Multiple choice questions (numbers in brackets indicate the number of correct answers)

Similar documents
Multiple choice questions (numbers in brackets indicate the number of correct answers)

Section 14.1 Structure of ribonucleic acid

PROTEIN SYNTHESIS. Higher Level

The study of the structure, function, and interaction of cellular proteins is called. A) bioinformatics B) haplotypics C) genomics D) proteomics

Chapter 13. From DNA to Protein

Resources. How to Use This Presentation. Chapter 10. Objectives. Table of Contents. Griffith s Discovery of Transformation. Griffith s Experiments

Unit 1: DNA and the Genome. Sub-Topic (1.3) Gene Expression

Exam 2 Key - Spring 2008 A#: Please see us if you have any questions!

Nucleic acids deoxyribonucleic acid (DNA) ribonucleic acid (RNA) nucleotide

Introduction to Cellular Biology and Bioinformatics. Farzaneh Salari

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA

MBioS 503: Section 1 Chromosome, Gene, Translation, & Transcription. Gene Organization. Genome. Objectives: Gene Organization

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

I. Gene Expression Figure 1: Central Dogma of Molecular Biology

Chapter 12-3 RNA & Protein Synthesis Notes From DNA to Protein (DNA RNA Protein)

NUCLEIC ACID METABOLISM. Omidiwura, B.R.O

Chapter 12 Packet DNA 1. What did Griffith conclude from his experiment? 2. Describe the process of transformation.

Exam 2 BIO200, Winter 2012

BIO 311C Spring Lecture 36 Wednesday 28 Apr.

Chapter 20 DNA Technology & Genomics. If we can, should we?

Protein Synthesis. DNA to RNA to Protein

Protein Synthesis Notes

From Gene to Protein

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL

BIOLOGY 111. CHAPTER 6: DNA: The Molecule of Life

Molecular Genetics. The flow of genetic information from DNA. DNA Replication. Two kinds of nucleic acids in cells: DNA and RNA.

Chapter 12: Molecular Biology of the Gene

CHapter 14. From DNA to Protein

Transcription and Translation. DANILO V. ROGAYAN JR. Faculty, Department of Natural Sciences

6.C: Students will explain the purpose and process of transcription and translation using models of DNA and RNA

DNA is normally found in pairs, held together by hydrogen bonds between the bases

Prokaryotic Transcription

PROTEIN SYNTHESIS. copyright cmassengale

9/3/2009. DNA RNA Proteins. DNA Genetic program RNAs Ensure synthesis of proteins Proteins Ensure all cellular functions Carbohydrates (sugars) Energy

The Flow of Genetic Information

Section 3: DNA Replication

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

DNA Function: Information Transmission

Enzyme that uses RNA as a template to synthesize a complementary DNA

Chapter 3.5. Protein Synthesis

The Structure of Proteins The Structure of Proteins. How Proteins are Made: Genetic Transcription, Translation, and Regulation

Molecular Genetics Techniques. BIT 220 Chapter 20

Chromosomes. Chromosomes. Genes. Strands of DNA that contain all of the genes an organism needs to survive and reproduce

Hello! Outline. Cell Biology: RNA and Protein synthesis. In all living cells, DNA molecules are the storehouses of information. 6.

Transcription Eukaryotic Cells

Student name ID # Second Mid Term Exam, Biology 2020, Spring 2002 Scores Total

3'A C G A C C A G T A A A 5'

Chapter 1. from genomics to proteomics Ⅱ

Protein Synthesis: From Gene RNA Protein Trait

UNIT 3 GENETICS LESSON #41: Transcription

DNA RNA PROTEIN SYNTHESIS -NOTES-

Independent Study Guide The Blueprint of Life, from DNA to Protein (Chapter 7)

Regulation of bacterial gene expression

Protein Synthesis & Gene Expression

Big Idea 3C Basic Review

DNA is the MASTER PLAN. RNA is the BLUEPRINT of the Master Plan

Lecture for Wednesday. Dr. Prince BIOL 1408

How to Use This Presentation

DNA is the genetic material. DNA structure. Chapter 7: DNA Replication, Transcription & Translation; Mutations & Ames test

Gene Expression: Transcription, Translation, RNAs and the Genetic Code

RNA, & PROTEIN SYNTHESIS. 7 th Grade, Week 4, Day 1 Monday, July 15, 2013

Biology Celebration of Learning (100 points possible)

GENETICS EXAM 3 FALL a) is a technique that allows you to separate nucleic acids (DNA or RNA) by size.

Principle 2. Overview of Central. 3. Nucleic Acid Structure 4. The Organization of

PROTEIN SYNTHESIS Flow of Genetic Information The flow of genetic information can be symbolized as: DNA RNA Protein

Review Quizzes Chapters 11-16

Key Area 1.3: Gene Expression

Chapter 13 - Concept Mapping

Unit 1. DNA and the Genome

DNA, RNA, and PROTEIN SYNTHESIS

Chapter 8 From DNA to Proteins. Chapter 8 From DNA to Proteins

Chapter 14: From DNA to Protein

Genome annotation & EST

RNA and Protein Synthesis

Videos. Lesson Overview. Fermentation

From Gene to Protein transcription, messenger RNA (mrna) translation, RNA processing triplet code, template strand, codons,

Advanced Algorithms and Models for Computational Biology

Chapter 12. DNA TRANSCRIPTION and TRANSLATION

DNA and RNA. Chapter 12

RNA & PROTEIN SYNTHESIS

Lesson 8. DNA: The Molecule of Heredity. Gene Expression and Regulation. Introduction to Life Processes - SCI 102 1

Bundle 5 Test Review

Review of Protein (one or more polypeptide) A polypeptide is a long chain of..

DNA. Essential Question: How does the structure of the DNA molecule allow it to carry information?

Transcription. The sugar molecule found in RNA is ribose, rather than the deoxyribose found in DNA.

M1 - Biochemistry. Nucleic Acid Structure II/Transcription I

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 39. End Show. Copyright Pearson Prentice Hall

From DNA to Protein: Genotype to Phenotype

PROTEIN SYNTHESIS. copyright cmassengale

GENETICS - CLUTCH CH.15 GENOMES AND GENOMICS.

Bio 101 Sample questions: Chapter 10

Transcription is the first stage of gene expression

DNA vs. RNA DNA: deoxyribonucleic acid (double stranded) RNA: ribonucleic acid (single stranded) Both found in most bacterial and eukaryotic cells RNA

Ch 10 Molecular Biology of the Gene

Fermentation. Lesson Overview. Lesson Overview 13.1 RNA

Computational gene finding

PRINCIPLES OF BIOINFORMATICS

Fig Ch 17: From Gene to Protein

IB BIO I Replication/Transcription/Translation Van Roekel/Madden. Name Date Period. D. It separates DNA strands. (Total 1 mark)

Transcription:

1 February 15, 2013 Multiple choice questions (numbers in brackets indicate the number of correct answers) 1. Which of the following statements are not true Transcriptomes consist of mrnas Proteomes consist of proteins The genetic code includes 3 termination codons DNA chips contain oligonucleotides Transcriptomes can be characterized by serial analysis of gene expression (SAGE) The yeast genome contains about 6000 genes RNA interference is not possible in prokaryotes Homologous recombination can be used to disrupt genes Transposons can be directed to disrupt specific genes A northern hybridization identifies genes that are transcribed Exon-intron boundaries can be easily located by a computer Open reading frames are only found in protein-coding genes Ribosomal RNAs are translated into proteins (3) 2. Protein-coding genes can be identified by Transposon tagging ORF scanning Zoo-blotting Nuclease S1 mapping (1) 3. The function of genes can be determined by Gene inactivation Homology search Exon trapping Zoo-blotting Northern analysis (2) 4. Dideoxynucleotides are used in PCR Southern hybridization Transformation Cloning DNA sequencing Culturing of bacteria (1)

2 5. Polypeptides Can fold into a double helix Can have a tertiary structure Can contain phosphate Can contain sulfur Consist of nucleotides Are synthesized in the nucleus (2) 6. Reporter genes Indicate the presence of stress conditions Are used to characterize proteomes Are all of bacterial origin Are used to delineate regulatory sequence elements Can often be detected by histochemical assays (2) 7. Microarrays Are used for analysis of transcriptomes Are made of glass Contain RNA sequences Contain DNA sequences Are smaller than DNA chips (2) 8. ORF scanning Is used to find exons Is used to find intergenic sequences Is used to find gene homologies Is used to find protein-coding genes (1) 9. Chromosome walking Is used in genetic mapping Can be used to close physical sequence gaps Occurs in mitosis Requires a genomic DNA library Can be done by PCR Is used in fluorescent in situ hybridization (FISH) (2) 10. A codon bias Is used in genome mapping Is found in intergenic regions Is found in functional RNAs Is not found in prokaryotes Is used to identify genes (1)

3 11. Expression of genes can be analyzed by Northern analysis Southern analysis Comparative genomics RNA interference (1) 12. Clone fingerprinting Is a cloning technique Identifies overlapping DNA sequences Is used in physical mapping of genomes Is used in sequence assembly (2) 13. Fluorescent in situ hybridization (FISH) requires deoxynucleotides requires a labeled probe is used in physical mapping of genomes is used in genetic mapping of genomes requires a DNA polymerase (2) 14. Genes can be altered or replaced by Transposon tagging RNA interference Homologous recombination (1) 15. An α-helix is a DNA structure is a protein structure winds to the left winds to the right is stabilized by hydrogen bonds is stabilized by disulfide bonds (3) 16. Ribosomal RNAs code for ribosomal proteins function in transcription of genes are the most abundant ribonucleic acids in cells are not found in mitochondria (1)

4 17. DNA is a polypeptide contains ribose contains guanine is always double-stranded is stabilized by base stacking (2) 18. Partial linkage was discovered in the eighteenth century was discovered by Gregor Mendel is used in physical mapping is only found for sequences that are on the same chromosome (1) 19. All template-dependent DNA polymerases use DNA as template synthesize DNA in 3 -> 5 direction require a primer to initiate DNA synthesis have also 5 -> 3 exonuclease activity (1) 20. β-sheets are stabilized by hydrophobic bonds ionic bonds hydrogen bonds covalent bonds all of the above none of the above (1) Total number of correct answers: 32 Try also to answer the multiple choice questions of chapters 1 to 5 in the Genomes 3 textbook. The answers to these questions can be found in a separate file (MCQ Chapters 1-9 Genomes3.pdf) in the Colloquia folder.

5 Home work (to copy and paste sequences and URLs please use the file that will be posted in the "Colloquia" folder on the MBV2010 web site) Annotating a genome sequence is mostly done by computers. Many of the annotation programs are freely available on the internet. Try to annotate the sequence below (5054 bp) from the chloroplast genome of the unicellular green alga Chlamydomonas reinhardtii. aaaaacacgccctgtaggaattgaacccacgacatcaggttttggaaacctgcgttctaccgactgaac taaggacgtaaaatttgttattataatttttatcatggtattattttaatgtcaatcagagtatttcac tacaaattgattttattgatatagttgttaatcatgggttaatttgtcttgaatttagtgattttatat taagggataccttgtagtgatatcccttaatataaaaacgaatatatatgtaactgcggtcaagctata gaccagttagagtaatacttatgcaagctacacaactaaaagatgaattccatattactaactattact ttcttgcgtttgtgtactatcacctactaaactagctcgactttctaataaacgttcttgtttactatc atgataactccaaacttgatttgtcatttctacaatactatgcattacttcatttgttgcaatttcatc agctaaaccataataaattgtttccattgcagttaaataaaaatcacgatctaaatcacgtaaaatttt atgtcttggtcggtacgttgataaagaataaatttctgctacatctaaacgaattttcataatttcttg actatcaatccaaatatctgaagcttgtccatttaaaccaccttcaggttggtgaatcatagtatgaca accttcagtaacataacgttcaccaattgtaccaccagctaaagctaaagaagcagcagatgcagctac acctaatgctaacgttaaagaacctgctttaataaattgtaaagcatcatgtacagtaataccattacc tacagaaccgccaaatgagttaataatcatgaacactttcttagattcttcttcttgaataacgcgttc tgtttgtttacgatataaagaacgacctgattcattatttaatgcaccttgatcaaggtaattataagc ttttaaagctttactattcgataatccaccagaacctaaacgttcttgaacataacgttgttttaaacg acgtcgacctaatgctttttcagacgaagctacaagcttttcagggctttgtaatctattcattaattc tttgtgtgataaattatcaattaatttttttgtaaaaggttggtttgtattttgtgtactagtttttaa tagtgaataaatttctgctaaattttgattagggtgttctaaattataattttgaggtgcaaaattagc taataatctaaatggagaatatacatctaaattttgttttacattttttgaccctgttgaaaaattttt tagattttttaaatttttaattaattttgtcatttcagcaggattttgaaaagcttgtttattcgcaga agatttagcaaaatttaaattagcagaatctttgtcttgattaggtgaaaaatctttagataaaatatc agctaaatagtataaataaggttcatcagaataatcaaaaaactgtgcgttccagtttaaccattccgt tgtaattttttgtaaagtatattgttctaacaggtgattttcttcaataccaaaatcattatctgaagt taataaatcttccacagattgacgttttgcactagcgccgccagataaattttctttttttactgtatc ttttccttttgtttttgcggtgccacttttaaataatccacttttttccatttcttttttttccaactc tttagaacgatcttccatatggatattaattaataaaccacaaatttggttacataattcatcatctaa atattgcattaaaaataccatacgacgacggaaaataaagttataaatatcagtccactgtgcaggtaa ttcttcaccccaacaataaataatacgaggtactccaatcggcataaattactttgttaataaaatgtt gtgttttattaatactagtctaatatcctagtagatagagcttttatttgcacgtaaataagctctgcg agtgctactgtaaaaattaaagtaccgtttacaggctcctttgaagcaaataaaaattttaaaccaaaa tggtttaaaaaatagataaattcaaacaaatattggctctacgttaaacttaaaatgccttcggccgga tttgaaccggcacgcctttcagcactggttcctaaaaccaggatgtctaccagttccatcacgaaggct aaaaaatattacttttataatatcatacttaattttttttgtctagttaaaaacactaaatgtgttaaa tgcatacacaattttttgtttagactagagacttggggttagttccgatcctttaaccagaatataact atggttaatttatagctaccccttatcaatgggccaacgggggatctggcagaaaccgccttgtcgaaa taaatagcacactcttgcatatctatattttaagatgtcagctttttgattcattgagttgtatatttt atttactttactagggtgtttatatattcctttttggggttgcccagatagttatataaccaatcacaa caacagtaaaaattgaagtttatttacccaaaggggtgtatcccctttgggtaaataaacttcaatggc caactgccttggaaacttacgtagcagcctaaaaaaagctagtcttatatccgaagcaagtaaaagaaa tggatattaaatattatagaggacctgaaataccttgtttacgaatcattaagaagtgcattaacatga aaacagctgttaaaagtggtaatacgaaagtgtgtaaactgtagaaacgtgttaaagttgcttgaccaa caccaacaccaccacgtaataactcaacaatgaaaccaccaacacctgggattgcatcaggaacacctg ttacaattttaaccgcccagtaaccaacttggtcccatggtaatgaataacctgttacaccaaaagaaa ctgtacatacagccatgattacacctgtaacccatgttaattcacgtggacgtttgaaaccacctgtta aatatacacggaaaacgtgtaaaaccatcataagaaccatcatactagctgaccaacggtgaattgaac gaattaaccaaccaaagttaacatcagtcataatgtattgtactgatgcgaaagcttctgctactgttg gacggtagtagaaagtcatagcaaaaccagtagctacttgcacaaggaaacatgtaaaagtaataccac caatacagtagaaaatatttacgtgtggtggaacatatttacttgtaatatcatcagcaattgcttgaa tttctaaacgttcttcaaaccaatcgtatactttactcatataaaatttttataagattgtgacatgac cattaggctttcttaagactaaaaaaatgtgtagcttaattatttaaagtttaaattaaagttataata

6 tatattatatataaaataaaaaaaacgttagtaattcaaaagttttaatattatacaattgaactatta tgtattaaatataagaatgtcacctcttaccatatttctatactccaaagtaactttttacataaatgt cccctctggggctgcctccttccccttccccttcggtatataaatatagggcaagtaaacttagcataa actttagttgcccgaaggggtttacatactccgaaggaggacaaatttatttattgtggtacaataaat aaattgtatgtaaacccctttcgggtaactaaagtttatcacggcaataagtttctgcttacgcagtat tatatctgacgcagtattatataagaagttggcaggataaaaatgtgtaagtatggcaatcttttaaaa tagtgttcaattcatttaaggcagataaaaagaaaaaagtccacaggatttaattttgaatagttctct atcaaaaaaaggtttgccgaacaatgtttttattcctggagtttgattttatgaaattagctgtttacg gaaaaggtggtattggaaaatcaacgacaagttgtaatatttcgattgctttacgaaaacgtggtaaaa aagtgttacaaattggttgtgatcctaaacatgatagtacttttacattgacagggtttttaattccaa ccattattgatacattaagttctaaagattatcattatgaagatatttggcccgaagatgttatttacg gaggttatgggggtgtagattgtgttgaagctggaggaccacctgccggtgcggggtgtggtggttatg ttgtaggtgaaacggtaaaacttttaaaagagttaaatgcttttttcgaatacgatgttattttatttg atgttttaggtgatgttgtttgtggtggctttgctgctccattaaactacgctgattattgtattattg taactgataatggttttgatgctttatttgctgcaaatcgtattgcagcttcagttcgtgaaaaagcac gtacacatccattgcgtttagcgggtttaatcggaaatcgtacatcaaaacgtgatttaattgataaat atgtagaagcttgtcctatgccagtattagaagttttaccattaattgaagaaattcgtatttcacgtg ttaaaggcaaaactttatttgaaatgtcaaataaaaataatatgacttcggctcatatggatggctcta aaggtgacaattctacagtaggagtgtcagaaactccatcggaagattatatttgtaatttttatttaa atattgctgatcaattattaacagaaccagaaggagttattccacgtgaattagcagataaagaacttt ttactcttttatcagatttctatcttaaaatttaataagaataaagcagctttaaatactttcctgttt ataatttaggaaattaaatggatatttgttgaaactaatccccagttggatacccattggtagttaatt gccactgcctgcttcaccttacaaaatgtatggacacaaaacggctaataaatacagactcccggtggc atttgttggctgcttcg Try to answer the following questions: 1. How many protein-coding genes are in the sequence? (you can use the following server to identify open reading frames: http://web.expasy.org/translate/ ) There are 3 coding regions in the sequence: #1 in 5'->3' frame 3 (coding for a protein of 302 aa) #2 in 3'->5' frame 2 (coding for a protein of 215 aa) #3 in 3'->5' frame 3 (coding for a protein of 524 aa) 2. Are the genes located on the same DNA strand? No. One gene is on the sequence shown, the other two genes are on the complementary strand. 3. What are the functions of the proteins encoded by the genes? (use the BLAST server (protein BLAST) to identify the function of the genes: http://blast.ncbi.nlm.nih.gov/blast.cgi?program=blastp&blast_program S=blastp&PAGE_TYPE=BlastSearch&SHOW_DEFAULTS=on&LINK_LOC=bl asthome #1 is a protochlorophyllide reductase (involved in chlorophyll synthesis) #2 is cytochrome b6 (functions in the photosynthetic electron transport chain) #3 is the proteolytyic subunit of an ATP-dependent Clp protease (a serine protease)

7 4. Do the proteins contain any conserved domains that are also found in other proteins? Yes. All three proteins contain conserved domains that are also found in other proteins.