SODIUM AZIDE [SEP 100R] FOR CONTROL OF ROOT-KNOT NEMATODE, WEEDS, AND SOIL BORNE DISEASE IN CANTALOUPE PRODUCTION

Similar documents
SODIUM AZIDE [SEP-100] FOR CONTROL OF NEMATODES AND WEED PROBLEMS IN GREEN PEPPER PRODUCTION

METAM SODIUM AS AN ALTERNATIVE TO METHYL BROMIDE FOR FRUIT AND VEGETABLE PRODUCTION AND ORCHARD REPLANTING

Reduced rates of MBR and C35 under LDPE and VIF for control of soil pests and pathogens. Introduction

by Dow AgroSciences. 2 Robert C. Hochmuth and Wayne E. Davis, North Florida Research and Education Center

Avicta seed coating for protection of carrots against plant parasitic nematodes Nature of work

Efficacy of Nimitz (Fluensulfone) Using Drip Irrigation in Tomato Production. Monica Ozores-Hampton, Gilma Castillo and Pablo Navia

Additional index words. Virtually impermeable film, Telone C-35, InLine, plasticulture, soil fumigation, methyl bromide alternatives.

PROPYLENE OXIDE, A SOIL STERILANT WITH POTENTIAL AS A REPLACEMENT FOR METHYL BROMIDE

Research Report

Maryland May 21, 2009 R. David Myers

Andrew MacRae and Joseph Noling University of Florida/IFAS GCREC and CREC

TIMELY INFORMATION Agriculture & Natural Resources

Crop Protection Research Institute

EVALUATION OF DMDS FOR PRODUCTION OF ORNAMENTAL COCKSCOMB (Celosia argentea)

Response of Tomato to Fertilization with Meister Controlled-Release Fertilizers George J. Hochmuth 1

EFFECTS OF FURFURAL ON NEMATODE POPULATIONS AND GALLING ON TOMATO AND PEPPER ABSTRACT

Welcome to Fumigant Training Module No. 2 The purpose of this module is to provide an introduction and background information including a definition

Response of Pepper to Fertilization with Meister Controlled-Release Fertilizers George J. Hochmuth 1

EVALUATION OF NEW FLUORINE-BASED NON-FUMIGANT NEMATICIDES IN FLORIDA

EVLAUATION OF METHYL BROMIDE ALTERNATVIES ON COMERCIAL VEGETAGLE FARMS

C.S. Vavrina Vegetable Horticulturist

Evaluation of Experimental Nematicides for the Management of the Reniform Nematode in North Alabama, 2013

Methyl Bromide: Progress and Problems Identifying Alternatives, Volume II 1

PLANT PATHOLOGY SERIES TIMELY INFORMATION Agriculture & Natural Resources

Use of Telone II and Temik 15G to Improve Yields and Returns of Cotton Grown in Northwest Florida Fields Infested with Root-Knot Nematodes 1

Weed Management in Strawberry

Production Budget for Tomatoes in the Manatee-Ruskin Area of Florida 1

Production Budget for Tomatoes in Southwest Florida 1

Weed Management in Strawberry

INVESTIGATE SWEET POTATO CULTIVARS AND IRRIGATION CRITERIA FOR THE TREASURE VALLEY

Sweetpotato Research Progress Report 2010

CONTRACT NO

Applying Nematicides through an Overhead Sprinkler Irrigation System for Control of Nematodes 1

PREVIOUS YEAR MID-SUMMER SOIL INCORPORATION OF DUAL MAGNUM AND EPTAM TO CONTROL YELLOW NUTSEDGE IN ONION THE FOLLOWING YEAR

Evaluation of Pursell Controlled-Release Polymer-Coated Urea for Tomato and Pepper George J. Hochmuth 1

Yield Response of Bell Pepper Cultivars to Foliar-applied 'Atonik' Biostimulant 1

Evaluation of Monopotassium Phosphate-Based Starter Fertilizer Solutions for Tomato and Pepper Production in Florida George J.

Response of Mulched Lettuce, Cauliflower, and Tomato to Megafol Biostimulant George J. Hochmuth 1

Good Agricultural Practices for Producing a High Quality Peanut Product

Management of Root-Knot Nematodes With Novel Nematicides

Evaluation of Monopotassium Phosphate-Based Starter Fertilizer Solution Effects on Vegetable Production in Florida George J.

The Effect of AmiSorb, a Nutrient Absorption Enhancing Polymer, on Pepper Plant Nutrient Status and Yield

Peanut Disease Control, 2011: Experimental & Standard Fungicide & Cultivar Trials

EFFICACY OF DRIP AND SHANK APPLIED MIDAS FOR STRAWBERRY PRODUCTION IN CALIFORNIA. Husein Ajwa*, Shachar Shem-Tov, and Steve Fennimore

Irrigation Criteria for Sweet Potato Production Using Drip Irrigation

Use of Telone II and Temik 15G to Improve Yields and Returns of Cotton Grown in Northwest Florida Fields Infested with Reniform Nematodes 1

Drip Fumigation with K-Pam HL and Vapam HL Chuck Duerksen* 1 and Husein Ajwa 2

Cucurbits Year-Round IPM Program Annual Checklist (10/11)

Plant growth promoting rhizobacteria via a transplant plug delivery system in the production of drip irrigated pepper.

Agricultural Innovations

Tomato Production Guide for Florida: Nematode Control 1

NEW APPROACHES TO CONTROL DISEASES IN ONIONS AND POTATOES

Chemical Fumigants as Alternatives Methyl Bromide for Soil Disinfestation of Plant Integrated Pest Management

MINIMIZING DISEASES OF PEANUT IN THE SOUTHEASTERN UNITED STATES. The 2016 Version of the Peanut Disease Risk Index

Chemical Nematicides. in Georgia Vegetable Crops FOR CONTROL OF PLANT-PARASITIC NEMATODES

DEMONSTRATION STAGE ON MB ALTERNATIVES FOR STRAWBERRY PRODUCTION IN HUELVA (SPAIN). J.M. López-Aranda (1)*, J.J. Medina (2) and L.

deeringiana) for the Management of Meloidogyne spp.

Overview of the Updated California Strawberry Pest Management Strategic Plan

Overview of the Updated California Strawberry Pest Management Strategic Plan

Weed Management in Strawberry with Dominus, Temozad, & Herbicides

Nematode Management in Carrots 1

FIELD ASSESSMENT OF THE NEMATICIDAL PROPERTIES OF NEEM ( AZADIRACHTA INDICA

Onion Stunting Caused by Rhizoctonia: Management and Economic Importance in the Columbia Basin of Oregon and Washington

VG015 The development of technology to adapt and maximise the drip irrigation system. Jeff Barnes Queensland Department of Primary Industries

Control of Nematodes in Tomato with Paecilomyces lilacinus Strain 251

Vegetarian Newsletter

DISEASE MANAGEMENT STRATEGIES

EVALUATION OF DUAL MAGNUM AND OUTLOOK USED PREEMERGENCE ON DIRECT-SEEDED DRY BULB ONIONS WITH ACTIVATED CHARCOAL

Response of Mulched Tomato to Meister Controlled-Release Fertilizers George J. Hochmuth 1

Fumigation and alternatives update for soil-borne pests

Nitrogen Management in Cole Crops and Leafy Greens

CURRENT SITUATION OF TOMATO GRAFTING AS ALTERNATIVE TO METHYL BROMIDE FOR TOMATO PRODUCTION IN MOROCCO

From Soil Test Results to Practice: How to Develop and Implement a Fertility Plan

DEVELOPING EFFECTIVE CROP ROTATION SYSTEMS TO MANAGE YELLOW NUTSEDGE IN THE TREASURE VALLEY

Evaluation of Tomato Varieties with TSWV Resistance. Craig H. Canaday and Jim E. Wyatt. Interpretative Summary. Introduction

Overview of the Sod Based Rotation Using Conservation Techniques

Response of Pepper to Meister Controlled-Release Fertilizers George J. Hochmuth 1

Northwest Regional Certified Crop Adviser

2012 Nitrogen Technology Evaluation Summary: Methods: Trial No. 1:

Dimethyl Disulfide (DMDS) A Methyl-Bromide Replacement Candidate. P. Robinson, R. Whitson, & T. Estes

A top issue: Quality. Manual of Tomato and Eggplant Field Production

EFFECT OF SOIL FUMIGATION IN THE NURSERY ON GROWTH OF LOBLOLLY PINE SEEDLINGS AND CONTROL OF WEEDS

Sugarbeet Response to Nitrogen Fertilizer Rates K.A. Rykbost and R.L. Dovell

AGRICULTURAL RESEARCH FOUNDATION FINAL REPORT FUNDING CYCLE

Velvetbean and Bahiagrass as Rotation Crops for Management of Meloidogyne spp. and Heterodera glyeines in Soybean

Application for Rhizobacteria in Transplant Production and Yield Enhancement

SOIL MANAGEMENT. Jack T. May, Professor School of Forestry University of Georgia, Athens, Georgia

Improving Drip Fumigation for Strawberry Production in California

HERBICIDE COMBINATIONS AND ADJUVANTS FOR YELLOW NUTSEDGE CONTROL IN GLYPHOSATE-RESISTANT SUGAR BEET

IR-4 Western Regional Workshop. Dead Microbial Nematicides

Nematode Management in Carrots 1

EVALUATION OF HERBICIDES FOR WEED CONTROL IN POTATO. Joel Felix Malheur Experiment Station Oregon State University Ontario, OR, 2009.

2. J. W. Noling, professor, Department of Entomology and Nematology; UF/IFAS Citrus Research and Education Center, Lake Alfred, FL

VINEYARD REPLANT FIELD TRIALS

Chemical Alternatives to Methyl Bromide

Controlling Cotton Root Rot through Improved Fungicide Application Techniques

TIMELY INFORMATION Agriculture & Natural Resources

Nitrogen Fertilizer Movement in Wheat Production, Yuma

CONTROL OF PESTS WITH ALTERNATIVE CHEMICALS TO METHYL BROMIDE FOR POLYETHYLENE MULCHED TOMATO

CALIFORNIA ICEBERG LETTUCE RESEARCH PROGRAM. April 1, March 31, 2009

Transcription:

SODIUM AZIDE [SEP 1 R ] FOR CONTROL OF ROOT-KNOT NEMATODE, WEEDS, AND SOIL BORNE DISEASE IN CANTALOUPE PRODUCTION R. Rodriguez-Kabana, J. R. Akridge, and J. E. Burkett Auburn University and Alabama Agricultural Experiment Station Auburn, Alabama 3683, U.S.A. rrodrigu@acesag.auburn.edu ABSTRACT The efficacy of sodium azide [NaN 3 ] for control of root-knot nematode [Meloidogyne incognita], weeds, and soil-borne diseases in cantaloupe [Cucumis melo var. cantalupensis] was studied with three field experiments two in 23. NaN 3 was delivered pre-plant into soil by drip irrigation using the SEP 1 R [American Pacific Corporation, Las Vegas, Nv, U.S.A.]. The compound was applied at rates within the range of - 2 lbs a.i./a and methyl bromide [MB 67-33] was injected at 35 lbs/a to serve as positive control. The experiments were sited in fields naturally infested with the nematode, and with severe nutsedge [Cyperus strigosus] and other weed problems. Application of NaN 3 at rates > 5 lbs a.i./a eliminated root-knot and controlled damping-off and and root rot caused by species of Rhizoctonia and Fusarium. Effective weed control was obtained with rates > 75 lbs a.i./a. Total and marketable yield increased significantly in response to rates of 5 and 75 lbs; however, there was no additional yield benefit obtained with the use of higher rates. Applications of NaN 3 at rates >1 lbs, in either no change or in gradual decline in yields with severe phytotoxicity observed for the two highest rates [175 & 2 lbss]. Control of root-knot, seedling and root diseases, and weeds with NaN 3 at rates of 5 and 75 lbs was equivalent to that obtained with MB. Results suggest that NaN 3 may be a good substitute for soil fumigation with MB in cantaloupe production. Key Words: azides, cantaloupe, cuburbits, inorganic azides, herbicide, horticultural crops, hydrazoic acid, methyl bromide alternatives, nematicide, pest management, root-knot nematodes, soil-borne pests, soil fumigation, weed control. INTRODUCTION Na and K azides are salts of hydrazoic acid [HN 3 ] that have been explored in a limited manner for their pest controlling properties in the past [MBTOC, 22]. These compounds are solids, readily soluble in water, and can be formulated as granules or liquids. Azides are potent metabolic inhibitors affecting the activities of a variety of oxidative enzymes, notably those involved in the electron transport system of respiration. There is ample information on the toxicological properties of sodium and potassium azides on humans [TOXLINE, 21]. While azides of heavy metals such as Cu, Pb, Hg, are unstable and explosive, those of Na and K are considered safe and stable under ordinary conditions [Moeller, 1952]. Field research at Auburn University in the 197's showed that granular formulations of Na azide applied to soil had broad spectrum activity against weeds, nematodes, and soil-borne phytopathogenic fungi (Kelley & Rodríguez-Kábana, 1979b; Rodríguez-Kábana, et al., 1975; Rodríguez-Kábana et al., 1972). Similar results were obtained in other areas of the U.S. and in Belgium with high-value horticultural crops ( van Wambeke et al., 1984, 1985; van Wambeke & van den Abeele, 1983). The mode of action of Na and K azides on soil-borne pathogens is based on short-term direct 49-1

toxicity, but may also involve as yet undetermined long-term effects through enrichment of the soil with microbial species antagonistic to the pathogens. Sodium and K azides can be formulated as granules or in a variety of liquid formulations. Key to the stability of these formulations is that ph remains greater than 9. [Rodriguez- Kabana, 21b; Rodriguez-Kabana & Robertson, 2]. Liquid formulations allow for uniform distribution of the chemical by means of applications through drip irrigation. One such formulation SEP 1 R has been tried successfully by our team in field trials with tomato and bell peppers for control of weeds, plant pathogenic nematodes and other soil-borne pests [Rodriguez- Kabana, 22b; Rodriguez-Kabana & Akridge, 23; Rodriguez-Kabana et al., 23]. This paper presents additional information from field trials with cantaloupe on the value of SEP 1 R for control of weeds and other soil-borne pests. MATERIALS AND METHODS Field experiments were conducted in 23 to assess the value of Na azide in the SEP 1 R formulation, for control of weeds, plant pathogenic nematodes and other soil-borne pest problems. To this end one experiment in 23 was set up at the E. V. Smith Center, near Auburn, AL, and another at the Brewton Agricultural Research Unit, near Brewton, AL. E. V. Smith Center [EVSC]. The experiment was conducted at the Horticultural Research Unit within the Center, in a field infested near 1% with false yellow nutsedge [Cyperus strigosus] and no other serious pest problem The soil was a sandy loam [ph 6.2; org. matter <1.%; C.E.C. <1 meq/1 gms soil].sep 1 R was applied at rates of:, 5, 75, 1, 125, and 15 lbs a.i./a. A treatment with methyl bromide [3 lbs/a; 2% chloropicrin] was included in the experiment. The material was delivered through 2 drip tapes set 1" apart on the surface of plant beds covered with standard black polyethylene. The beds were 3' wide, 1' long and approx. 6" high. SEP 1 was applied in 3/4" water during a 5 hr period and this was followed 7 days later with an additional 1" of water to move the residual material deeper in the soil profile, and ½" one week later right before planting of Mission cantaloupe on 4 June, 23. The number of weeds per metre of bed was determined for each treatment 7 July, 23 and there were 5 harvest dates beginning on 4 August with the final harvest on 18 of the same month. For each treatment and controls there were 8 replications each 17' of bed length. Brewton Agricultural Research Unit [BARU]. The experiment at BARU was similar to the one at EVSC and was set up in a field severely infested with root-knot nematode [Meloidogyne incognita], and severe incidence of soil-borne disease caused by fungi [species of Fusarium and Rhizoctonia]. The soil was a silt loam of similar characteristics to the one in the EVSC experiment. SEP 1 R was applied at rates of:, 5, 75, 1, 125, 15, 175, and 2 lbs.a.i./a in in the manner described for the EVSC experiment and Hale s Best cantaloupe was planted 14 May, 23. A methyl bromide [2% chloropicrin] treatment [3 lbs/a] was included for comparative purposes. The beds were 1 ft long and of the same width and height as for the EVSC expt. The beds were divided in 17' long plots and there were 6 plots per treatment. Cantaloupes were harvested beginning on 22 July with the final harvest on 1 August. Degree of crop coverage of beds was determined on 3 July using a scale from 1-1 where 1 represented no plants and 1 was 1% of the plot surface covered by plants. Soil samples for nematode 49-2

analyses were taken from every plot on 11 August when the plots were rated for crown rot incidence, and the number of weeds was determined. Soil samples consisted of 1-inch diam. soil cores taken from the root zone of each plant to a depth of approx. 1" have 8-1 cores/plot. The cores were composited and a 1 cm 3 sub-sample was used to extract nematodes with the salad bowl incubation technique [Rodriguez-Kabana & Pope, 1981]. Roots from 2 plants/plot were dug out [8 August] and after washing were rated for root-knot according to a -1 scale where represents no galls and 1 maximal galling [Zeck, 1971]. For both experiments fertilization and control of insects and foliar diseases were according to standard recommendations for the area. All data were analysed following standard procedures for analyses of variance. Fisher s least significant differences [FLSD] were calculated when F values were significant. Unless otherwise stated all differences referred to in the text were significant at p<.5. RESULTS In the EVSC Experiment applications of SEP 1 R at all rates reduced weed populations as illustrated for nutsedge in Figure 1. The relation between numbers of weed and SEP 1 R dosage was best described by a negative exponential model with the greatest reductions in weed population obtained with doses [D] in the range 5<D<15. Marketable and total yields increased in a manner inverse to the pattern observed for weed populations [Fig. 2,3]. Applications rates > 1 lbs a.i./a resulted in yields equivalent to those obtained with methyl bromide. Results from the BARU experiment are presented in Figures 4-6. All application of SEP 1 R resulted in crop cover equal to that obtained with methyl bromide [Fig. 4] and practically eliminated root-knot and juvenile populations of M. incognita [Fig. 5]. Total and marketable yield increased significantly in response to rates of 5 and 75 lbs [Fig. 6]; however, there was no additional yield benefit obtained with the use of higher rates. Indeed, applications of NaN 3 at rates >1 lbs resulted in gradual decline in yields with severe phytotoxicity observed for the two highest rates [175 and 2 lbs]. CONCLUSION Applications of Na azide using the SEP 1 R formulation resulted in cantaloupe yield response and control of weeds and root-knot nematodes equal that obtained with methyl bromide fumigation. As for tomato and greenpepper sodium azide in the SEP 1 R formulation is a viable, practical, and safe compound for substitution of methyl bromide LITERATURE CITED Kelley, W. D. and R. Rodríguez-Kábana. 1979b. Nematicidal activity of sodium azide. Nematropica 8: 49-51. 49-3

MBTOC. 22. Assessment of Alternatives to Methyl Bromide. UNEP. United Nations Environmental Programme. Ozone Secretariat. P.O. Box 3552, Nairobi, Kenya. 437 pp. Moeller, T. 1952. Inorganic Chemistry. John Wiley & Sons, Inc. New York. 966 pp. Rodríguez-Kábana, R. 22a. A preliminary study on the relationship between soil ph and herbicidal activity of sodium azide. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. November 6-8, 22. Orlando, FL. Page 36-1 Rodríguez-Kábana, R. 22b. SEP-1 a new formulation of Na azide for control of nutsedges and other weeds. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. November 6-8, 22. San Diego, FL. Page 64-1 Rodríguez-Kábana, R. 21. Efficacy of aqueous formulations of sodium azide with amineprotein stabilizers for control of nematodes and weeds in tomato production. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. November 5-9, 21. San Diego, CA. Page 7-1. Rodriguez-Kabana, R. and J. R. Akridge. 23. Sodium azide [SEP 1] for control of nematodes and weed problems in green pepper production. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. November 3-6, 23. San Diego, CA. Pages 46-1 to 46-8. Rodriguez-Kabana, R., J. R. Akridge, and J. E. Burkett. 23. Sodium azide [SEP 1] for control of nutsedge, root-knot nematode, and fusarium crown rot in tomato production. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. November 3-6, 23. San Diego, CA. Pages 21-1 to 21-12. Rodríguez-Kábana, R., Backman, P. A., Ivey, and H. L. Farrar. 1972. Effect of post-emergence application of potassium azide on nematode populations and development of Sclerotium rolfsii in a peanut field. Plant Disease Reporter 56: 362-367. Rodríguez-Kábana, R, Backman, P.A. and P. A. King, P. A. 1975. Applications of sodium azide for control of soil-borne pathogens in potatoes. Plant Disease Reporter 59: 528-532. Rodríguez-Kábana, R., and M. H. Pope.1981. A simple incubation method for the extraction of nematodes from soil. Nematropica 11: 175-186. Rodríguez-Kábana, R., and D.G. Robertson. 2. Nematicidal and herbicidal properties of liquid formulation of potassium azide. Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions. November 6-9, 2. Orlando, FL Page 8-1. TOXLINE. 21. Toxicology Literature Online Databank [http://toxnet.nlm.nih.gov] Van Wambeke, E. and D. van den Abeele. 1983. The potential use of azides in horticulture. Acta Horticulturae 152: 147-154. 49-4

Van Wambeke, E., A. Vanachter, and C. Asche. 1985. Fungicidal treatments with azides. BCPC Monograph 31, B6, 253-256. Van Wambeke, E., S. De Coninck, F. Descheemaeker, and A. Vanachter, A. 1984. Sodium azide for the control of soil borne tomato pathogens. Mededelingen van de Rijksfaculteit Landbouwwetenschappen te Gent 49: 373-381. Zeck, W. M. 1971. A rating scheme for field evaluation of root-knot nematode infestations. Pflanzenschutz Nachrichten 24: 141-144. WEEDS PER METER OF BED 2 15 1 5 FALSE YELLOW NUTSEDGE [CYPERUS STRIGOSUS] LOCATION: E.V. SMITH CENTER 'MISSION' CATALOUPE FLSD[p<.5]= 3.65 25 5 75 1 125 15 MBr. SEP 1 APPLIED IN LBS A.I./ACRE Figure 1. Effect of pre-plant applications of sodium azide [SEP 1] on populations of false yellow nutsedge [Cyperus strigosus] in a field experiment at the E. V. Smith Centre, near Auburn, Alabama, in the summer 23. 49-5

MARKETABLE YIELD IN LBS/PLOT 19 17 15 13 11 9 7 5 LOCATION: E.V. SMITH CENTER 'MISSION' CANTALOUPE 25 5 75 1 125 15 MBr. SEP 1 APPLIED IN LBS A.I./ACRE Figure 2. Relation between applications of sodium azide [SEP 1] and marketable yield of Mission cantaloupes in a field experiment at the E. V. Smith Centre, near Auburn, Alabama, in the summer 23. 49-6

TOTAL YIELD IN LBS/PLOT 34 29 24 19 14 LOCATION: E.V. SMITH CENTER 'MISSION' CANTALOUPE 9 25 5 75 1 125 15 MBr. SEP 1 APPLIED IN LBS A.I./ACRE Figure 3. Effect of applications of sodium azide [SEP 1] on total yield of Mission cantaloupes in a field experiment at the E. V. Smith Centre, near Auburn, Alabama, in the summer 23. 8 6 CROP COVER 4 2 25 5 75 1 125 15 175 2 MBr FLSD[p.5]. SEP 1 APPLIED [LBS A.I./ACRE] CROP COVER ON A SCALE WHERE 1= NO PLANTS TO 1 WITH 1% PLOT SURFACE COVERED BY THE CROP Figure 4. Degree of crop cover of bed surface and applications of sodium azide in a field experiment at the Brewton Agricultural Research Unit, Brewton, Alabama, conducted in the summer 23. 49-7

1 14 ROOT KNOT INDEX 8 6 4 2 MELOIDOGYNE INCOGNITA ROOT-KNOT INDEX [FLSD (p.5)=.4] MELOIDOGYNE [FLSD (p.5)= 33] 12 1 8 6 4 2 JUVENILES PER 1 MLS SOIL 25 5 75 1 125 15 175 2 MBr. SEP 1 APPLIED [LBS A.I./ACRE] ROOT KNOT INDEX SCALE FROM = NO GALLS TO 1 MAXIMUM GALLING Figure 5. Control of root-knot nematode [Meloidogyne incognita] with applications of sodium azide [SEP 1] in a field experiment established in the summer 23 at the Brewton Agricultural Research Unit, Brewton, Alabama. 4 5 MARKETABLE YIELD [LBS/PLOT] 35 3 25 2 15 1 5 MARKETABLE YIELD [FLSD (p.5)= 12] TOTAL YIELD [FLSD (p.5)= 13] 4 3 2 1 TOTAL YIELD [LBS/PLOT] 25 5 75 1 125 15 175 2 MBr. SEP 1 APPLIED [LBS A.I./ACRE] Figure 6. Relation between applications of sodium azide [SEP 1] and yield of Hale s Best cantaloupes in a field experiment at the Brewton Agricultural Research Unit, Brewton, Alabama, in the summer 23. 49-8