Note Name Sequence F1-DCL1 AAAAACTAGTCTGGGCCCGT Dcl1 KO F1-DCL1-

Similar documents
Chapter 10 (Part II) Gene Isolation and Manipulation

Antisense RNA Targeting the First Periplasmic Domain of YidC in Escherichia coli Appears to Induce Filamentation but Does Not Affect Cell Viability

Answer sheet. Student number:

Genome Sequence Assembly

Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio

YG1 Control. YG1 PstI XbaI. YG5 PstI XbaI Water Buffer DNA Enzyme1 Enzyme2

I. Gene Cloning & Recombinant DNA. Biotechnology: Figure 1: Restriction Enzyme Activity. Restriction Enzyme:

CHAPTER THREE RESULTS

Understanding the Importance of the Zinc Binding Domain in CESA Protein Interaction: Some Assembly Required

Lecture Four. Molecular Approaches I: Nucleic Acids

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

SBI4U Culminating Activity Part 1: Genetic Engineering of a Recombinant Plasmid Name:

The Biotechnology Toolbox

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

BIOTECHNOLOGY. Sticky & blunt ends. Restriction endonucleases. Gene cloning an overview. DNA isolation & restriction

Contents. 1 Basic Molecular Microbiology of Bacteria... 1 Exp. 1.1 Isolation of Genomic DNA Introduction Principle...

CFTR-null wt CFTR-null 1.0. Probe: Neo R. Figure S1

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Taq + dntps #EZ U

Page 1 of 10 MIDTERM EXAM OF BIO

Supplementary Information

Dissecting RNA Silencing Pathways in Sclerotinia Sclerotiorum

MCB 102 University of California, Berkeley August 11 13, Problem Set 8

CHAPTER FOUR. Characterization of parasporal genes in. Paenibacillus popilliae and Paenibacillus lentimorbus. Abstract

Molecular cloning: 6 RBS+ arac/ laci

Biotechnology. Review labs 1-5! Ch 17: Genomes. Ch 18: Recombinant DNA and Biotechnology. DNA technology and its applications

Supplementary Information

Genetics and Genomics in Medicine Chapter 3. Questions & Answers

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau

2014 Pearson Education, Inc. CH 8: Recombinant DNA Technology

Reading Lecture 8: Lecture 9: Lecture 8. DNA Libraries. Definition Types Construction

7.3 Antigen 43 PCR, 20ul system. T3 polymerase PCR. Identify them by 1% agarose gel electrophoresis. 7.4 Antigen 43 PCR using different annealing

Overview: The DNA Toolbox

0730 Measure the concentrations of Ligation products of reverse laci + promoter

Quality Control Assays

CH 8: Recombinant DNA Technology

7.02/ RECOMBINANT DNA METHODS EXAM KEY

PLNT2530 (2018) Unit 6b Sequence Libraries

Restriction Enzymes (endonucleases)

Site directed mutagenesis, Insertional and Deletion Mutagenesis. Mitesh Shrestha

500U. Unit Definition. Storage Buffer. 10X PCR Buffer with Mg 2+

Molecular Genetics Techniques. BIT 220 Chapter 20

Enzymatic assembly of DNA molecules up to several hundred kilobases

Chapter 6 - Molecular Genetic Techniques

Recombinant DNA Libraries and Forensics

DERMATOPHYTE PCR KIT. SSI Diagnostica

INNOVAPI WP3 Activity 3 Health Parameters

Identification of Two Tobacco rattle virus Sequence Variants Associated with Virus-like Mottle Symptom on Hosta in Ohio

Petra, Tamannae. Made new 1:10 dilutions of P001 and P ul primer to 18 ul water

Page 1 of 10 MIDTERM EXAM OF BIO

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates.

DNA Technology. Asilomar Singer, Zinder, Brenner, Berg

Synthetic Biology for

TABLE S1. Sequences of the primers used for RT-PCR and PCR

7.02 Recombinant DNA Methods Spring 2005 Exam Study Questions Answer Key

SUPPLEMENTARY INFORMATION

7.012 Problem Set 5. Question 1

GenBuilder TM Cloning Kit User Manual

Problem Set 8. Answer Key

10X ligation buffer ligase 1 vector DNA insert DNA H 2 O. 10 µl Total Volume. 10X ligation buffer ligase 1 vector DNA insert DNA

Colony Fast-Screen Kit (Restriction Screen)

3 Designing Primers for Site-Directed Mutagenesis

For designing necessary primers and oligos for grna, online CRISPR designing tools can be used (e.g.

BIO 304 Fall 2000 Exam II Name: ID #: 1. Fill in the blank with the best answer from the provided word bank. (2 pts each)

Simple Deletion: a vector- and marker-free method to generate and isolate site-directed

GENETICS EXAM 3 FALL a) is a technique that allows you to separate nucleic acids (DNA or RNA) by size.

Problem Set 4

G0463 pscaavmcsbghpa MCS. Plasmid Features:

Bacterial DNA replication

Use of In-Fusion Cloning for Simple and Efficient Assembly of Gene Constructs No restriction enzymes or ligation reactions necessary

GenBuilder TM Plus Cloning Kit User Manual

GenBuilder TM Plus Cloning Kit User Manual

Biotechnology. Biotechnology is difficult to define but in general it s the use of biological systems to solve problems.

Vector Linearization. igem TU/e 2016 Biomedical Engineering

CRISPR Ribonucleoprotein (RNP) User Manual

Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening

13-2 Manipulating DNA Slide 1 of 32

PrimeSTAR Max DNA Polymerase

Puro. Knockout Detection (KOD) Kit

4. Analysing genes II Isolate mutants*

Hy-Fy High Fidelity Mix (x2)

How is genome sequencing done?

DNA Sequencing by Ion Torrent. Marc Lavergne CHEM 4590

Cat # Box1 Box2. DH5a Competent E. coli cells CCK-20 (20 rxns) 40 µl 40 µl 50 µl x 20 tubes. Choo-Choo Cloning TM Enzyme Mix

Virus- infectious particle consisting of nucleic acid packaged in a protein coat.

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review

Design. Construction. Characterization

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

Texas A&M University-Corpus Christi CHEM4402 Biochemistry II Laboratory Laboratory 8: DNA Restriction Digest (II) and DNA Sequencing (I)

THE EXPERIMENTAL PRACTICE OF GAPDH GENE CLONING AND SEQUENCING IN SPECIES OF BASIL AND CILANTRO

Fast and efficient site-directed mutagenesis with Platinum SuperFi DNA Polymerase

Lab Book igem Stockholm Nuclease. Week 8

MCDB 1041 Class 27. Making recombinant DNA and using it

Bootcamp: Molecular Biology Techniques and Interpretation

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

MOLECULAR CLONING OF THE PHILIPPINE ISOLATE OF BANANA BUNCHY TOP VIRUS (BBTV)

Recombinant DNA Technology

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Cold Fusion Cloning Kit. Cat. #s MC100A-1, MC101A-1. User Manual

Transcription:

Table S1: Primers used in this study. Primer Note Name Sequence F1-DCL1 AAAAACTAGTCTGGGCCCGT Dcl1 KO F1-DCL1- Dcl1 KO nested GGCTGGAGCATTTCACATTGG F2-DCL1 ACCCAATTCGCCCTATAGTGAGTCGTATGAACAGACGATGGCGGAC Dcl1 KO F3-DCL1 AAGCCTACAGGACACACATTCATCGTAGGTATTATACCACACCGGGAGAAGC Dcl1 KO F4-DCL1 GTGGTGGGGGAATCAGTTGT Dcl1 KO F4-DCL1- Dcl1 KO nested CAAAACCACCGGAGAATGCG F1-DCL2 GGCATGCCCCGTTTGTATTT Dcl2 KO F1-DCL2- GGGGCCCCCTTTATTGTTCA Dcl2 KO nested F2-DCL2 ACCCAATTCGCCCTATAGTGAGTCGTTTCCGGGTGCAGTTATCCAT Dcl2 KO F3-DCL2 AAGCCTACAGGACACACATTCATCGTAGGTAGTTACTGGATATATATATCA Dcl2 KO F4-DCL2 TTCGGCTTGTACTGTCCACC Dcl2 KO YG-F CGTTGCAAGACCTGCCTGAA All KO YG-Fnested All KO CGATTGCTGATCCCCATGTG PtrpC-F ACGACTCACTATAGGGCGAATTGGGT All KO TtrpC-R TACCTACGATGAATGTGTGTCCTGTAGGCTT All KO HY-R GGATGCCTCCGCTCGAAGTA All KO HY-Rnested GATGTTGGCGACCTCGTATT All KO F2-G418- DCL1 GAAGGGCGAATTCCACAGTGATGAACAGACGATGGCGGAC Double DCL KO

F3-G418- ACTGGCCGTCGTTTTACAACTTATACCACACCGGGAGAAGC Double DCL KO DCL1 1F CACATTCGAATTCAGACTAGTTCTGGTATA SsHADV1 cloning 1R CCCCCCAGGGGGCCCCTC SsHADV1 cloning 2F CCATGTGGGGAGGGGCC SsHADV1 cloning 2R GAGTGGGAACTCGGCCGTCT SsHADV1 cloning 3F CCCACTTAGAATCAGACGGC SsHADV1 cloning 3R GGGTATACCAGAACTAGTCTGAATTC SsHADV1 cloning, inverse PCR 2.2merRev CTATCATTACGTCAGCGTCG SsHADV1 inverse PCR 33F CTGGTTTCATCGCAGGGTAT SsHADV1 cloningsecond copy SV2F GGACTAGTTCTGGTATACCCTGGTTTCATCG SsHADV1 cloningsecond copy 3R -NotI GAGCGGCCGCCGTAGCCGTGTGAGAAGACA SsHADV1 cloningsecond copy F1-Not1- Dcl2 TAACGAGCGGCCGCGGCAGACGGAAGATTATGGA Dcl2 complementation F4-SmaI- Dcl2 GAATCACCCGGGTTCGGCTTGTACTGTCCAC Dcl2 complementation F1-SacI- Dcl1 TACTCAGAGCTCCATGTCTTCCGAACCACCTT Dcl1 complementation F4-Not1- Dcl1 TTACTGCGGCCGCTTGCCCTAAATCTGCAATCC Dcl1 complementation

Table S2: Primers and expected sizes of nested PCR reactions performed to confirm monokaryotic deletion of dicer genes with the corresponding gel image in Figure S1. Lane Primers Sample Expected Size 1. F1-qPCR_R(DCL1) Wtdk3- PCR 1 1.3kb 2. F1 DCL1-HY Wtdk3- PCR 1 No Amp (1.8kb) 3. YG-F4 DCL1 Wtdk3- PCR 1 No Amp (1.7kb) 4. F1-qPCR_R(DCL1) ΔDcl1- PCR 2 No Amp (1.3kb) 5. F1 DCL1-HY ΔDcl1- PCR 2 1.8kb 6. YG-F4 DCL1 ΔDcl1- PCR 2 1.7kb 7. F1-qPCR_R(DCL2) Wtdk3- PCR 3 3.4kb 8. F1 DCL2-HY Wtdk3- PCR 3 No Amp (1.9kb) 9. YG-F4 DCL2 Wtdk3- PCR 3 No Amp (2.1kb) 10. F1-qPCR_R(DCL2) ΔDcl2- PCR 4 No Amp (3.4kb) 11. F1 DCL1-HY ΔDcl2- PCR 4 1.9kb 12. YG-F4 DCL1 ΔDcl2- PCR 4 2.1kb 13. F1-qPCR_R(DCL1) ΔDcl1/2- PCR 5 No Amp (1.3kb) 14. F1 DCL1-PtrpCRev_G418 ΔDcl1/2- PCR 5 741kb 15. F4 DCL1-TtrpCF_G418 ΔDcl1/2- PCR 5 996kb 16. F1-qPCR_R(DCL2) ΔDcl1/2- PCR 6 No Amp (3.4kb) 17. F1 DCL2-HY ΔDcl1/2- PCR 6 1.9kb 18. YG-F4 DCL2 ΔDcl1/2- PCR 6 2.1kb

Figure S1: Electrophoresis gel image to confirm monokaryotic deletion of dicer genes by nested PCR. Lanes as indicated in table S1. Lane 1~12 from right to left on the upper half of the agarose gel image. Lane 13~18 from right to left on the lower half of the agarose gel image. 1 kb ladders are shown on the farthest right and left lanes with corresponding size labelled.

1 genome 0.9 genome Rep IGR CP Rep IGR (A) (B) Figure S2: (A) Plasmid construct to test the infectivity of SsHADV-1; (B) Inverse PCR product amplified using SsHADV-1-specific primers to confirm the infectivity of the infectious clone from a >6 times transferred culture. A 2.2 kb band was amplified and confirmed by Sanger sequencing. The product shows the dimer clone has recombined circular template of SsHADV-1 genome and demonstrates the infectivity of the infectious clone assembled from synthetic DNA. Left Lane: 1kb ladder. Right Lane: 2.2 kb amplicon. Procedure used in this study to make a 1.9mer clone of SsHADV01: To make a 1.9mer clone of Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1): Start with a 1mer clone, sequenced as laid out in the first fasta file. Use a primer set of 33F and 3R to amplify the genome by PCR using SV1 PCR product. Clone it to pjet1.2 to make construct 1 Sanger sequencing to confirm the orientation. Amplify a second PCR product with SV2F and 3R -NotI, and digest with SpeI and NotI. Digest construct 1 with SpeI and NotI (NotI site is on the vector pjet1.2). Ligate digested construct 1 and digested PCR product to make construct 2 Sanger sequencing to confirm the orientation. Primers used: 33F: CTGGTTTCATCGCAGGGTAT 3R: GGGTATACCAGAACTAGTCTGAATTC SV2F: GGACTAGTTCTGGTATACCCTGGTTTCATCG

3R -NotI: GAGCGGCCGCCGTAGCCGTGTGAGAAGACA >SsHADV-1_1 mer_clone AGTTCTGGTATACCCTGGTTTCATCGCAGGGTATGTTTTACTTGGAAAGGTTTAGGGCCTTTCAACGTTATGGCAACAGAGTCTCCAACTTCTGAT TTCCCTTGGTTACCTTATCAGGACTCCAGTAATGGAGTTCAACGTCTCTTTTTTAATGAGAACGTCAACAACATGCCTCAGACAATCAACCGCCA ACGTAACATTTTGTTTAAGGGGGCAGAGAATGTTGATTGGACCGATCCTATTATTGCCCCTCTTGATACCGGTCGTATTACAGTCAAGTTTGATA AGACTTGGACTATGCAATCTGGCAATACTAATGGGATTGTTCGGGAACGGAAATTGTGGCATCCAATGAACCACAATCTCGTGTACGATGACGA CGAATACGGAGATATTGAATCAGGCAGCTGGTTCAGTACTGATAGCAAGGCAGGTATGGGAGATTATTATGTAATGGATATTATACAAGGCGGT CAGGGAGGTACGGCGTCCGACCTTCTTCGTATGACCGCTAATTCTACTATGTATTGGCATGAAAAGTAGGAGCAAGGCAGATTTGTACACAAGG GCGTGTCTCTGCACCATGTGGGGAGGGGCCCCCTGGGGGGGACCCACGTGGGGCTAGACCGACCAACCCTGCCCGGCGCAGCCGATATGGATAA TTAATTGAATTCTACTACTGGCTCTGTAATCTCAATGAAAGTGCAATTCATCTCCATCCAATCAATGTCCACTTGTAACAACTCGTTTCGAGGATC AGCGTTTGAACACCAAATGCTCGGTTTACCCCACTCAATAACCTTAGGTTCTCTATACAATTCCTTAACAGACAAATGTGGCTGACAACCCAGCC ACTCCTTAAAAGAATGAAAAAACTTAATACCACCCCGTATATCGTCGAATACAGCGTATTCCACGTCAGGTGCTTTTAAACACTCGGTACCACTC ACTAGACCAACACAGTATATATGTTTTCCAAGGCTTCTGGCCCAAGAAGTCTTTCCTGTTTGTGAAGGTCCGTACAGGACCAAGCTCTTCACTCTT CCTCGTCTCTCCTCACTAGAGCCGATTCCAGACTGTTCCAACCACCGATTTCTCCCGTCAAGTTCAGCTCCAATAAAATGAGCTCCCGCTGGTGAC TCATACTCGGGAGCATGGTACTGATACTTCCAGTCGCAGTATCTCTGAAGTTGGGAAAAAGAAGTTGCTGCAGCCTTTGGATCCAACTCGTGCAC CAATTCCCAAAACTCATCTCTATTCGACGCTGACGTAATGATAGCCCACTTAGAATCAGACGGCCGAGTTCCCACTCTGCCAACGCTTGGCCTTC CAAGGCCCCCGCAAATGACATCTCCATCTTTGATCGCGTAGTCATACCCCTTCTCCGGAGTCCCTCGAGACTTTGTAATGTTTGGGTGGTGACCAT CGACATCGAATACATCAGCCTTTCTACTGCGAAACTTCCGTCCGAACTCTGCAAAGCAGTGTAGGTGAGTGCCTCCATCCTCGTGATGCTCTCTTC CAATGATGCACTCAGCTCCCAGAAGTGAAAGTTTATCCATAACTCGGAAAGCATCGAGCTCTCCACATTGTGCGTATGTGAGCAAGACATATTTA GCGTGGAAGTCGAAAGTCATGTGATAAATTGTTGTCCCTTTGAGTCTCTGGGCTAAACTAATATTATAGCCCAGGGACGGGGACACTTCCAACTA TAAATACCCCGTCACTTCCCACGCAACGGACAATCAAACATGTCCGCATCATCACAAGATGGCATACGCACGTTATCGCTCTTCCAGGTTTCGGG CAAGAAGGCCAATCAAGACTTCCAGAAGAGGCGGTGTGTCAAAGCCAAGACGCCGATCTTACAGCGCGAAGAAGCGAACCTATCGCAAAAAAG CCTCAATGTCAAAGCGGAGCATCCTCAACACGACATCCCGAAAAAAACGTAATGGAATGCTTACGTTCTCCAACACTACCAACAGTGGGGCTAG TACAGCTCCAGCCGCTGCTCCCGTTTACGTAAATGCAGTTCTTGGCGGCACATTTATTTGGTGCCCTACTGCAATGAACCTTGTCGCGCAGTCTCT TATCTCCAATATGTCTTCTCACACGGCTACGACGTGTTATATGAGAGGGTTGTCTGAACACATTCGAATTCAG > SsHADV-1_1.9mer

CTGGTTTCATCGCAGGGTATGTTTTACTTGGAAAGGTTTAGGGCCTTTCAACGTTATGGCAACAGAGTCTCCAACTTCTGATTTCCCTTGGTTACC TTATCAGGACTCCAGTAATGGAGTTCAACGTCTCTTTTTTAATGAGAACGTCAACAACATGCCTCAGACAATCAACCGCCAACGTAACATTTTGT TTAAGGGGGCAGAGAATGTTGATTGGACCGATCCTATTATTGCCCCTCTTGATACCGGTCGTATTACAGTCAAGTTTGATAAGACTTGGACTATG CAATCTGGCAATACTAATGGGATTGTTCGGGAACGGAAATTGTGGCATCCAATGAACCACAATCTCGTGTACGATGACGACGAATACGGAGATA TTGAATCAGGCAGCTGGTTCAGTACTGATAGCAAGGCAGGTATGGGAGATTATTATGTAATGGATATTATACAAGGCGGTCAGGGAGGTACGGC GTCCGACCTTCTTCGTATGACCGCTAATTCTACTATGTATTGGCATGAAAAGTAGGAGCAAGGCAGATTTGTACACAAGGGCGTGTCTCTGCACC ATGTGGGGAGGGGCCCCCTGGGGGGGACCCACGTGGGGCTAGACCGACCAACCCTGCCCGGCGCAGCCGATATGGATAATTAATTGAATTCTAC TACTGGCTCTGTAATCTCAATGAAAGTGCAATTCATCTCCATCCAATCAATGTCCACTTGTAACAACTCGTTTCGAGGATCAGCGTTTGAACACC AAATGCTCGGTTTACCCCACTCAATAACCTTAGGTTCTCTATACAATTCCTTAACAGACAAATGTGGCTGACAACCCAGCCACTCCTTAAAAGAA TGAAAAAACTTAATACCACCCCGTATATCGTCGAATACAGCGTATTCCACGTCAGGTGCTTTTAAACACTCGGTACCACTCACTAGACCAACACA GTATATATGTTTTCCAAGGCTTCTGGCCCAAGAAGTCTTTCCTGTTTGTGAAGGTCCGTACAGGACCAAGCTCTTCACTCTTCCTCGTCTCTCCTC ACTAGAGCCGATTCCAGACTGTTCCAACCACCGATTTCTCCCGTCAAGTTCAGCTCCAATAAAATGAGCTCCCGCTGGTGACTCATACTCGGGAG CATGGTACTGATACTTCCAGTCGCAGTATCTCTGAAGTTGGGAAAAAGAAGTTGCTGCAGCCTTTGGATCCAACTCGTGCACCAATTCCCAAAAC TCATCTCTATTCGACGCTGACGTAATGATAGCCCACTTAGAATCAGACGGCCGAGTTCCCACTCTGCCAACGCTTGGCCTTCCAAGGCCCCCGCA AATGACATCTCCATCTTTGATCGCGTAGTCATACCCCTTCTCCGGAGTCCCTCGAGACTTTGTAATGTTTGGGTGGTGACCATCGACATCGAATAC ATCAGCCTTTCTACTGCGAAACTTCCGTCCGAACTCTGCAAAGCAGTGTAGGTGAGTGCCTCCATCCTCGTGATGCTCTCTTCCAATGATGCACTC AGCTCCCAGAAGTGAAAGTTTATCCATAACTCGGAAAGCATCGAGCTCTCCACATTGTGCGTATGTGAGCAAGACATATTTAGCGTGGAAGTCG AAAGTCATGTGATAAATTGTTGTCCCTTTGAGTCTCTGGGCTAAACTAATATTATAGCCCAGGGACGGGGACACTTCCAACTATAAATACCCCGT CACTTCCCACGCAACGGACAATCAAACATGTCCGCATCATCACAAGATGGCATACGCACGTTATCGCTCTTCCAGGTTTCGGGCAAGAAGGCCA ATCAAGACTTCCAGAAGAGGCGGTGTGTCAAAGCCAAGACGCCGATCTTACAGCGCGAAGAAGCGAACCTATCGCAAAAAAGCCTCAATGTCA AAGCGGAGCATCCTCAACACGACATCCCGAAAAAAACGTAATGGAATGCTTACGTTCTCCAACACTACCAACAGTGGGGCTAGTACAGCTCCAG CCGCTGCTCCCGTTTACGTAAATGCAGTTCTTGGCGGCACATTTATTTGGTGCCCTACTGCAATGAACCTTGTCGCGCAGTCTCTTATCTCCAATA TGTCTTCTCACACGGCTACGACGTGTTATATGAGAGGGTTGTCTGAACACATTCGAATTCAGACTAGTTCTGGTATACCCTGGTTTCATCG AGTTCTGGTATACCCTGGTTTCATCGCAGGGTATGTTTTACTTGGAAAGGTTTAGGGCCTTTCAACGTTATGGCAACAGAGTCTCCAACTTCTGAT TTCCCTTGGTTACCTTATCAGGACTCCAGTAATGGAGTTCAACGTCTCTTTTTTAATGAGAACGTCAACAACATGCCTCAGACAATCAACCGCCA ACGTAACATTTTGTTTAAGGGGGCAGAGAATGTTGATTGGACCGATCCTATTATTGCCCCTCTTGATACCGGTCGTATTACAGTCAAGTTTGATA AGACTTGGACTATGCAATCTGGCAATACTAATGGGATTGTTCGGGAACGGAAATTGTGGCATCCAATGAACCACAATCTCGTGTACGATGACGA

CGAATACGGAGATATTGAATCAGGCAGCTGGTTCAGTACTGATAGCAAGGCAGGTATGGGAGATTATTATGTAATGGATATTATACAAGGCGGT CAGGGAGGTACGGCGTCCGACCTTCTTCGTATGACCGCTAATTCTACTATGTATTGGCATGAAAAGTAGGAGCAAGGCAGATTTGTACACAAGG GCGTGTCTCTGCACCATGTGGGGAGGGGCCCCCTGGGGGGGACCCACGTGGGGCTAGACCGACCAACCCTGCCCGGCGCAGCCGATATGGATAA TTAATTGAATTCTACTACTGGCTCTGTAATCTCAATGAAAGTGCAATTCATCTCCATCCAATCAATGTCCACTTGTAACAACTCGTTTCGAGGATC AGCGTTTGAACACCAAATGCTCGGTTTACCCCACTCAATAACCTTAGGTTCTCTATACAATTCCTTAACAGACAAATGTGGCTGACAACCCAGCC ACTCCTTAAAAGAATGAAAAAACTTAATACCACCCCGTATATCGTCGAATACAGCGTATTCCACGTCAGGTGCTTTTAAACACTCGGTACCACTC ACTAGACCAACACAGTATATATGTTTTCCAAGGCTTCTGGCCCAAGAAGTCTTTCCTGTTTGTGAAGGTCCGTACAGGACCAAGCTCTTCACTCTT CCTCGTCTCTCCTCACTAGAGCCGATTCCAGACTGTTCCAACCACCGATTTCTCCCGTCAAGTTCAGCTCCAATAAAATGAGCTCCCGCTGGTGAC TCATACTCGGGAGCATGGTACTGATACTTCCAGTCGCAGTATCTCTGAAGTTGGGAAAAAGAAGTTGCTGCAGCCTTTGGATCCAACTCGTGCAC CAATTCCCAAAACTCATCTCTATTCGACGCTGACGTAATGATAGCCCACTTAGAATCAGACGGCCGAGTTCCCACTCTGCCAACGCTTGGCCTTC CAAGGCCCCCGCAAATGACATCTCCATCTTTGATCGCGTAGTCATACCCCTTCTCCGGAGTCCCTCGAGACTTTGTAATGTTTGGGTGGTGACCAT CGACATCGAATACATCAGCCTTTCTACTGCGAAACTTCCGTCCGAACTCTGCAAAGCAGTGTAGGTGAGTGCCTCCATCCTCGTGATGCTCTCTTC CAATGATGCACTCAGCTCCCAGAAGTGAAAGTTTATCCATAACTCGGAAAGCATCGAGCTCTCCACATTGTGCGTATGTGAGCAAGACATATTTA GCGTGGAAGTCGAAAGTCATGTGATAAATTGTTGTCCCTTTGAGTCTCTGGGCTAAACTAATATTATAGCCCAGGGACGGGGACACTTCCAACTA TAAATACCCCGTCACTTCCCACGCAACGGACAATCAAACATGTCCGCATCATCACAAGATGGCATACGCACGTTATCGCTCTTCCAGGTTTCGGG CAAGAAGGCCAATCAAGACTTCCAGAAGAGGCGGTGTGTCAAAGCCAAGACGCCGATCTTACAGCGCGAAGAAGCGAACCTATCGCAAAAAAG CCTCAATGTCAAAGCGGAGCATCCTCAACACGACATCCCGAAAAAAACGTAATGGAATGCTTACGTTCTCCAACACTACCAACAGTGGGGCTAG TACAGCTCCAGCCGCTGCTCCCGTTTACGTAAATGCAGTTCTTGGCGGCACATTTATTTGGTGCCCTACTGCAATGAACC

Statistics associated with the growth and leaf assay on Figure 2. Figure 2A: Average hyphal diameter 72h post inoculation Bio.Reps WTDK3 Dcl1 Dcl2 Dcl1/Dcl2 1. 8 8.5 7.75 3.7 2. 7.7 7 7.5 5.5 3. 8 8 7.8 5.6 Average 7.9 7.8 7.7 4.9 > t.test(wtdk3, Dcl2) Welch Two Sample t-test data: WTDK3 and Dcl2 t = 1.5882, df = 3.9778, p-value = 0.1878 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.1629364 0.5962697

sample estimates: mean of x mean of y 7.900000 7.683333 > t.test(wtdk3, Dcl1) Welch Two Sample t-test data: WTDK3 and Dcl1 t = 0.14744, df = 2.2052, p-value = 0.8952 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -1.715233 1.848567 sample estimates: mean of x mean of y 7.900000 7.833333 > t.test(wtdk3, `Dcl1/Dcl2`) Welch Two Sample t-test data: WTDK3 and Dcl1/Dcl2 t = 4.7437, df = 2.1049, p-value = 0.0377 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 0.4003276 5.5330057 sample estimates: mean of x mean of y 7.900000 4.93333

Figure 2B: Average lesion diameter 72h post inoculation on CANOLA Bio.Reps WTDK3 Dcl1 Dcl2 Dcl1/Dcl2 1. 3.5 3.25 3.15 2.4 2. 3.45 3.6 3 1.75 3. 3.55 3.3 3.5 2.15 Average 3.50 3.38 3.22 2.10 > t.test(wtdk3, Dcl2) Welch Two Sample t-test data: WTDK3 and Dcl2 t = 1.8773, df = 2.1517, p-value = 0.1922 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval:

-0.3240827 0.8907493 sample estimates: mean of x mean of y 3.500000 3.216667 > t.test(wtdk3, Dcl1) Welch Two Sample t-test data: WTDK3 and Dcl1 t = 1.0321, df = 2.2777, p-value = 0.399 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -0.3170668 0.5504002 sample estimates: mean of x mean of y 3.500000 3.383333 > t.test(wtdk3, `Dcl1/Dcl2`) Welch Two Sample t-test data: WTDK3 and Dcl1/Dcl2 t = 7.3113, df = 2.093, p-value = 0.01605 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 0.610202 2.189798 sample estimates: mean of x mean of y 3.5 2.1