Richard Maltsbarger & Nicholas Kalaitzandonakes 1

Similar documents
USING SIMULATION FOR ECONOMIC POLICY ANALYSIS IN THE GLOBAL AGRICULTURAL SUPPY CHAIN. Nicholas G. Kalaitzandonakes

Output Trait Specialty Corn Production in Iowa

PRODUCT DIFFERENTIATION AND IDENTITY PRESERVATION: IMPLICATIONS FOR MARKET DEVELOPMENTS IN U.S. CORN AND SOYBEANS

Economics of Specialty Corn Production in Missouri

CHOICES The magazine of food, farm and resource issues

Economic Issues and Trends with Transgenic Crop Production

A Tax Incentive for Certified Seed: An Assessment

Identity-preserved (IP) grains are frequently

Logistical Costs and Strategies for Wheat Segregation

The Iowa Pork Industry 2008: Patterns and Economic Importance by Daniel Otto and John Lawrence 1

Maintaining Food Safety through Quality

Hypothetical Commercialization of Biotech Soybeans in China: Impacts on Domestic Markets and International Trade

Estimated Processor Value (EPV): Crop Year 2015*

AgGuild of Illinois: A New Generation Cooperative without the Bricks and Mortar. J. Randy Winter Department of Agriculture Illinois State University

USING MODELING TECHNIQUES TO TEST THE FEASIBILITY OF SEGREGATING NON-GMO SOYBEANS AT COMMERCIAL ELEVATORS. Berruto Remigio(*) and Dirk E.

Railroads and Grain. Association of American Railroads June Summary

Railroads and Grain. Association of American Railroads May Summary

Grain Prices Remain Sensitive to Weather, Export Developments

Evaluation of Breakeven Farm-gate Switchgrass Prices in South Central North Dakota

Identifying an efficient feed distribution system in the Midwest

Crops Marketing and Management Update

Potential Forecasted Economic Impact of Commercializing Agrisure Duracade 5307 in U.S. Corn Prior to Chinese Import Approval

The Iowa Pork Industry 2003: Patterns and Economic Importance

Mycotoxins management Traders operations. Mycotoxins Forum Brussels, 5-6 September 2013

Product Differentiation and Segregation in Agricultural Systems: Non-Genetically Modified and Specialty Corn and Soybean Crops in Iowa

Segregating GE Crops, Cultural and Functional Challenges. NABC 27 Penn State June 2, 2015 Lynn Clarkson

AN APPLICATION OF THE COASIAN LENS TO GMO REGULATION

(Gives background and presents arguments for both sides) by P. Byrne, D. Pendell, & G. Graff* Quick Facts...

Regional Food Systems

FARM COSTS AND EXPORTS

A LOOK AT ELEVATOR CHARATERISTICS AND BASIS VALUES PAUL POMMER. B.S., South Dakota State University, 2005 A THESIS

Project on Organic Agriculture

November 18, 1996 Ames, Iowa Econ. Info. 1706

1. What variable costs are associated with corn and grain sorghum production?

RE: Public Comments on the Advanced Notice of Proposed Rulemaking (ANPR) for the United States Standards for Soybeans

Measuring Supply-Use of Distillers Grains in the United States

2009 Corn Yield Prospects Continue to Improve. Scott Irwin, Darrel Good, and Mike Tannura August 13, 2009 MOBR 09-04

CORN: CROP PROSPECTS TO DOMINATE PRICES

Grain Marketing Tools: A Survey of Illinois Grain Elevators

BioEnergy Policy Brief July 2009 BPB

1998 AAEA Selected Paper Soybeans Quality Price Differentials From An Elevator s Perspective

Using Enterprise Budgets to Compute Crop Breakeven Prices Michael Langemeier, Associate Director, Center for Commercial Agriculture

Allan Tedrow Sales Executive McCormick Construction Automation by Brad Lansink COMCO Controls

US ranchers face a big challenge in the years

2007 U.S CORN PRODUCTION RISKS: WHAT DOES HISTORY TEACH US? Darrel Good and Scott Irwin May 17, 2007 MOBR 07-01

Testimony on the Value of the Mississippi River for U.S. Agriculture

Costs to Produce Milk in Illinois 2003

This morning (Monday, March 31, 2014) USDA released its annual Prospective Plantings Report. Here are the national numbers:

The Impact of Applying RINS to U.S. Ethanol Exports on Farm Revenue and the Economy. Prepared For: Growth Energy

A Lot Aggregation Optimization Model for Minimizing Food Traceability Effort

ECONOMIC IMPACT STUDY: POTENTIAL COSTS OF MANDATORY LABELLING OF FOOD PRODUCTS DERIVED FROM BIOTECHNOLOGY IN CANADA

Delaware Department of Transportation Agriculture Supply Chain Study: Transportation Supply Chain Analysis ihs.com

The Impact of Revenues and Costs on the Relative Returns of Illinois Grain Farms

The client. The challenge. CASE STUDY: From Supply Chain Insights to Value

Logistical Costs and Risks of. Marketing Genetically Modified Wheat

UPDATED HOG PRODUCTION ESTIMATED RETURNS

Costs to Produce Corn and Soybeans in Illinois 2017

Wheat Enterprises: 1999 Costs and Returns

Join a Global Ag and Food Leader Launch a Great Career Help Feed the World

CORN: FIVE CONSECUTIVE LARGE CROPS?

SOYBEANS: SMALLER STOCKS, MORE ACRES, AND EARLY WEATHER WORRIES

Basis is lousy, but not everywhere Cash markets a barometer for corn and soybean yields By Bryce Knorr

Competitiveness of U.S. Wheat: the Role of Productivity

Hog:Corn Ratio What can we learn from the old school?

2019 Corn & Soybean Market Outlook

LATE PLANTING DECISIONS WITH CROP INSURANCE: DECISION GUIDELINES FOR MICHIGAN FARMERS IN SPRING 2011

Feasibility of the Producer Accumulator Contract in Corn and Soybean Markets

UNIVERSITY Of ILLINOIS LIBRARY AT URBANA-CHAMPAIQN AGRICULTURE

Costs to Produce Milk in Illinois 2016

National Pork Producers Council

Full Season Soybeans Enterprise 1998 Costs and Returns

GRAIN INDUSTRY CHANGES IN WASHINGTON

10 Million Acres of Opportunity. Planning for a decade of sustainable growth and innovation in the Canadian soybean industry

Sponsored by Farm Foundation USDA Office of Energy Policy and New Uses USDA Economic Research Service

Monitoring Productivity of Harvesting Operations

The data for this report were collected by Iowa Farm Business Association consultants and compiled by Iowa State University Extension and Outreach.

Iowa Farm Outlook. December 2017 Ames, Iowa Econ. Info Stretch Run for Meat Markets

The Revenue Program Option in the 2008 U.S. Farm Bill: Evaluating Performance Characteristics of the ACRE Program

FROM THE MARKET TO THE FIELD: THE IMPACT OF AGRICULTURAL AND ENERGY LINKAGES ON FARMERS' CHOICES

Organic and Conventional Crop Budgets. Michael Langemeier Department of Agricultural Economics Purdue University

U.S. Dairy Products, Cash Receipts

An Analysis of Markets for High Oil Corn

THE U.S. SOY INDUSTRY IS A TRUSTED PARTNER, PROVIDING ITS CUSTOMERS WITH A TOTAL QUALITY EXPERIENCE: HIGH-PERFORMING PRODUCTS DELIVERED BY THE MOST

USDA Acreage & Stocks Report

Segregating Transgenic Grains: Results of a Survey Among Country Elevators in South Dakota

The Use of Simulation for Bulk Cargo Terminal Planning and Design

Economic Research Service The USDA Commodity Costs and Returns (CAR) Estimation Project

Economic Contribution of the Wheat Industry to North Dakota

MEASURING SCOPE EFFICIENCY FOR CROP AND BEEF FARMS. M. R. Langemeier 1 and R. D. Jones 1

ALTERNATIVE APPROACHES TO ESTIMATE THE IMPACT OF IRRIGATION WATER SHORTAGES ON RIO GRANDE VALLEY AGRICULTURE

1998 Double Crop Soybean Costs and Returns

Roger G. Ginder Economics Department Iowa State University. October 26, 2000

Workshop. Genetically modified crops: socio-economic impacts, coexistence with conventional production and trade issues

BUILDING ENTERPRISE BUDGETS FOR INDIANA SPECIALTY CROP GROWERS

Coexistence of Biotech, Organic and Conventional Crops: Facts. Issues and a Path Forward

Transportation of U.S. Grains

DR. CHARLES R. HURBURGH, JR. Summary

ESTIMATED COSTS OF SOLDIER AND COMBINE SUGARCANE HARVESTING SYSTEMS IN LOUISIANA

Chapter 5. Grain and Feed Loren W. Tauer, Professor

Transcription:

AgBioForum Volume 3, Number 4 2000 Pages 236-242 DIRECT AND HIDDEN COSTS IN IDENTITY PRESERVED SUPPLY CHAINS Richard Maltsbarger & Nicholas Kalaitzandonakes 1 Any labeling scheme must be supported by an effective identity preservation system which implies extra logistical costs. Both direct and hidden costs exist in identity preserved systems. Such costs vary substantially with the configuration of individual supply chains and can be meaningful, especially under strict standards and thresholds. Key words: identity preservation (IP); supply chain; grain; elevator. Any labeling scheme voluntary or mandatory must be supported by effective identity preservation of foods and food ingredients from seed to the final consumer. Identity preserved (IP) supply chains forego efficiencies present in commodity chains and imply extra logistical costs. Some recent studies shed light on the size of certain direct IP costs in grain supply chains (Lin et al., 2000; Bender et al., 1999; Hurburgh, 1994). Other IP costs, however, remain unarticulated. For instance, local or regional elevators derive revenues from value added activities (e.g., grinding) or from carrying spreads, which are relinquished in IP supply chains. Such foregone revenues are real, though somewhat hidden, costs associated with IP. Similar hidden costs exist all along IP chains. Accurate assessment of direct and hidden IP costs is complicated by inherent difficulties in generalizing across grain supply chains. Differences in local supply conditions and asset configurations at the farm, elevator, and processor level can produce substantial variation in IP costs. In this article, we provide estimates for both direct and hidden IP costs at the elevator level and demonstrate the significance of local supply conditions and asset configuration on their relative size. We focus our attention on elevators as they represent the most significant bottleneck in IP grain supply chains. Estimating An Elevator's IP Costs In traditional commodity supply chains, the elevator's role is crucial in sourcing sparse farm production for a concentrated processing and milling industry. Over the years, asset configuration and logistics of commodity grain handling have been optimized and elevator managers have built operating margins from scale. However, elevators in IP supply chains accept changing roles. In 1 Richard Maltsbarger is a Senior Analyst IBM - Business Innovation Services. He was a Graduate Research Assistant at the Economics and Management of Agrobiotechnology Center (EMAC), University of Missouri - Columbia when this research was completed. Nicholas Kalaitzandonakes is an Associate Professor of Agribusiness at the University of Missouri - Columbia. 2000 Feedstuffs. Reprinted with permission.

addition to efficiently equating product supply with demand over time and space, local and regional elevators must generate, store, and transfer product and source information. Logistical redesign is necessary and can lead to additional expense. Ultimately the value of the IP information must net expenses plus a competitive margin. Consequently, the costs of IP are central in determining returnon-investment for any elevator considering participation in an IP supply chain. To estimate IP costs, we built the Process & Economic Simulation of IP (PRESIP). The PRESIP model is designed to capture the subtle intricacies of day-to-day operations, chain coordination, and relevant costs in IP supply chains for grains. Its structure is flexible and can be adjusted to simulate any asset configuration that may be encountered. In the case of an elevator, two integrated modules in PRESIP capture the essence of riding a bushel of grain from the farm through the elevator. The Elevator Asset Configuration Module mimics the physical configuration of elevator assets including dumping pits, scales, queues, storage bins, and other assets (figure 1). 1 3 4 5 6 Grain Capacity Audit (bu.) 1 1,280,000 2 1,100,000 3 250,000 2 D 4 260,000 5 275,000 6 260,000 GRAIN TO BINS EMPTY TRUCKS EXIT PIT AREA #1 1 2 PIT AREA #2 1 2 3 FT FT FULL TRUCKS ARRIVE FT FT FT FT SCALE OFFICE / WAREHOUSE Figure 1: Example of Elevator Layout in PRESIP. The Elevator Grain Flow Module captures the flow of incoming trucks, movement of trucks through the elevator, and within-elevator grain. The combination of these modules tracks all grain (commodity and IP) from elevator arrival to usage either outbound shipment or in-house grinding. Physical data on the movement of grain are fed into the Elevator Economic Analysis Module, which estimates three categories of IP costs: coordination, logistical, and opportunity costs. Coordination costs are incurred as elevator managers find farmers to produce the grain, verify that these farms have the proper production practices, and contract for production. For buyer-call contracts, there are additional coordination costs for elevator management meetings and producer calls throughout the year.

Logistical costs specific to IP may include multi-year depreciable investments such as compositional analysis and other testing equipment as well as necessary asset upgrades and modifications. They may also involve single season expenditures such as incremental labor for IP handling, additional material and maintenance costs, management of increased farmer dispute, and the costs of misgrades (e.g., where IP stock is accidentally stored as commodity). Hidden or opportunity costs in IP may also exist. Grind margin loss may be incurred by substituting local production of commodity crops often ground for resale as feed. For every bushel of commodity grain lost to IP, there is the lost potential margin. Storage margin opportunity costs are foregone revenues from under-utilized storage capacity - a primary concern to 85% of the elevator managers surveyed by E-Markets in its Grain Industry 2000 report. The PRESIP model generates a commodity-only baseline and then compares subsequent IP scenarios to the daily capacity utilization of the baseline. Negative shifts in capacity utilization are multiplied by an average storage margin to assign the lost revenue as a result of IP handling. The final opportunity cost is a result of scheduled deliveries from the elevator to another intermediary or the end-user. Each scheduled delivery forces the elevator manager to release stock at specific times thereby relinquishing the option to hold grain for carrying spreads. Opportunity costs exist for deliveries in which there is spread in the market a positive net difference between current price and expected future price less cumulative storage and lost interest costs. Using historical spread information (indexed on a constant dollar basis), the PRESIP model assigns an estimated gross spread on each delivery date. Deliveries made on dates with positive spreads are assigned the lost revenue the manager would realize from carrying. Three Case Studies To provide a perspective on the size of IP costs, both direct and hidden, estimates from PRESIP are presented here for three case elevators. The case elevators, located in Missouri and Illinois, were selected to represent different sizes and functions that are common in the Midwest. In this way, the variation of IP costs across different asset configuration is illustrated. For each PRESIP simulation, actual operating data were obtained through personal interviews with the elevator managers. In all three cases the costs of identity preserving high oil corn (HOC) at 5% purity level are calculated. The first elevator [Elevator #1] is a smaller-size Missouri farm supply/grain-merchandising facility. Its operating capacity is 306,800 bushels with annual throughput of 1.25 million bushels. Elevator #1 has two bins of approximately 100,000 bushels used for terminal storage with 14 other smaller bins (2,400-18,000 bushels) used both for terminal storage and temporary turning of stocks. This elevator has only one pit area in which there are two dumping pits - Pit #1 is assigned to soybeans and Pit #2 is shared by corn and sorghum, often causing significant changeover delays at harvest. Soybean margin is derived from merchandising; grinding margin is derived from corn and sorghum. Elevator #1 is restricted by geography to outbound delivery by truck only. Elevator #2 is a larger cooperative, merchandising elevator in Illinois and handles IP crops without using dedicated facilities. Elevator #2 operates at a capacity of 1,513,900 bushels with an annual throughput of 3 million bushels and does not have grinding facilities. This elevator has three dumping pits in two pit areas - primarily one crop type per pit without changeover. There are twelve small bins (5000-30,000-bushels) for turning and drying operations. A honeycomb of thirteen storage bins of 28,000-bushels per bin is used for terminal storage as well as two 125,000-bushel flats and one 480,000-bushel bin. Elevator #2 can deliver outbound loads of grain by truck or rail.

Elevator #3 is a large, river terminal elevator located on the Missouri River. Its capacity is 2,665,000 bushels with an annual throughput of 4.5 million bushels. There are two pit areas (two pits per area). Most bins at this facility are very large with one holding flat of 1.8 million bushels and one large bin of 400,000 bushels. There are four terminal bins of approximately 100,000 bushels and then a few turning bins below this capacity. Finally, Elevator #3 can deliver grain directly from the bin by truck or rail. For barge delivery, the elevator must dump the grain into a truck and move the grain over a levy into the barge (i.e., the barge cannot be loaded directly from storage bins). Multiple scenarios of bin filling schedules, crop-to-bin assignments, incoming volumes, and other key parameters were simulated using PRESIP to derive efficient IP handling. Accordingly, the costs presented here are the lowest per bushel costs for which all constraints of contractual delivery, practical bin filling patterns, management designated checks, and volume patterns are met. Five distinct scenarios for each of the case study elevators are presented here: 100,000 bushels of incoming HOC delivered during peak harvest [100K HD] 100,000 bushels of incoming HOC delivered through buyer call [100K BCD] 200,000 bushels of incoming HOC delivered during peak harvest [200K HD] 200,000 bushels of incoming HOC delivered through buyer call [200K BCD] and 500,000 bushels of incoming HOC delivered during peak harvest [500K]. In each of these scenarios, the first scheduled delivery of HOC to the end-user occurs on December 1. The assumption is that the end-user has 10,000 bushels of temporary storage to accept HOC delivery and receives such an amount every seven days. Empirical Results To reduce the volume of empirical results, details are presented in table 1 for Elevator #2 while more aggregate results are presented for Elevators #1 and #3. Coordination costs are rather stable at less than $0.03/bushel and increase only slightly with buyer call contracting. Segregation costs are somewhat higher with testing being a large portion of these costs. At the 100K volume, the elevator finds that, rather than purchase analysis equipment, it is cheaper to ship samples via a national carrier (e.g., Federal Express ) to a third-party certification site. At the 200K and 500K volumes, the elevator finds more efficiency in purchasing the analysis unit. Hidden or opportunity costs are the most prohibitive costs to IP. In particular, Elevator #2's spread opportunity costs, ranging from $0.07-0.19 per bushel, are significant. In addition, the highest of these costs occurs at the 200K volumes. The variation illustrates the significance of local supply conditions. For the case elevator, spread opportunity costs at the 100K-volume reflect substitution of HOC from 100,000 bushels of local, commodity corn supply. For the 200K volume scenarios, substitution of HOC from the next 100,000 bushels is taken primarily from local soybean supply resulting in higher opportunity costs. Similar substitution effects exist at the 500K volume, but larger volume allows better allocation of costs. At $0.16-0.27 per bushel, the sum of coordination, segregation and opportunity costs is clearly not trivial and therefore important in the management's decision to participate in IP supply chains.

Table 1: IP Cost Structure for Elevator #2 ($ / bushel). Category 100K HD 100K BCD 200K HD 200K BCD 500K HD Coordination Costs Farmer Search Costs 0.028 0.029 0.028 0.029 0.028 Advertising 0.025 0.025 0.025 0.025 0.025 Follow-up calls 0.002 0.002 0.002 0.002 0.002 Farm visits 0.001 0.002 0.001 0.002 0.001 Buyer Call Delivery 0.000 0.007 0.000 0.008 0.000 Weekly meeting 0.000 0.006 0.000 0.007 0.000 Farmer calls 0.000 0.001 0.000 0.001 0.000 Coordination Costs 0.028 0.036 0.028 0.037 0.028 Segregation Costs Sample analysis cost 0.031 0.031 0.026 0.025 0.011 Misgrades 0.000 0.000 0.000 0.000 0.003 Maintenance 0.001 0.001 0.006 0.006 0.003 Disputes/labor 0.001 0.001 0.001 0.001 0.000 Other 0.016 0.017 0.009 0.009 0.004 Segregation Costs 0.049 0.050 0.042 0.041 0.021 Opportunity Costs Under-utilized storage 0.029 0.016 0.017 0.011 0.030 Lost grind margin 0.000 0.000 0.000 0.000 0.000 Spread opportunity 0.070 0.069 0.187 0.166 0.085 Opportunity Costs 0.099 0.085 0.204 0.177 0.115 Total IP Costs 0.176 0.171 0.274 0.255 0.164 Standard Deviation 0.060 0.054 0.085 0.054 0.030 90% Confidence Upper 0.189 0.183 0.293 0.267 0.170 90% Confidence Lower 0.161 0.157 0.253 0.242 0.156 Note. Unless noted, all costs shown as mean result. Comparative Costs In all scenarios, Elevator #2 has a significant advantage driven by significantly lower opportunity costs (table 2). It also has the lowest mean per bushel cost of $0.164 at the 500K volume. The honeycomb configuration of thirty storage bins of approximately 28,000-bushels offers Elevator #2 greater flexibility in filling patterns to maximize storage utilization within the batchprocessing IP system. Elevator #1's primary disadvantage is significantly decreased carry revenue, up to $0.21/bushel, as its local producers substitute out soybean production. Elevator #1's most interesting scenario is at 500K in which the entire facility is dedicated to HOC, yet this dedicated facility scenario does not produce the lowest per bushel cost. Potential operational efficiencies from a dedicated facility are offset by grinding and spread opportunity costs. Elevator #3 faces two primary problems with IP. The first is significant carry opportunity costs ranging from $0.07-0.22/bushel with a similar to Elevator #2 local production-driven cost spike in the 200K scenarios. However, under-utilized capacity is the largest issue for Elevator #3. With low

incoming HOC volumes in relation to its historical commodity stocks, Elevator #3 finds that it cannot fill its large bins (100,000-1,800,000-bushels) as quickly as it can with commodity stocks. Consequently, its storage margin opportunity costs range from $0.06-0.15 per bushel. Table 2: Comparative Cost Structures ($ / bushel). Category 100K HD 100K BCD 200K HD 200K BCD 500K HD Elevator #1-0.335 0.275 0.337 0.290 3 0.354 90% CI (0.317-0.353) (0.256-0.294) (0.321-0.352) (0.275-0.305) (0.339-0.368) Elevator #2-0.176 1,3 0.171 1,3 0.274 1,3 0.255 1,3 0.164 1,3 90% CI (0.161-0.189) (0.157-0.183) (0.293-0.253) (0.242-0.267) (0.156-0.170) Elevator #3-0.236 1 0.231 1 0.366 0.362 0.305 1 90% CI (0.218-0.254) (0.214-0.248) (0.346-0.387) (0.341-0.382) (0.281-0.329) Note. 1 Statistically significant cost advantage over Elevator #1. 3 Statistically significant cost advantage over Elevator #3. Concluding Comments And Implications The three case studies of identity preservation presented here at the elevator level suggest the importance of hidden or opportunity costs that can occur from adapting current commodity operations to IP. Potential revenue streams may change drastically as bin filling patterns shift, grind margins are lost, and carry returns are foregone under specific contractual agreements. Especially important are the effects of local supply conditions and asset configuration on IP costs. Such variation in both direct and hidden IP costs exists throughout the supply chain. Hence, care must be taken in any attempt to generalize IP costs across different supply chains. It is also important to clearly define the scope of the results presented here. In the listed case studies, PRESIP simulations were developed under a generous 5% allowable threshold of contamination from other varieties/hybrids. As such, these costs do not strictly apply to supply chains with narrower thresholds as those required for genetically modified foods in the European Union. Within the bounds of less than 1% percent thresholds, new operational challenges and testing requirements are created. Additional operational changes such as sealed bins, additional cleaning of pollen and grain residue, dedicated delivery dates, insurance or non-compliance penalties add extra costs to IP not accounted for in this study. In addition, testing the presence of GM material at the protein and DNA levels is more expensive than for value-added compositional analysis used here. Some preliminary modeling of such stricter IP supply chains suggests that IP costs tend to increase in a non-linear fashion for very low threshold levels (e.g., near zero) and, in some instances, can make identity preservation prohibitively expensive. References Bender, K., Hill, L., Wenzel, B., and Hornbaker, R. (1999). Alternative market channels for specialty corn and soybeans (Department of Agricultural and Consumer Economics, Agricultural Experiment Station Report No. AE726). Illinois: University of Illinois at Urbana-Champaign.

Lin, W.W., Chambers, W., and Harwood, J. (2000). Biotechnology: U.S. grain handlers look ahead. Agricultural Outlook (Economic Research Service (ERS), U.S. Department of Agriculture (USDA) Report No. AGO-270). Washington, DC: ERS USDA. Hurburgh, C.R. (1994). Identification and segregation of high-value soybeans at a country elevator. Journal of American Oil-Chemists Society, 71, 1073-1078. E-Markets and Context Consulting. (April 1997). Grain industry 2000. Iowa: E-Markets and Context Consulting.