Nature Reviews: Drug Discovery Nicholson et al. (2002)

Similar documents
Metabolomics. Primary Molecules. Secondary Molecules TMAO. creatinine citrate. hippurate. allantoin creatinine taurine. urea water.

Nature Reviews: Drug Discovery Nicholson et al. (2002)

Nature Reviews: Drug Discovery Nicholson et al. (2002)

Statistically Integrated Metabonomic-Proteomic Studies on a Human Prostate Cancer Xenograft Model in Mice

Basic principles of NMR-based metabolomics

This document is a preview generated by EVS

Using Metabolomics to Characterize Exposure

Each series will contain separately published parts under the generic specimen type according to specific methods.

Metabolomics S.M.Shotorbani, V. A. Suliman

Biofluids Analysis: Human Serum with High Throughput NMR

Electronic Supplementary Information

The Five Key Elements of a Successful Metabolomics Study

Data Analysis in Metabolomics. Tim Ebbels Imperial College London

High throughput metabolomic studies of developmental toxicity in Japanese medaka

NMR in Drug Metabolism Extraction NMR - Keeping up with the Pace of Drug Discovery. Dr Ute Gerhard

Chemometrics. Chemometrics Applied to a Metabonomic Study of Mouse Urine. Application Note. Abstract

SEPSIS ED: Identifying urinary Biomarkers of patients with early sepsis in the emergency department

Wimal Pathmasiri, Rodney Snyder NIH Eastern Regional Comprehensive Metabolomics Resource Core (RTI RCMRC)

Supplementary Figure 1 (A), (B), and (C) Docking of a physiologic ligand of integrin αvβ3, the tenth type III RGD domain of wild-type fibronectin

MRC-NIHR National Phenome Centre

Informatics and High Resolution QTof MS. How can we ask better questions and get better answers in DMPK? Mark D. Wrona

CCCF Nov Brent W. Winston

METABOLIC PROFILING AND SIGNATURES IN ALS. Rima Kaddurah-Daouk, Ph.D. Metabolic Profiling: Pathways in Discovery Dec 2-3, 2002 North Carolina

Metabolomics. Innovation with Integrity. Novel solutions for Metabolomics and high-throughput Phenomics. Metabolomics

Lecture 23: Metabolomics Technology

Metabolomics: Techniques and Applications ABRF

INTRODUCTION TO PHARMACOLOGY

Capabilities & Services

Magnetic Resonance Spectroscopy from fundamental developments to improved noninvasive diagnosis and characterisation of children s brain tumours.

TITLE: EARLY PREDICTION OF LUPUS NEPHRITIS USING ADVANCED PROTEOMICS

Metabolomics. A GlobalMarketOverview. TechnologiesandApplications. ReportCode:BT004 Pages:508 Charts:306 Price:Sample

Maximizing opportunities towards achieving clinical success D R U G D I S C O V E R Y. Report Price Publication date

Areas of Application for Proteomics Most Commonly Used Proteomics Techniques:

Metabolite ID. Introduction

Integrating Molecular Toxicology Earlier in the Drug Development Process

Agilent Solutions for Metabolomics YOUR PATH TO SUCCESS

Systems Biology and Systems Medicine

Genomics and Proteomics *

Pulsed NMR of Paramagnetic Terbium. Cheyenne Michael Yari

MEDICAL EQUIPMENT (1) TOPIC 1: RECORDING AND PROCESSING OF BIOSIGNALS

DISCOVERY AND VALIDATION OF TARGETS AND BIOMARKERS BY MASS SPECTROMETRY-BASED PROTEOMICS. September, 2011

Thermo Scientific Compound Discoverer Software. Integrated solutions. for small molecule research

ASSESSMENT OF WATER QUALITY OF KAVERI RIVER IN ERODE DISTRICT, TAMIL NADU BY A VARIANCE VARIABLE TECHNIQUE

Final Project

Xevo G2-S QTof and TransOmics: A Multi-Omics System for the Differential LC/MS Analysis of Proteins, Metabolites, and Lipids

Preclinical studies needed in the development of human pharmaceutical drugs role of toxicology and risk assessment

Validation of the 21 st Century Toxicology Toolbox: Challenges, Opportunities, and the Way Forward

Part 1 examination. Clinical Biochemistry: First paper. Tuesday 26 September Candidates must answer FOUR questions only

Bio-Plex. What s new?

Progress and Future Directions in Integrated Systems Toxicology. Mary McBride Agilent Technologies

Supplementary Figure 1. Details of the component modelling and steps in generating and validating a PTGS. The steps (boxes) and the flow of

Lecture 23: Clinical and Biomedical Applications of Proteomics; Proteomics Industry

Good Practice in Traditional Chinese Medicine Research in the Post-genomic Era GP-TCM D5.9

MetaboScape 2.0. Innovation with Integrity. Quickly Discover Metabolite Biomarkers and Use Pathway Mapping to Set them in a Biological Context

This place covers: Methods or systems for genetic or protein-related data processing in computational molecular biology.

DISCOVERY OF DISCRIMINATIVE LC-MS AND 1 H NMR METABOLOMICS MARKERS

Protocol for Albuwell M kit: Murine Microalbuminuria ELISA By Exocell Inc

Rapid Extraction of Therapeutic Oligonucleotides from Primary Tissues for LC/ MS Analysis Using Clarity OTX, an Oligonucleotide Extraction Cartridge

The utility of qnmr to improve accuracy and precision of LC-MS bioanalysis

Urea Assay Kit. Catalog Number KA assays Version: 02. Intended for research use only.

How discovery activities can influence metabolic profiling in the regulatory space? C. DELATOUR EBF, 25 th September 2015

Biomarkers for Delirium

Understanding life WITH NEXT GENERATION PROTEOMICS SOLUTIONS

Introduction. Benefits of the SWATH Acquisition Workflow for Metabolomics Applications

SUPPLEMENTARY DATA. Supplementary Figure 1.

BME101 Introduction to Biomedical Engineering Medical Imaging Özlem BİRGÜL Ankara University Department of Biomedical Engineering

Effects of sample processing on the metabolome and proteome

Hepatic ADME-Tox Products & Research Services

The Viability of Cancerous vs. Non-cancerous Cells

Expectations for Biodistribution (BD) Assessments for Gene Therapy (GT) Products

BIOCRATES Life Sciences AG Short Company Presentation

FirePlex mirna Assay. Multiplex microrna profiling from low sample inputs

High Resolution GC-MS Application: Metabolomics Vladimir Tolstikov, PhD

Introduction to Assay Development

Accelerating Therapeutic Development through a look at current Regulatory Applications A Non-Clinical Perspective

NMR Data Pre-processing

Information Driven Biomedicine. Prof. Santosh K. Mishra Executive Director, BII CIAPR IV Shanghai, May

Metabolomics Research Group

Comments and suggestions from reviewer

HST MEMP TQE Concentration Areas ~ Approved Subjects Grid

Key Words Q Exactive Focus, SIEVE Software, Biomarker, Discovery, Metabolomics

Simplicity is efficiency. Analyzing Moisture Content by Using Magnetic Resonance Technology

Kupers Luc IMI webinar

Biomarker Discovery Directly from Tissue Xenograph Using High Definition Imaging MALDI Combined with Multivariate Analysis

LC/MS/MS Solutions for Biomarker Discovery QSTAR. Elite Hybrid LC/MS/MS System. More performance, more reliability, more answers

M-TP PRINCIPLE REF ANNUAL REVIEW Reviewed by: Date. Date INTENDED USE

Preclinical MRI. Solutions for Small Animal Imaging. Molecular Imaging

2017 PROGRAM Hands-On Training

Bioengineering (BIOE)

Environmental Metabolomics: An integrated Bio-Geo analysis

Tooling up for Functional Genomics

Toxicity testing in the 21st Century: Challenges and Opportunities

Pharmacology. Chatchai Chinpaisal, Ph.D. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Silpakorn University.

Overview of NIST s JCTLM Activities: Past, Present, and Future. Karen W. Phinney Biomolecular Measurement Division

Quantitative Proteomics: From Technology to Cancer Biology

How Targets Are Chosen. Chris Wayman 12 th April 2012

Instrumental Solutions for Metabolomics

Break the 3D barrier CORNING 3D CELL CULTURE

CRYSTAL CITY V REDUX: GUIDANCE FOR INDUSTRY BIOANALYTICAL METHOD VALIDATION DRAFT GUIDANCE (2013) VI. ADDITIONAL ISSUES

IROA Metabolic Profiling Kits FAQ

Transcription:

Metabolomics

Nature Reviews: Drug Discovery Nicholson et al. (2002)

Efficacy Toxicity Primary Molecules Secondary Molecules Filtration Resorption Dilution Concentration TMAO hippurate allantoin creatinine taurine creatinine citrate hippurate fumarate urea water 2-oxoglutarate succinate Adapted from D. Robertson, Pfizer Global Research and Development

Metabolomics Comprehensive Definition: The quantitative measurement of the time-related multiparametric metabolic response of living systems to pathophysiological exogenous or endogenous stimuli or genetic modification Operational Definition: The systematic exploration of biofluid composition using NMR/pattern recognition technology in order to associate target organ toxicity with NMR spectral patterns and identify novel surrogate markers of toxicity. Adapted from D. Robertson, Pfizer Global Research and Development

Metabolomics: The study of the total metabolite pool (metabolome), metabolic regulation and fluxes in individual cells or cell types. Can be achieved through a wide spectrum of technologic methods including LC-MS, GC-MS, and nuclear magnetic resonance (NMR) Metabonomics: The study of the systemic biochemical profiles and regulation of function in whole organisms by analyzing a metabolite pool (metabolome) in biofluids and tissues. Usually implies that the study is done specifically through nuclear magnetic resonance profiling

Metabolome: The quantitative complement of all the low molecular weight molecules present in cells in a particular physiological or developmental state Biofluid: A fluid sample obtained from a living system. The donor might typically be a human or an animal. Fluids can be excreted (such as urine, sweat), expressed or secreted (such as milk, bile), obtained by intervention (such as blood plasma, serum or cerebrospinal fluid), develop as a result of a pathological process (such as blister or cyst fluid), or be applied and collected (such as dialysis fluid) From Metabometrix, Ltd.

Advantages of Metabolomics Identification of target organ, severity, onset, duration and reversal of the effects (time-course) Classify sample as normal vs. abnormal Determine mechanisms of action within the organ Potential for identifying novel biomarkers of toxic effect Non-invasive No a priori decisions about samples need be made No sample processing necessary other than cold collection Complete time course data can readily be obtained Minimization of compound requirements Relatively fast analysis (200-300 samples/day) Useful tool for modeling physiological variation and exposure conditions in animals and humans Adapted from D. Robertson, Pfizer Global Research and Development

NMR spectroscopy Spectroscopy deals with the interactions between electromagnetic radiation and matter. Spectroscopy is used to derive the properties of matter at the molecular level. Nuclear magnetic resonance (NMR) exploits the magnetic properties of atomic nuclei. The method functions as follows: A substance is placed in a magnetic field. Some atomic nuclei (e.g. protons, nuclei of hydrogen atoms) then behave like microscopic compass needles, called nuclear spins. Each nuclear spin orientation corresponds to a different energy level. The spins may jump between the levels when the sample is exposed to radio waves whose frequency exactly matches the energy spacing. This is called resonance. One way of measuring the energy is to change the irradiation frequency. At resonance, the spins flip causing an electric signal. The strength of the signal is plotted as a function of frequency in a diagram, the NMR spectrum. In metabolomics, it is the patterns that occur when many different biochemical entities are detected simultaneously in a mixture using 1 H NMR that are interpreted. From: www.nobel.se

NMR in Metabolomics: Pro: Non-destructive Applicable to intact biomaterials More information rich in complex-mixture analyses No extraction/derivatization is necessary Con: Less sensitive than MS History: NMR has been used to study metabolites in biofluids for over a decade Metabolomics technology as it is known today (600 MHz 1 H NMR) was pioneered by Jeremy Nicholson, Elaine Holmes and John Lindon of Imperial College in London Only recently have advances in flow-through NMR hardware and pattern recognition software made the possibility of high -throughput in vivo toxicity assessment a practical possibility

Refrigerated Metabolism Cage (0 o C) + NaN 3 NMR Acquisition and Gilson 215 Control System Varian Inova 600 Shielded magnet 120 ul flow probe NMR flow probe Biomek Robot Deuterated Buffer TSP N 2 gas Gilson 215 autosampler Data Processing Frozen Storage Adapted from D. Robertson, Pfizer Global Research and Development

Adapted from D. Robertson, Pfizer Global Research and Development

Adapted from D. Robertson, Pfizer Global Research and Development

Normal Metabolic Profiles Day 5 Day 4 Day 3 Day 2 Day 1 Adapted from D. Robertson, Pfizer Global Research and Development

Functional NMR Spectrum of Rat Urine Biomarker Windows Nature Reviews: Drug Discovery Nicholson et al. (2002)

Toxicogenomics, Hamadeh & Afshari (eds.) Wiley-Liss, 2004

Techniques and Procedures in Metabolomics NMR Spectra Primary Data Processing Unsupervised mapping of data in 3D space Supervised classification and calculation of confidence intervals Nature Reviews: Drug Discovery Nicholson et al. (2002)

Pattern Recognition (PR) Methods: PR and related multivariate statistical approaches can be used to discern significant patterns in complex data sets and are particularly appropriate in situations where there are more variables than samples in the data set. The general aim of PR is to classify objects (in this case 1 H NMR spectra) or to predict the origin of objects based on identification of inherent patterns in a set of indirect measurements. PR methods can reduce the dimensionality of complex data sets via 2 or 3D mapping procedures, thereby facilitating the visualization of inherent patterns in the data. Principal Components Analysis (PCA): This is a data dimension reduction method that involves a mathematical procedure that transforms a number of (possibly) correlated variables into a (smaller) number of uncorrelated variables called principal components. The first principal component accounts for as much of the variability in the data as possible, and each succeeding component accounts for as much of the remaining variability as possible. Use of PCA enables the "best" representation, in terms of biochemical variation in the data set to be displayed in two or three dimensions.

Adapted from D. Robertson, Pfizer Global Research and Development

ALT (IU/L) 500 400 300 200 Rat d Rat d Rat a Rat b Rat c Rat d Upper Limit of Normal 100 0 0 24 48 72 96 Hr Post Dose PC2 10 0-10 -20 4409 d 484 a 67 a 67 a b c 117 b 55 c 138 298 267 43 41 a b d c b c d Control ALT = 33-94 (Normal Reference Range) 24 hr ALT = 1228 +1061 48 hr ALT = 994 +884 96 hr ALT = 161 +108-30 3523 d -40-50 -40-30 -20-10 0 10 20 PC1 Adapted from D. Robertson, Pfizer Global Research and Development

15 PC2 25 20 PC2 10 5 15 10 5 ANIT 0-5 -10-15 ANIT Control PC1-40 -30-20 -10 0 10 0-5 -10 Control -15-20 PAP PC1-25 -30-20 -10 0 10 p-aminophenol (PAP) α-naphthylisothiocyanite (ANIT) Control Adapted from D. Robertson, Pfizer Global Research and Development

20 15 PC2 PCA analysis of vehicle effect on rat urine NMR spectra Controls, corn oil IP Controls, untreated Controls, saline IP 10 5 0-5 -10 PC1-15 -15-10 -5 0 5 10 15 20 Adapted from D. Robertson, Pfizer Global Research and Development

ANIT 100 mg/kg day 4 day 3 creatinie day 2 hippurate TMAO citrate day 1 creatinine 2-oxoglutarate succinate predose Adapted from D. Robertson, Pfizer Global Research and Development

PC2 20 10 0 Pretest (100 mg/kg) (0.3) 0d 0c 0b 4c ANIT Day 4 (100 mg/kg) (1.0) 4a 4b 1d 1c 4d 0a 1a 3d 1b Day 3 (100 mg/kg) 2b 2a 2c 3b 3a 3c 2d Day 2 (100 mg/kg) (4.7) -10 Day 1 (100 mg/kg) (0.9) -20-20 0 20 40 PC1 Number in parentheses = mean serum total bilirubin (mg/dl) Adapted from D. Robertson, Pfizer Global Research and Development

ANIT(50 mg/kg) in Mouse 0.025 72 hours 48 hours 0.02 0.015 0.01 PC 2 0.005 0 96 hours 24 hours -0.005-0.01-0.015-0.02-0.01 0 0.01 0.02 0.03 PRETEST PC 1 168 hours 120 hours 144 hours Adapted from D. Robertson, Pfizer Global Research and Development

Allyl Alcohol (12 mg/kg) 10 Concurrent Controls PC 2 5 0 40 38 39 40 40 37 41 40 43 Pretest 24 Hr 48 Hr 72 Hr 96 Hr Note: Numbers next to symbols are individual ALT levels (IU/L) -5-10 -15 36 36 36 Slightly elevated ALP (260-280 IU/L) -10 0 10 20 30 40 PC 1 Adapted from D. Robertson, Pfizer Global Research and Development

Allyl Alcohol (120 mg/kg) Concurrent Controls PC 2 Elevated 24, 48Hr ALP 359-732 IU/L Elevated Bilirubin (1.1 mg/dl) 10 5 0-5 -10-15 44 60 40 85 598 1597 2173363 1643 297-10 0 10 20 30 40 PC 1 Normal ALP (< 206 IU/L) Pretest 24 Hr 48 Hr 72 Hr 96 Hr Necrosis Elevated ALT Adapted from D. Robertson, Pfizer Global Research and Development

Allyl Alcohol Combined Data, 12 ( ) & 120 ( ) mg/kg Concurrent Controls PC 2 10 4440 40 5 0-5 36 40 37 41 38 40 43 39 60 40 85 36 598 Pretest 24 Hr 48 Hr 72 Hr 96 Hr Biliary Toxicity Elevated ALP & Bilirubin) -10-15 36 1597 2173363 1643 297-10 0 10 20 30 40 PC 1 Necrosis Elevated ALT

Metabolomic Detection of Liver Toxicity Nature Reviews: Drug Discovery Nicholson et al. (2002)

Metabolomic Detection of Kidney Toxicity Nature Reviews: Drug Discovery Nicholson et al. (2002)

HUMAN 10 RAT 8 6 PC 2 4 2 RABBIT 0-2 MOUSE -4-6 -20-15 -10-5 0 5 10 15 PC 1 Adapted from D. Robertson, Pfizer Global Research and Development

Limitations of Metabolomics Specialized equipment is required Extensive expertise is required Information is limited to time- and dose-points taken High risk of false positive data: a compound causes significant metabolism changes without associated toxicity Difficulty in separation of physiological (adaptive) and toxicological (adverse) effects Sensitivity of the assay Certain pathological states have negligible effects on biofluids: liver fibrosis may go undetected until damage is severe Availability of biofluids for certain organ toxicity: CNS vs. urine Distinguishing effects of multi-organ toxicants: biomarkers in different biofluids are different and in one biofluid are inter-mixed

Future Directions in Metabolomics Develop comprehensive metabonomic database Expand metabonomics applications to many species Evaluate cryoprobe technology for increased sensitivity or increased throughput Expand technology to novel targets: Cardiac toxicity Adrenal toxicity Grand Unification of Genomic/Proteomic and Metabonomic technologies