Int.J.Curr.Microbiol.App.Sci (2017) 6(6):

Similar documents
Int.J.Curr.Microbiol.App.Sci (2017) 6(8):

Effect of Wheat Residue Management and Fertilizer Levels on Growth and Yield of Fodder Maize (Zea mays L.)

Effect of different dose of fertilizer application on growth parameter of chilli and uptake and micronutrient concentration after harvest of the crop

Int.J.Curr.Microbiol.App.Sci (2017) 6(8):

K. S. SOMASHEKAR*, B. G. SHEKARA 1, K. N. KALYANA MURTHY AND L. HARISH 2 SUMMARY

Growth Parameters and Yield of Maize (Zea mays L.) as Influenced by Target Yield Approach under Irrigated Situation

IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online):

STUDIES ON PLANTING TECHNIQUE-CUM-IRRIGATION METHODS UNDER VARIED LEVELS OF NITROGEN ON GROWTH AND DEVELOPMENT OF WINTER MAIZE (Zea mays L.

EFFECT OF INTEGRATED NUTRIENT MANAGEMENT ON GROWTH CHARACTERISTIC OF KHARIF MAIZE

Effect of Seed Bed and Different Sources of Nitrogen on Growth and Yield of Barley (Hordeum vulgare L.)

Effect of Phosphorous Nutrition through Foliar and Irrigation on Budgeting of Primary Macro Nutrients in Drip Fertigated Maize

Growth and Yield of Soybean as Influenced by Different Ratios and Levels of Nitrogen and Phosphorus under Rainfed Situations

VI SUMMARY. and maize-sunflower sequential cropping systems

P.L. Patil, H.B.P. Pulakeshi and G.S. Dasog

Int.J.Curr.Microbiol.App.Sci (2017) 6(11):

Soil Test Based Nutrient Management Approaches on Growth and Yield of Dry Direct Seeded Rice (Dry Dsr)

Performance of Cowpea (Vigna unguiculata) Genotypes during Summer under Different Levels of Phosphorus Application

Effect of Long-Term Fertilization on Yield Attributing Character and Economics of Maize in Maize-Wheat Cropping System

Effect of Integrated Weed Management on Yield, Quality and Economics of Summer Sorghum (Sorghum bicolor L.)

Impact of Fertigation and Target Yield Levels on Soil Microbial Biomass and Cane Yield of Ratoon Sugarcane

Performance of Pigeonpea (Cajanus cajan) Intercropping as Influenced by Row Ratios and Nutri Cereal Crops

Effect of Quinchlorac on Grassy Weeds in Transplanted Rice

NSave Nature to Survive

Dry matter accumulation studies at different stages of crop growth in mesta (Hibiscus cannabinus)

IJABR, VOL.8 (2) 2018: ISSN

Performance of chickpea as influenced by mulching practices in maize-chickpea cropping system

INFLUENCE OF HERBIGATION BASED INTEGRATED WEED MANAGEMENT PRACTICES ON GROWTH AND YIELD OF AEROBIC RICE

Effect of Potassium Nitrate on Yield and Yield Attributes of Spring Maize (Zea mays L.) under Different Dates of Planting

RESPONSE OF INTEGRATED NUTRIENT MANAGEMENT ON WHEAT ( TRITICUM AESTIVUM L.) AND ITS RESIDUAL EFFECT ON SUCCEEDING CROP

Response of Integrated Nutrient Management on Nutrient Uptake, Economics and Nutrient Status of Soil in Bold Seeded Summer Groundnut

Integrated Nutrient Management for Yield and Economics of Maize (Zea mays L.) In-Rice-Gingelly-Maize Cropping System through Integrated Farming System

Effect of Planting Geometry and Fertilizer Levels on Yield Parameters and Economics of Aerobic Rice under Drip Fertigation

Calibrating the Leaf Colour Chart for Nitrogen Management in Maize (Zea mays L.) under Irrigated Condition

Influence of Foliar Application of Water Soluble NPK Fertilizer on Yield, Economics Nutrient Uptake and Quality of Lima Bean

Int.J.Curr.Microbiol.App.Sci (2018) 7(1):

Effect of Improved Production Technologies on Growth and Yield of Hybrid Maize

Evaluation of maize fertilizer mixture performance on post harvest soil fertility

Productivity and Nutrient Uptake of Rice Fallow Maize (Zea mays L.) as Influenced by Plant Density and Fertilizer N Under No-Till Conditions

Effect of Integrated Use of Fertilizer and Manures on Growth, Yield and Quality of Pearl Millet

Growth and yield of Baby Corn (Zea Mays L.) as influenced by varieties, spacings and dates of sowing

Impact of Land Configuration, Seed Rate and Fertilizer Doses on Growth and Yield of Blackgram [Vigna mungo (L.) Hepper]

Effect of Land Configuration, Irrigation and INM on Quality, Nutrient Content and Uptake of Indian Bean (var. GNIB-21)

Life Science Archives (LSA)

ABSTRACT Field experiment was conducted during and on deep black soil. Results revealed

Rice (Oryza sativa L.) is the principal cereal

EFFECT OF WEED MANAGEMENT PRACTICES ON WEED GROWTH AND YIELD OF MAIZE

Human Urine an Alternative to Chemical Fertilizers in Crop Production

Profitable Cropping Systems for Southern Telangana Zone of Telangana State, India

Available online at

DILIP SINGH*, D. R. SINGH, V. NEPALIA AND AMINA KUMARI

Studies on Different Sources of Nitrogen and Potassium on Shelf Life of Onion...

INTEGRATED NUTRIENT MANAGEMENT EFFECT IN RICE-RICE SEQUEN- TIAL CROP PING SYS TEM ON SOIL FER TIL ITY AND CROP PRO DUC TIV ITY

Effect of fertilizer levels on soil nutrient status at different growth stages and yield of Bt and non-bt cotton

Response of Different Seed Rate on the Productivity of Hybrid Fodder Sorghum (Sugar graze) in South East Rajasthan

RAKESH KUMAR* ICAR RC NEH Region Nagaland Centre Jharnapani , Nagaland, India

Response of Land Configuration and Deficit Irrigation on Growth and Yield Attributes of Maize (Zea mays L.)

Effect of Foliar Nutrition on Growth, Yield Attributes and Seed Yield of Pulse Crops

Effect of Consortium of Endophytic Nitrogen Fixing Bacteria on Yield Observations of Seasonal (Suru) Sugarcane under Drip Irrigation

1256 Integrated Nutrient Management (INM) for hirsutum cotton under cotton- wheat cropping system in canal command area of North West Rajasthan, India

Yield Attributes and Yield of Summer Pearl Millet as Influenced by Cultivars and Integrated Nutrient Management

IMPACT OF CULTIVARS AND INTEGRATED NUTRIENT MANAGEMENT ON GROWTH, YIELD AND ECONOMICS OF SUMMER PEARL MILLET G

Performance of Makhangrass (Lolium multiflorum) under Various Seed Rate in South East Rajasthan, India

Effect of Integrated Nutrient Management on Growth of Wheat (Triticum aestivum) Cultivars

Integrated Weed Management in Cowpea (Vigna unguiculata (L.) Wasp.) under Rainfed Conditions

Screening of Maize Genotypes under Rainfed Condition of Madhya Pradesh, India

Agriculture Update Volume 12 TECHSEAR OBJECTIVES

Impact of Different Sources of Organic Nutrients on Chemical Composition of S-36 Mulberry and Soil under Irrigated Condition

Improving Use Efficiency of Inputs by Drip Irrigation in Bt Cotton

Influence of irrigation schedules and integrated nutrient management on Growth, yield and Quality of Rabi maize (Zea mays L.)

Performance of Summer Pearl Millet (Pennisetum glaucum L.) Hybrids under North Gujarat Conditions

Productivity of Kharif Maize (Zea mays L.) as Influenced by Sub Soiling and Planting Methods

RESIDUAL EFFECT OF SULPHUR APPLICATION TO MAIZE ON SUBSEQUENT GREEN GRAM IN HAPLUSTALF

Energy Audit of Maize Production System of Selected Villages of North Karnataka, India

GROWTH, YIELD AND QUALITY PARAMETERS OF GROUNDNUT (Arachis hypogaea L.) GENOTYPES AS INFLUENCED BY ZINC AND IRON THROUGH FERTI-FORTIFICATION

Int.J.Curr.Microbiol.App.Sci (2017) 6(8):

Response of summer mungbean to sowing time, seed rates and integrated nutrient management

Effect of INM on Soil Fertility, Productivity and Economics of Cotton + Greengram Intercropping System in Vertisols

Effect of tillage, mulching and weed management practices on the performance and economics of chickpea

Effect of microgranular sulphur on nutrient uptake, soil properties and yield of banana

Programme Assistant, Agronomy, Krishi Vigyan Kendra, Chhindwara (Madhya Pradesh), India. 2

Nutrient status of Soil as influenced by application of distillery spentwash R O Reject

Response of Sunflower to Different N/P Fertilizer Ratios and Levels of Nitrogen and Phosphorus

Effect of Nipping on Growth, Assimilate Supply and Yield of Indian Mustard Genotypes

International Journal of Social Sciences and Entrepreneurship Special Issue 2, 2014

Effect of Nitrogen Management Practices on the Productivity of Late Sown Wheat (Triticum aestivum L.) Varieties

Effect of Integrated Nutrient Modules on Growth, Yield and Available Plant Nutrients in Banana cv. Grand Naine

Int.J.Curr.Microbiol.App.Sci (2018) 7(3):

Integrated nutrient management in transplanted rice(oryza sativa L.)

Effect of Agronomic Practices on Green Fodder, Grain Quality, Grain Yield and Economics of Dual Purpose Barley (Hordeum vulgare L.

BT COTTON PRODUCTIVITY AND PROFITABILITY AS INFLUENCED BY NUTRIENT LEVELS AND NITROGEN SPLIT APPLICATION UNDER IRRIGATION

Photo 1. Typical vertisol that is used for cereal production (Ethiopia 2012). Photo by IPI.

14 Indian Res. J. Ext. Edu. 11 ( 3 ), September, Issues Related to Low Productivity of Maize in Haryana

Effect of Organic, Inorganic Source of Nutrients and Azospirillum on Yield and Quality of Turmeric (Curcuma longa L.)

Genetic Divergence Studies in Maize (Zea mays L.)

SEED QUALITY AS INFLUENCED BY ORGANIC AND INORGANIC FERTILIZERS IN ONION (Allium cepa L.) ROHIT KUMAR AND *VADDORIA, M. A.

Effect of Integrated Nutrient Management on Productivity of Summer Groundnut (Arachis hypogaea L.)

Effect of Nitrogen Sources, doses and Split applications on yield and economics of maize (Zea mays L.) in the Malwa region of Madhya Pradesh (India)

INFLUENCE OF FERTILIZER LEVELS ON GROWTH, YIELD AND ECONOMICS OF NUTMEG (MYRISTICA FRAGRANS HOUTT)

R. V. JOSHI, B. J. PATEL AND K. M. PATEL*

An Asian Journal of Soil Science Volume 7 Issue 1 June,

Transcription:

International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 6 Number 6 (2017) pp. 193-199 Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2017.606.023 Effect of Different Sources and Levels of Potassium on Yield, Nutrient Requirement and Nutrient Use Efficiency by Maize Crop (Zea mays L.) in Low K Soils of Eastern Dry Zone of Karnataka, India Sidharam Patil* and P.K. Basavaraja Department of Soil Science and Agricultural Chemistry, University of Agricultural Sciences, GKVK, Bangalore 560065, India *Corresponding author A B S T R A C T K e y w o r d s Maize, Potassium schoenite, Potassium recovery efficiency, Agronomic efficiency Article Info Accepted: 04 May 2017 Available Online: 10 June 2017 Two field experiments were conducted at Saslu and Sothenhalli village of Dodballapur taluk, Bangalore rural district during 2014 and 2015 in low K soils with different sources and levels of K application. There was an increase in grain and stover yield with increase in levels of K application and significantly higher grain (77.45 q ha -1 ) and stover yield (116.38 q ha -1 ) was recorded in 125% K through potassium schoenite applied treatment. Similarly, higher agronomic efficiency of N (26.42 kg kg -1 ), P (52.84 kg kg -1 ) and K (79.25 kg kg -1 ), higher potassium recovery efficiency (172.94%) and higher nutrient requirement of N (1.63 kg q -1 ), P (0.38 kg q -1 ) and K (0.54 kg q -1 ) were recorded in 125% of K applied through potassium schoenite. Introduction Maize or corn (Zea mays) called as queen of cereals is a versatile plant belonging to the family of grasses (Poaceae). It is cultivated globally being one of the most important cereal crops worldwide. Maize is not only an important human nutrient, but also a basic element of animal feed and raw material for manufacture of many industrial products. The products include corn starch, maltodextrins, corn oil, corn syrup and products of fermentation and distillation industries. Recently it is also being used as a bio fuel. Worldwide production of maize was more than 960 million metric tonne in 2013-14, in which India contributes about 2 per cent of world maize production (14 metric tonnes). State wise Karnataka stands first in maize production (4.4 metric tonnes) (Anonymous, 2014). Maize has a high production potential as an exhaustive crop for potassium fertilizer when compared to any other cereal crop. Productivity of maize largely depends on its nutrient requirement. Large quantity of potassium will be taken up by maize crop, which accounts more than 400 kg K 2 O ha -1 under intensive cropping system (Kusro et al., 193

2014). On the other hand, India ranks fourth after USA, China, and Brazil as far as the total consumption of K-fertilizers in the World is concerned (FAI, 2007). But, there is no reserve of K-bearing minerals in India for production of commercial K-fertilizers and the whole consumption of K-fertilizers are being imported in the form of muriate of potash (KCl) and sulphate of potash (K 2 SO 4 ) which leads to a huge amount of foreign exchange. These necessitate finding an alternate indigenous source of K for plant needs and maintaining K status in soils for sustaining crop production. Bio-K, a brown coloured powder is a value added product of distillery industry, where untreated spentwash is spray dried at high temperature. It retains most of the nutrients of spentwash and has very high potassium content (11.15% of K 2 O). Similarly, potassium schoenite, a double sulfate of potassium and magnesium is made by physical extraction method or by direct removing impurities either from salt lake bittern or solid potassium magnesium salt mine containing 22% of K 2 O. These two K fertilizers in comparison with muriate of potash which contains about 60% of K 2 O were used in the present study to know the effect of these three sources of K on yield, nutrient requirement and nutrient use efficiency by maize crop. Materials and Methods Field experiments were conducted to study the response of maize to different sources and levels of potassium in low K soils (97.20 and 112.80 kg K 2 O ha -1 ) in two farmer s field at Saslu (Site-1) and Sothenhalli (Site-2) villages of Dodaballapur taluk, Bangalore Rural district during 2014-15 and 2015-16, respectively. Fields were located at 13 24 27.5 N latitude, 77 23 11.3 E longitude and 13 23 16.7 N latitude, 77 34 45.5 E longitude. The experiment was laid out in Factorial Randomized Complete Block Design with one control (FRCBD with one control) and with thirteen treatments comprising of varied levels of potassium (K 2 O) viz., 0, 50, 75, 100 and 125 per cent dose of the package of practice of UAS, Bangalore (150 N: 75 P 2 O 5 : 40 K 2 O kg ha -1 ). The amount of K fertilizer applied for each treatment was calculated as per the per cent K 2 O present in different K fertilizers i.e., MOP (60 %), Bio-K (11.15 %) and Potassium schoenite (22 %). Fertilizer N, P, ZnSO 4 (10 kg ha -1 ) and FYM (10 t ha -1 ) were applied in common to all the treatments. The pooled data over 2 years were analyzed statistically following standard procedure as described by Gomez and Gomez (1984). Nutrient requirement (NR): The efficiency of maize crop was calculated in the form of NPK nutrients required (NR) to produce a quintal of grain by using the following formula (Anonymous, 2008). NR (kg q -1 ) = Uptake of N/P/K by grain (kg ha -1 ) Grain yield (q ha -1 ) Different nutrient use efficiencies i.e., Agronomic efficiency of nitrogen, phosphorus and potassium were calculated by using the following formula. Apparent recovery efficiency/ Recovery efficiency of potassium was calculated based on unit increase in uptake of nutrient over control per unit application of nutrient (Fageria, 1992). 194

plant growth and development during early stage of crop growth (Arun kumar et al., 2007). Results and Discussion Grain and stover yield Irrespective of K levels, significant difference in grain yield of maize was recorded due to different sources of K. Significantly higher grain and stover yield of 63.29 q ha -1 and 95.01 q ha -1, respectively were recorded in potassium schoenite (S2) applied treatment compared to that in MOP (S1) and Bio-K (L2) applied treatment. On the other hand, among the different levels of K applied, irrespective of K sources, there was an increase in grain and stover yield parallel to increase in levels of K applied with significantly higher grain and stover yield of 70.99 q ha -1 and 105.58 q ha -1, respectively in 125% of K (L4) applied treatment compared to all other levels of K applied. Among the interaction between different sources and levels of K, significantly higher grain and stover yield of 77.45 q ha -1 and 116.38 q ha -1, respectively was recorded in 125% of K applied through potassium schoenite (S2L4) compared control and all other treatments except 125% Bio-K with 71.98 q ha -1 of grain yield and 100% potassium schoenite in case of stover yield (107.00 q ha -1 ) which were statistically on par (Table 2). Increase in growth and yield parameter with increased levels of K application might be due to increased physiological processes by better utilization of applied NPK fertilizers by maize crop leading to higher plant growth and increased photosynthates to silk as the translocation and accumulation of photosynthates depends upon the efficient photosynthetic structure as well as extent of translocating it into sink (grain) and also on Increased grain and stover yield in 125% K through potassium schoenite compared to that of MOP and Bio-K as source of K, might be due to S content in the potassium schoenite which might have increased nitrogen assimilation thereby increasing grain and stover yield. The results are in conformity with those of Manjunath (2011), who found increase in growth and yield parameters of rice crop in patent kali (K2SO4. MgSO4) applied plot which resulted in higher grain and straw yield and it was attributed to increased rate of photosynthesis and translocating it to sink (grain). Similarly, increase in grain and stover yield of maize crop with higher levels of sulphur application was reported by Channabasamma et al., (2013) and it was attributed to greater rate of cell division, nitrogen assimilation and chlorophyll formation. Nutrient requirement (NR) The individual nutrient required in kg s to produce a quintal of grain (NR) is the indirect method of calculating the nutrient use efficiency (NUE) of a crop. NPK nutrients required to produce a quintal of maize is presented in table 1. Nitrogen required (kg) to produce a quintal of grain was higher (1.63 kg q -1 ) in 125% of K applied through potassium schoenite and Bio- K followed by 1.62 and 1.60 kg q -1 in 125% MOP and 75% of K through potassium schoenite, respectively. However, lower (1.55 kg q -1 ) nitrogen requirement was recorded in control and 100% of K through MOP applied plot. Whereas, phosphorus required (kg) to produce a quintal of grain was higher (0.39 kg q -1 ) in 125% of K applied through Bio-K followed by 0.38 kg q -1 in 50% K through 195

MOP and 125% K through potassium schoenite. However, lower (0.36 kg q -1 ) phosphorus requirement was recorded in control and 100% K through Bio-K treatment and potassium required (kg) to produce a quintal of grain was higher (0.55 kg q -1 ) in 125% of K applied through MOP followed by 0.54 kg q -1 in 100% MOP, 125% potassium schoenite and 75% Bio-K applied plot. However, lower (0.51 kg q -1 ) potassium requirement was recorded in control and 100% K through Bio-K treatments. The perusal of the data of present study clearly indicated that nutrient required (N, P and K) to produce a quintal of grain followed N>K>P order. The higher NPK requirement of 1.63, 0.38 and 0.54 kg q -1, respectively was recorded in 125% K through potassium schoenite applied plot, where significantly higher grain yield was recorded. This might be due to more utilization of nutrients by the crop for higher yield due to application of higher doses in low potassium soils in the study area compared to low levels of fertilizer application, because of easy availability of nutrients at higher doses. Similar results were supported by Santhosha (2013), who observed higher nutrient requirement in STCR approach, where higher yield of maize was recorded. Table.1 Effect of different sources and levels of potassium application on nutrient requirement of N, P and K (kg kg -1 ) (pooled over 2 years) Treatment NR N NR P NR K (kg kg -1 ) (kg kg -1 ) (kg kg -1 ) S 1 L 1 : 50% K (MOP) 1.56 0.38 0.52 S 1 L 2 : 75% K (MOP) 1.56 0.37 0.52 S 1 L 3 : 100% K (MOP) 1.55 0.37 0.54 S 1 L 4 : 125% K (MOP) 1.62 0.38 0.55 S 2 L 1 : 50% K (Pot. schoenite) 1.56 0.37 0.52 S 2 L 2 : 75% K (Pot. schoenite) 1.60 0.37 0.52 S 2 L 3 : 100% K (Pot. schoenite) 1.57 0.37 0.53 S 2 L 4 : 125% K (Pot. schoenite) 1.63 0.38 0.54 S 3 L 1 : 50% K (Bio-K) 1.58 0.37 0.52 S 3 L 2 : 75% K (Bio-K) 1.58 0.37 0.54 S 3 L 3 : 100% K (Bio-K) 1.57 0.36 0.51 S 3 L 4 : 125% K (Bio-K) 1.63 0.39 0.54 S 0 L 0 : Control (No-K) 1.55 0.36 0.51 196

Table.2 Effect of different sources and levels of potassium on grain and stover yield (q ha -1 ) of maize crop (pooled over 2 years) Grain yield (q ha -1 ) Stover yield (q ha -1 ) Treatments 2014 2015 Pooled 2014 2015 Pooled S 1 : MOP 53.73 55.87 54.80 83.23 87.47 85.35 S 2 : Pot. Schoenite 62.12 64.45 63.29 92.88 97.13 95.01 S 3 : Bio-K 58.30 61.70 60.00 84.68 91.86 88.27 SEm+ 1.75 1.19 1.05 3.05 2.18 2.17 CD @5% 5.10 3.47 2.96 8.91 6.35 6.12 L 1 : 50 % K 45.25 50.77 48.01 65.22 80.11 72.66 L 2 :75 % K 53.24 54.50 53.87 73.18 87.87 80.53 L 3 :100 % K 64.19 64.96 64.58 100.98 97.80 99.39 L 4 :125 % K 69.52 72.46 70.99 108.33 102.84 105.58 SEm+ 2.02 1.37 1.21 3.53 2.51 2.50 CD @5% 5.88 4.00 3.42 10.29 7.34 7.07 S 1 L 1 : 50% K (MOP) 42.60 48.19 45.40 63.30 75.72 69.51 S 1 L 2 : 75% K (MOP) 52.43 51.11 51.77 72.41 86.74 79.58 S 1 L 3 : 100% K (MOP) 58.18 58.77 58.48 93.54 93.44 93.49 S 1 L 4 : 125% K (MOP) 61.70 65.41 63.56 103.66 93.99 98.82 S 2 L 1 : 50% K (Pot. schoenite) 47.20 52.95 50.08 67.37 82.63 75.00 S 2 L 2 : 75% K (Pot. schoenite) 55.63 58.25 56.94 73.64 89.66 81.65 S 2 L 3 : 100% K (Pot. schoenite) 68.48 68.88 68.68 112.85 101.14 107.00 S 2 L 4 : 125% K (Pot. schoenite) 77.18 77.72 77.45 117.66 115.11 116.38 S 3 L 1 : 50% K (Bio-K) 45.95 51.15 48.55 64.98 81.96 73.47 S 3 L 2 : 75% K (Bio-K) 51.65 54.15 52.90 73.50 87.23 80.36 S 3 L 3 : 100% K (Bio-K) 65.91 67.24 66.57 96.55 98.84 97.69 S 3 L 4 : 125% K (Bio-K) 69.70 74.26 71.98 103.67 99.42 101.54 S 0 L 0 : Control (No-K) 36.68 38.96 37.82 41.82 53.92 47.87 SEm+ 3.49 2.38 2.10 6.11 4.35 4.33 CD @5% 10.19 6.94 5.92 17.82 12.71 12.25 *S- Source, L- Levels of K, (N, P, ZnSO 4 and FYM were applied as per package of practice to all the treatments) 197

Table.3 Effect of different sources and levels of potassium application on agronomic efficiency of N, P and K and recovery efficiency of K (pooled over 2 years) Treatment Agronomic efficiency (kg kg -1 ) REK AEN AEP AEK (%) S 1 L 1 : 50% K (MOP) 5.05 10.10 37.88 102.92 S 1 L 2 : 75% K (MOP) 9.30 18.60 46.51 115.95 S 1 L 3 : 100% K (MOP) 13.77 27.54 51.64 126.31 S 1 L 4 : 125% K (MOP) 17.16 34.32 51.47 123.55 S 2 L 1 : 50% K (Pot. schoenite) 8.17 16.34 61.29 144.69 S 2 L 2 : 75% K (Pot. schoenite) 12.74 25.49 63.72 138.77 S 2 L 3 : 100% K (Pot. schoenite) 20.57 41.15 77.15 168.55 S 2 L 4 : 125% K (Pot. schoenite) 26.42 52.84 79.25 172.94 S 3 L 1 : 50% K (Bio-K) 7.16 14.31 53.67 134.33 S 3 L 2 : 75% K (Bio-K) 10.06 20.11 50.28 131.64 S 3 L 3 : 100% K (Bio-K) 19.17 38.34 71.88 145.17 S 3 L 4 : 125% K (Bio-K) 22.77 45.54 68.31 136.91 S 0 L 0 : Control (No-K) -- -- -- -- Nutrient use efficiency Nutrient use efficiency (NUE) is critically important concept in the evaluation of crop production systems. It can be greatly impacted by fertilizer nutrient management as well as by soil-plant-water management. The objective of nutrient use is to increase the overall performance of cropping systems by providing economically optimum nourishment to the crop while minimizing nutrient losses from the field. Among the different sources and levels of K applied, higher agronomic efficiency of N (Table 3) was recorded in potassium schoenite plots with 50 to 125% K i.e., 8.17, 12.74, 20.57 and 26.42 kg kg -1 compared to that in Bio-K and MOP applied plots. Similarly, higher agronomic efficiency of P was recorded in potassium schoenite plots i.e., 16.34, 25.49, 41.15 and 52.84 kg kg -1 at 50, 75, 100 and 125% of K, respectively compared to MOP and Bio-K applied plots and agronomic potassium efficiency was also recorded higher in potassium schoenite plots i.e., 61.29, 63.72, 77.15 and 79.25 kg kg -1 compared to that in Bio-K applied plots at 50, 75, 100 and 125 % of K applied, respectively. Increasing trend of agronomic efficiency of N, P and K in potassium schoenite applied plots with 125% of K might be due to better availability of N, P and K to crop with corresponding increase in uptake of N, P and K from low K soils. The results are in line with Atheefa Munaware (2007) who found increase in agronomic efficiency of maize crop at initial levels of K applied up to 150% of K application, later it decreased with increase in levels of K. Recovery efficiency of potassium (REK) Apparent recovery efficiency of K was higher (172.94%) in 125% of K applied through potassium schoenite, where higher grain and stover yield of maize was recorded. Moreover, this apparent recovery efficiency has increased with increase in levels of K applied where potassium schoenite was applied. But, similar trend was not observed in MOP and Bio-K applied plots. Among the sources and levels of K, higher amount of 198

apparent recovery of potassium was recorded in potassium schoenite applied plots when compared to that of Bio-K and MOP applied plots at respective levels (50% to 125%) of K application. This trend should not be surprising, since the higher nutrient requirements of crops at high yield levels is likely to exceed the nutrient supplying ability of unfertilized/lower fertilized soils to a greater extent than at lower yield levels. This increases the difference between the yield of highly fertilized crop and the yield of unfertilized/lower fertilized crop in low K containing soils. Additionally, a crop like maize with a faster nutrient accumulation rate may reduce the potential for nutrient losses from the production field. (Anon., 2014) In conclusion, this study clearly indicated that the K level can be increased 25% higher than the RDF for maize crop for getting higher yield. Similarly, among the sources, potassium schoenite was found to be best source for realising higher yield of maize crop. So, application of 125 % K through potassium schoenite is beneficial for not only getting higher yield, but also for better agronomic efficiency of applied N and K fertilizers and higher potassium recovery in low K soils of Eastern dry zone of Karnataka. References Anonymous, 2008, Annual progress Report, AICRP on soil test crop response correlation UAS, Bangalore, pp: 23. Anonymous, 2014, Nutrient/Fertilizer Use Efficiency: Measurement, Current Situation and Trends. IFA, IWMI, IPNI and IPI. Arun Kumar, M. A., Gali S. K. and Hebsur, N. S., 2007, Effect of different levels of NPK on growth and yield parameters of sweet corn. Karnataka J. Agric. Sci., 20(1): 41-43. Atheefa Munawery., 2013, Status and revalidation of potassium requirement for finger milletmaize cropping sequence in Eastern dry zone of Karnataka. Ph. D. Thesis, University Agricultural Sciences, Bangalore. Channabasamma. A., Habsur, N. S., Bangaremma, S. W. and Akshaya, M. C., 2013, Effect of nitrogen and sulphur levels and ratios on growth and yield of maize. Molecular Pl. Breeding, 4(37): 292-296. Fageria, N. K., 1992, Maximizing crop yields, New York; pp 142. FAI, 2007, Fertilizer Statistics. The FertilizerAssociation of India, New Delhi. Gomez, K. A. and Gomez, A. A., 1984, Statistical Procedures for Agric. Res. 2nd Ed. John Wiley & Sons, New York. Manjunatha., 2011, Main and residual effect of graded levels of potassium with or without magnesium and sulphur on yield and soil nutrient status in rice cowpea system, M.Sc.(Agri.) Thesis, Univ. Agri. Sci., Bangalore. Kusro, P. S., Singh, D. P., Deepak Kumar and Manish Arya, 2014, American International Journal of Research in Formal, Appl. Nat. Sci., 5(1): 81-82. Santhosha, V. P., 2013, Yield maximization in maize through different forms of fertilizers and approaches of nutrient recommendations. M.Sc. (Agri.) Thesis, University of Agricultural Sciences, Bangalore. How to cite this article: Sidharam Patil and Basavaraja P.K. 2017. Effect of Different Sources and Levels of Potassium on Yield, Nutrient Requirement and Nutrient Use Efficiency by Maize Crop (Zea mays L.) in Low K Soils of Eastern Dry Zone of Karnataka, India. Int.J.Curr.Microbiol.App.Sci. 6(6): 193-199. doi: https://doi.org/10.20546/ijcmas.2017.606.023 199