Cassava Grating Machine: A Dual-Operational Mode

Effect of Different Precooling and Storage Temperatures on Shelf Life of Mango cv. Alphonso

Pineapple (Ananas comosus) is an important fruit AJH

DESIGN CONSIDERATION FOR RADIAL ADJUSTABLE BELT CONVEYOR SYSTEM

Comparison of CO2e emissions associated with regional, heated and imported asparagus

National Academy of Agricultural Science (NAAS) Rating : 3. 03

STRESS -STRAIN ANALYSIS AND EXPERIMENTAL VERIFICATION OF THREE-ROLL PYRAMIDAL SHAPE CONFIGURATION ROLL BENDING MACHINE

Design and Development of Groundnut Planter for Power Weeder

Production & Process Optimization of Micro Alloyed Steel Roller Shaft of an Under Carriage

Development and Evaluation of a Melon Shelling and Cleaning Machine

Quality Assurance Systems

Development of Pull Type Inclined Plate Planter

Authors Pappu Kumar 1, Prof. Prakash Kumar 2 1 Post Graduate Scholar, Deptt. of Production Engg., B.I.T, Sindri, Dhanbad, Jharkhand , India.

FINAL REPORT

Address for Correspondence

EFFECT OF WEED MANAGEMENT PRACTICES ON WEED GROWTH AND YIELD OF MAIZE

Task 1 For Task 1, the outlet was set as a zero-gauge pressure outlet, which is the same outlet condition as the five smaller pipes.

Optimization and Statistical Analysis of Machining Parameters for Tool Wear Rate on EN-19 Alloy Steel

Development of a Dual-Mode Laboratory-Sized Pelletizing Machine

Development of regression models and optimization of FCAW process parameter of 2205 duplex stainless steel

Ovality Correction Methods for Pipes

Comparative Study on Post - Tensioned and Reinforced Concrete flat Slab Systems for a Multistory Building

CORNELL UNIVERSITY AGRICULTURAL EXPERIMENT STATION, NEW YORK STATE COLLEGE OF AGRICULTURE, A STATUTORY COLLEGE OF THE STATE UNIVERSITY, AT CORNELL

Improvement of the Technology Packaging for the Transportation of Mangosteen

PARAMETRIC STUDIES OF BOX CULVERTS

B. Polyethylene samples shall be submitted for Owner approval of color and quality.

Analysis of straw bruising and sieving system on performance of modified wheat straw combine for better straw quality

Effect of Bearing Design Parameters on the Minimum Oil Film Thickness of Hydrodynamic Journal Bearing

Metallurgy 101 (by popular request)

INFLUENCE OF PACLOBUTRAZOL FOR EARLINESS IN MANGO CV. ALPHONSO

Effects of MIG process parameters on the geometry and dilution of the bead in the automatic surfacing

Chapter 2: The Basic Theory Using Demand and Supply. Multiple Choice Questions

DESIGN AND WEIGHT OPTIMIZATION OF GRAVITY ROLLER CONVEYOR

Comparative study for fiber quality parameters in cotton (Gossypium sp. L.)

OPTIMUM IRRIGATION OF WHEAT PRODUCTION AT BAU FARM

Data Analysis on the ABI PRISM 7700 Sequence Detection System: Setting Baselines and Thresholds. Overview. Data Analysis Tutorial

Population Dynamics of Sucking Pests with Relation to Weather Parameters in Bt Cotton in Buldana District, Maharashtra, India

SPECIAL CONTROL CHARTS

A Comparative Analysis of Production and Marketing of Bt Cotton and Hybrid Cotton in Saurashtra Region of Gujarat State

EVALUATING WATER REQUIREMENTS OF DEVELOPING WALNUT ORCHARDS IN THE SACRAMENTO VALLEY

Economic Analysis of Sub-Surface Drainage under Indira Gandhi Nahar Priyojna Command Area A Case Study

FEASIBILITY OF DIFFERENT HARVEST METHODS FOR CIDER APPLES: CASE STUDY FOR WESTERN WASHINGTON

Special Provision No. 540S01 March OPSS 540, Construction Specification for Highway Fence, is deleted and replaced with the following:

GENERAL CONTENTS SECTION I - NUCLEAR ISLAND COMPONENTS

Effect of Change in Indian Rice Price on Nepalese Rice Market: A Partial Equilibrium Model

Grapenet. Traceability System for Indian Grapes Exported to the European Market. A case study

Land Levelling and Its Temporal Variability under Different Levelling, Cultivation Practices and Irrigation Methods for Paddy

EXPORT POTENTIAL OF FOOD PROCESSING INDUSTRY IN INDIA

Packaging Optimization for Transporting Broccoli at Low Temperature

Estimation of irrigation water requirement of maize (Zea-mays) using pan evaporation method in maiduguri, Northeastern Nigeria

Effect of TIG Welding Parameters on the Properties of 304L Automated Girth Welded Pipes Using Orbital Welding Machine

Performance Evaluation of the Automated System for Cleaning, Peeling and Washing Cassava Tubers

Cucumber ( Cucumis sativus L.) is an important and

3.5.7 Flow Through Simple Dies

GAS METAL ARC WELDING OF ADVANCED HIGH STRENGTH STEEL DEVELOPMENTS FOR OPTIMIZED WELD CONTROL AND IMPROVED WELD QUALITY

Analysis of RCC Beams using ABAQUS

MACHINES DESIGN SSC-JE STAFF SELECTION COMMISSION MECHANICAL ENGINEERING STUDY MATERIAL MACHINES DESIGN

Transcription:

International Journal of Science, Environment and Technology, Vol. 2, No 5, 2013, 1059 1071 ISSN 2278-3687 (O) TESTING THE PERFORMANCE OF SPHERICAL FRUIT GRADER FOR APPLE AND POMEGRANATE P.A. Borkar 1, R. P. Murumkar 2 and M.R. Rajput 3 1 Research Engineer, 2 Asstt. Research Engineer, 3 Sr. Research Asstt. All India Coordinated Research Project on Post Harvest Technology Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola Abstract: For maximum response of grading efficiency the input factors viz., feed rate and down slope of grader were optimized to 35.84 kg/min and 30.21% respectively for Apple and 31.91 kg/min and 22.57% for Pomegranate. By using these optimized input factors, the grading efficiency and capacity was found to be 76.35% and 12.14 tonnes/day of 8 hours (at 80% efficiency) for Apple. For Pomegranate, the grading efficiency and capacity was found to be 86.63% and 12.25 tonnes/day (at 80% efficiency) of 8 hours by using optimized input parameters. Keywords: Fruit grader, grading, grading efficiency. Introduction The production of apple (Malus domestica) in India was 1470 thousand tonnes (Annonymous, 2004). Pomegranate (Punica granatum) is grown in tropical and subtropical regions of the world. The total area under cultivation of pomegranate in India is 116.4 thousand ha and production is around 849.1 thousands tons (Annonumous, 2006). The term quality implies the degree of excellence of a product or its suitability for a particular use. Quality is a human construct comprising many properties or characteristics. Quality of produce encompasses sensory properties (appearance, texture, taste and aroma), nutritive values, chemical constituents, mechanical properties, functional properties and defects. Quality is often defined from either a product orientation or a consumer orientation (Abbott, 1999). In India due to lack of proper post harvest handling system and appropriate processing technology, not only does a huge quantity of fruits go waste, but also the country dose not get proper distribution of fresh fruits and good market for processed products for both internal trade and export. Systematic grading is a prerequisite for efficient marketing systems, as a well design programme on grading and standardization brings about an overall improvement not only in the marketing system but also in raising quality consciousness. Received Aug 25, 2013 * Published October 2, 2013 * www.ijset.net

1060 P.A. Borkar, R. P. Murumkar and M.R. Rajput The fruits have to be graded and sorted before being packed and sent to the market for pricing. If done manually the process is slow and grading is done by visual inspection that could be error prone. Grading is done on the basis of various criteria like weight, shape, color, size etc. In the present scenario manual grading is more popular. Grading is done manually in orchard, mandies or packing stations and only skilled persons are doing this job. Huge amount of human energy is invested in this operation and the produce is handled for number of times in this operation which results in increase in respiration rate thereby causing weight loss. The growers, wholesalers, pre-harvest contractors and packing stations are in urgent need of low cost mechanical graders. The objective of this study was to evaluate the performance of grader for different fruits such as Apple and Pomogranate. Material and Methods The orange grader (Fig. 1) consisted of a 1830 x 1300 mm frame made up of m.s. angles 35 x 35 x 5 mm was fabricated. Four pairs of PVC pipes of 75 mm diameter and 1300 mm length were provided keeping spacing of 50 mm at the feed end and 90 mm at the opposite end between two pipes of each pair for grading Apple and pomegranate. These pipes were mounted over 25 mm diameter shaft by fixing four spacers of m.s. plate along the length for fitting these pipes over shafts. These shafts were fitted with the help of pillow block bearing (No. 204) in grooves at both ends of the frame. A chain and sprocket arrangement is provided at the feed end for power transmission from pipe to pipe. The chain is linked alternately on the pipes at each pair so that both the pipes of each pair will rotate in opposite direction outwardly by 80 rpm. One idler in the groove is also provided to give tension while adjusting spacing between the pipes. A universal joint was provided at the feed end of each shaft, so that while adjusting the spacing between the pipes of each pair the alignment of the chain and sprocket will not be disturbed. Thus, the spacing between the two pipes of each pair can be varied. This facilitates the grading of spherical fruits of various sizes, by adjusting the spacing as per the grades desired. The m.s. sheet with sufficient cushioning in V shape was welded on the feed trough so as to divert the fruits in the diverging gap between two pipes of each pair of pipes available for grading fruits. The frame was mounted on two stands made of m.s. angle 35 mm x 35 mm x 5 mm in such a way that, pipe makes a slope of about 32.5%. The tallest end was

Testing the Performance of Spherical Fruit Grader.. 1061 chosen as feed end with a rectangular holder of size 1250 x 760 mm made of m.s. sheet (20 gauge) with proper frame support. For outlet of fruits trapezoidal shaped frames of m.s. flats fitted with m.s. sheet partitions was provided as shown in Fig. 1. The placement of the partitions can be adjusted in the groves as per the requirement of particular grade. Steel pipes of 8 mm diameter were provided over the pvc pipes, so as to guide the fruits between two pipes of each pair, to avoid divergence of fruit. One horsepower single phase electric motor was used as a prime mover. As the grader was versatile in nature for grading all types of spherical fruits, the grader was tested by using apple and pomogranate. For grading apple fruits, the partitions of outlets were provided where the spacing between two pipes of each pair was 40 mm, 50 mm, 65 mm, 80mm and 90 mm thereby receiving the fruits of less than 50 mm diameter,50 to 65 mm diameter, 65 to 80 mm diameter and greater than 80mm diameter. For grading pomogranate, the partition of outlets were provided where the spacing between two pipes of each pair was 50 mm, 65 mm, 80 mm, and 90 mm thereby receiving the fruits of < 65 mm diameter, 65 to 80 mm diameter and greater than 80 mm diameter. The grading efficiency is sensitive to feed rate and slope of the pipes (feed end to opposite end). Hence these two factors were considered for optimization for better grading efficiency by using response surface methodology. The experimental plan selected was for two variables and five levels in response surface methodology (Cochran and Cox, 1975) for optimization of factors for maximum grading efficiency. The two independent variables, feed rate, kg/min (x 1 ) and slope, percent, (x 2 ) and their levels, coded and uncoded are shown in Table 1 for apple and pomogranate. The centre point values were chosen as 30 kg/min feed rate and 32.5 per cent slope for both apple and pomogranate grading, from previous results at this centre. The two higher and two lower levels were added using equation. Central level + ( 2 x interval) (1)

1062 P.A. Borkar, R. P. Murumkar and M.R. Rajput Fig.1 PKV Fruit Grader developed at Akola Center The second order polynomial equation of the following form can be assured to appropriate the true functions. Y = b 0 + b 1 x 1 + b 2 x 2 + b 11 x 2 1 + b 22 x 2 2 + b 12 x 1 x 2.. (2) Where b 0, b 1, b 2, b 11, b 22 and b 12 are the constant co-efficients and x 1 and x 2 are the coded independent variales. These coded variables (x i ) in any particular application are linearly related to X i by the following equation (Khuri and Cornell, 1987). 2Xi - (X ih + X il ) x i = ----------------------------- (3) X ih X il Where, Xi = Decoded variable

Testing the Performance of Spherical Fruit Grader.. 1063 x i = Coded variable X ih = High level (+1) of X i X il = Low level (-1) of X i The apple fruits and pomogranate were procured from the market of Akola city and transported to testing unit with sufficient cushioning material in order to minimize bruising. The sample size of 15 kg was used for each test. Various feed rates were achieved by feeding the same fruit lot during different durations and five levels of slopes were achieved by keeping required thickness of m.s. plates at the bottom of the feed end or opposite end. The major diameters of fruits before grading were measured by Vernier calliper. These fruits were divided in requisite grades, the coding was given and weights were taken before grading (Table 2 and 3) Table 1: Experimental design for two variables five levels in response surface analysis for apple and pomegranate Expt. No. Levels of input variable x 1 Feed rate, kg/min x 2 Slope, percent 1-1 24-1 25 2 1 36-1 25 3-1 24 1 40 4 1 36 1 40 5-1.414 21.36 0 32.5 6 1.414 38.64 0 32.5 7 0 30-1.414 21.7 8 0 30 1.414 43.3 9 0 30 0 32.5 10 0 30 0 32.5 11 0 30 0 32.5 12 0 30 0 32.5 13 0 30 0 32.5

1064 P.A. Borkar, R. P. Murumkar and M.R. Rajput Table 2: Details of apple fruits taken for testing Code A B C D Total Diameter, mm >80 65-80 50-65 <50 No. of fruits 11 30 63 32 136 Weight, kg 2.762 4.762 5.862 1.618 15.01 Average weight, kg 0.251 0.158 0.092 0.051 Table 3: Details of pomogranate taken for testing Code A B C Total Diameter, mm >80 60-85 <65 No. of fruits 16 40 16 72 Weight, kg 5.062 7.796 2.142 15.00 Average weight, kg 0.316 0.195 0.134 The test lot of apples was consisting of 136 fruits, weighing 15.01 kg (Table 2). Out of which there were 11 fruits weighing 2.762 kg of major diameters more than 80 mm (A), 30 fruits weighing 4.762 kg of major diameter ranging between 65 to 80 mm (B), 63 fruits weighing 5.862 kg of major diameter ranging between 50 to 65 mm (C) and 32 fruits weighing 1.618 kg of major diameter less than 50 mm (D). The average weight of each fruits of grade A, B,C and D was 0.251, 0.158, 0.092 and 0.051 kg respectively as given in Table 2. The test lot of pomogranates was consisting of 72 fruits weighing 15 kg (Table 3). Out of which there were 16 fruits weighing 5.062 kg of major diameter greater than 80 mm (A), 40 fruits, weighing 7.796 kg of major diameter ranging between 60 to 85 mm (B), 16 fruits weighing 2.142 kg of of major diameter less than 65 mm (C). The average weight of each fruit of grade A, B and C was 0.316, 0.195 and 0.134 kg respectively as given in Table 3. After testing the grader by using apple and pomegranate as per treatment combinations given in Table 1 replicated thrice, the grading efficiency was calculated by dividing the weight of correctly graded fruits by total weight of fruits taken for grading. After optimizing the input parameters (feed rate and slope) for maximum grading efficiency by using response surface methodology, the grader was tested by using the optimized input parameters. The percent overall effectiveness of separation was also calculated as described in Annexure A by using optimized input parameters.

Testing the Performance of Spherical Fruit Grader.. 1065 Man months involvement of component project workers for the specified years. Scientific - 3 Technical - 4 Supporting 1.2 Results and discussion The experimental average results of three replications for grading efficiency are depicted in Table 4 for apple and pomogrante. The observed data was fitted in second order polynomial model equation. The partial regression coefficients obtained after multiple regression analysis are presented in Table 5. The regression analysis resulted the following second order polynomial equations for grading efficiency. For apple Y = 76.73 + 1.24 x 1 +4.02 x 2 0.81 x 2 1 4.68 x 2 2 2.17 x 1 x 2 ( R 2 = 0.92) (4) For pomegranate Y = 87.16 + 1.67x 1 0.68 x 2 0.38 x 2 1 0.13 x 2 2 +1.15 x 1 x 2 (R 2 = 0.87) (5) The analysis of variance (Tale 6) for the effect of factors on response indicated that the regression was significant (at 10% level) and lack of fit was non significant and hence the mathematical model can be considered as quite adequate for the both apple and pomogrante grading. Table 4: Observed and predicted response for grading efficiency (percent) under various treatment conditions Expt. No. Grading efficiency for apple Grading efficiency for pomegrante Observed Predicted Observed Predicted Y Y Y Y 1 64.57 63.80 86.63 86.81 2 73.66 70.63 88.30 87.84 3 75.94 76.20 81.84 83.15 4 76.35 74.34 88.12 88.79 5 73.59 73.37 84.92 84.03 6 73.89 76.87 88.74 88.75 7 59.57 61.67 87.50 87.86 8 72.40 73.06 87.18 85.95

1066 P.A. Borkar, R. P. Murumkar and M.R. Rajput 9 76.74 76.73 87.11 87.16 10 76.60 76.73 87.23 87.16 11 76.88 76.73 87.12 87.16 12 76.52 76.73 87.22 87.16 13 76.96 76.73 87.12 87.16 Table 5: Values of partial regression co-efficient of second order polynomial equations for grading efficiency Response Partial regression coefficient b 0 b 1 b 2 b 11 b 22 b 12 Apple 76.73 1.24 4.02-0.81-4.69-2.17 Pomegranate 87.16 1.67-0.68-0.38-0.13 1.15 Table 6: Analysis of variance for the effect of input variables on grading efficiency (Y) Source Apple Pomegranate Model (Reg.) df Sum of square df Sum of square 5 313.77* 5 32.32* Residual 4 27.85 4 4.86 Lack of fit 3 27.72 3 4.85 Pure error 1 0.136 1 0.014 F ratio (LDF) - 67.95-113.75 R 2-0.92-0.87 *Significant at 10% level The stationary point where the slope of the curve on the first derivative is zero was located as described by Khuri and Cornell (1987). Results in Table 7 show that the stationary point for the response was laying inside the experimental region as defined by x 1 = + 1.414 and x 2 = +1.414. The model was tested whether the function has maximum or minimum prediction values. It was observed that, the function possesses maximum value for apple and neither maximum not minimum value for pomegranate grading. The co-ordinates (x 1 = 0.973 & x 2 = 0.035) correspond to the uncoded values as 35.84 kg/min feed rate and 30.21 per cent

Testing the Performance of Spherical Fruit Grader.. 1067 slope of pipes for apple grading and coordinates (x 1 = 0.318 and x 2 = -1.238) correspond to the uncoded value as 31.91 kg/min feed rate and 22.57 per cent slope for pomegranate grading. Using these input factors the grading efficiency was calculated to be 77.24 per cent for apple and 87.85 per cent for pomegranate respectively. Table 7 Predicted levels of factors yielding optimum response Factors Grading efficiency (Y) for Apple Grading efficiency (Y) for Pomegrante Coded Uncoded Coded Uncoded Feed rate, kg/min 0.973 34.84 0.318 31.91 Slope, percent 0.035 30.21-1.24 22.57 Response, per cent 77.24 87.84 The response surface and contour plot was generated on computer screen in order to study the pictorial form of behavior of response variables using the prediction model equation as shown in Fig. 2 and Fig. 3 for grading efficiency for apple and pomegranate respectively.

1068 P.A. Borkar, R. P. Murumkar and M.R. Rajput Fig. 2 Contour plot and response surface showing effect of feed rate and slope on grading efficiency of apple

Testing the Performance of Spherical Fruit Grader.. 1069 (0.32,-1.24) Fig. 3: Contour plot and response surface showing effect of feed rate and slope on grading efficiency of pomegranate Table 8 presents the statistical analysis of joint test on the two parameters involving one particular factor. For example, test x 1 tests the hypothesis that parameters of model equation viz. x 1, x 2 1 and x 1 x 2 are all zero. Similar is the case for x 2, Table 8 revealed that, x 1 (feed rate) is highly significant than x 2 (slope) for apple and x 2 (slope) is highly significant at 10% level than x 1 (feed rate). This shows that, the effect of feedrate is much effective than

1070 P.A. Borkar, R. P. Murumkar and M.R. Rajput the slope for the response in case of apple and vice versa in case of pomogranate may be due to the textural difference. Table 8: Analysis of variance for the overall effect of individual factor Factor df S.S. Mean square F ratio For Apple x 1 3 277.06* 92.35 8.71 x 2 3 34.52 11.50 0.99 For Pomegranate x 1 3 7.88 2.63 1.6139 x 2 3 24.86* 8.29 5.0825 * Significant at 10% level The mathematical model was evaluated for its adequacy by testing the grader by using apple for three samples (sample size 20 kg) with factors constant at above level (35.84 kg/min feed rate and 30.21% slope). The grading efficiency of grader was found to be 76.35 per cent with + 0.65 standard deviation. The corresponding average overall effectiveness of separation was 27.78 per cent with + 0.13 standard deviation. Similarly the mathematical model was evaluated for its adequacy by testing the grader by using pomegranate for three samples (Sample size 20 kg) with factors constant at above level (31.91 kg/min feed rate and 22.57% slope). The grading efficiency was found to be 86.63 per cent with + 0.75 standard deviation. The corresponding average overall effectiveness of separation was 60.35 per cent with + 0.26 standard deviation. This lower overall effectiveness of separation can be attributed to the difference between the major and minor diameter of fruit (fruit being not perfectly spherical) ranging from zero to 10 mm and the orientation of fruit (either major diameter/ minor diameter perpendicular to slope) while conveying within the diverging gap between two pipes of each pair, which caused the mixing of various grades of fruits. Moreover the overall effectiveness of separation is the multiplication of effectiveness of separation of each grade /outlet. With this optimized feed rate the capacity of grader for grading apple comes out to be 17.20 tonnes per day of eight hours and with 80 per cent efficiency, the capacity of the grader is 13.76 tonnes of per day of eight hours for apple.

Testing the Performance of Spherical Fruit Grader.. 1071 Similarly with the optimized feed rate, the capacity of the grader for grading pomegranate comes out to be 15.32 tonnes per day of eight hours and with 80 per cent efficiency, the capacity of the grader is 12.25 tonnes per day of eight hours. Conclusion For maximum response, of grading efficiency, the input factors, feed rate and slope of grader were optimized to 35.84 kg/min and 30.21 per cent respectively for apple and 31.91kg/min and 22.57per cent for pomegranate. Using optimized input factors, the grading efficiency and capacity was found to be 76.35 per cent and 13.76 tonnes per day (at 80% efficiency) of eight hours for apple. For pomegranate, the grading efficiency and capacity was found to be 86.63 per cent and 12.25 tonnes per day (at 80% efficiency) of eight hours by using optimized input parameters. Reference [1] Annonymous, 2004. Market profile on tropical fruits in india, Prepared by the Sugar and Beverages Group Raw Materials, Tropical and Horticultural Products Service Commodities and Trade Division Food and Agriculture Organization of the United Nations, pp -1-6. [2] Annonumous, 2006. APEDA AgriExchange, http: //agriexchange.apeda.gov.in [3] Abbott, J. A., 1998. Quality measurement of fruits and vegetables,. Postharvest Biology and Technology 15 (1999), 207 225. [4] Cochran W.G. and Cox, G.M., 1957. Response Surface Design and Analysis. First Edition, Marcel Dekkar Quality Press, New Delhi. [5] Doshi S.P. and Gupta, K. S., 1991. SPAR 1, Indian Agricultural Statistical Research Institute, ICAR, New Delhi. [6] Khuri A. I. and Cornell, J. A., 1987. Response surface desing analysis. [7] Nageshwar Rao G., 1983. Statistics for agricultural sciences, Oxford and IBH Publishing Company, New Delhi.