Electrolyzed Water. Oklahoma State University

Similar documents
Slate Steel (Mild Steel) Ceramic

Validation of Hot Water and Lactic Acid Sprays for the Reduction of Enteric Pathogens on the Surface of Beef Carcasses

Microbial Risk Factors Associated With Condensation In Ready-To-Eat Processing Facilities

Application of a Universal Real-Time Primer for PCR Detection of Listeria monocytogenes from Meats

Silliker, Inc. Food Science Center Report RPN15202

The National Food Centre. Control and Detection of Food-Borne Pathogens FINAL REPORT. Contents" Project Armis No RESEARCH REPORT NO 3

Puritan Environmental Sampling Kit (ESK )

INTRODUCTION Contaminated serial dilution countable plates

Achieving FSIS HACCP Validation Compliance. March 15 th and 17 th, 2016

Biofilms 101 Remediation Strategies in Meat Processing

Reducing Microbial Cross-Contamination in Poultry Processing Plants Using Inhibitory Conveyor Belts

Department of Animal and Food Sciences, Texas Tech University, Box 42141, Lubbock, Texas 79409, USA

Characterization of a Novel Pulsed Light System for Inactivation of Listeria monocytogenes ATCC 35152

Biocidal Surface Test - Clinell Wipes ~ Project Report Prepared for GAMA Healthcare Ltd ~ Huddersfield Microbiology Services Oct 06

M I C R O B I O L O G I C A L T O O L S F O R Q U A L I T Y A S S U R A N C E I N H A T C H E R Y : Sampling Procedures

Persistence of Activity of a Hand Sanitizer

tel: fax: foodcheksystems.com

Result:COMPLETE Report Date: December 28 th, 2015

3 Petrifilm Environmental Listeria Plate for the Rapid Enumeration of Listeria from Environmental Surfaces

tel: fax: foodcheksystems.com

Result: COMPLETE Report Date: June 12, 2017

Test Method for Efficacy of Copper Alloy Surfaces as a Sanitizer

Pr oject Summar y. Efficacy of cetylpyridinium chloride to reduce E. coli O157:H7 in commercial beef processing plants

The Efficacy of 300 ppm Peracetic Acid from Perasan MP-2 and MP-2C on E. Coli O157:H7 Inoculated Meat Surfaces

Test Method for the Continuous Reduction of Bacterial Contamination on Copper Alloy Surfaces

Implementing a Food Safety Intervention Strategy

Actero Salmonella Enrichment Media Product Information

Efficacy of Peracetic Acid from Perasan MP-2 against non-o157:h7 Pathogenic Escherichia coli

Actero Listeria Enrichment Media Product Information

Report #3 Short-term temperature abuse of cooked but not shelf-stable meat and poultry products

Table of Contents Page

Actero Salmonella/STEC Enrichment Media Product Information

Actero Salmonella Enrichment Media Product Information

Reduction of Listeria monocytogenes Biofilm Formation in Ready-to-Eat Meat Processing Environments

RESEARCH PROJECT SUMMARY OUTLINE - FINAL REPORT July 28, addendum September 6, 1995

FOOD SAFETY TECHNOLOGY SUMMARY

Interagency Risk Assessment: Listeria monocytogenes in Retail Delicatessens Interpretive Summary

FOOD SAFETY TECHNOLOGY SUMMARY. Currently available seconds at C. High effluent loading. High water use recirculation may be necessary

Utilization of Microbial Data to Improve Food Safety Systems

SANIDATE 5.0 -BLUEBERRY STUDY

Study Title Antibacterial Activity and Efficacy of KHG FiteBac Technology Test Substance Using a Suspension Time-Kill Procedure

ASSESSMENT OF THE MICROBICIDAL ACTIVITY OF AN ACCELERATED HYDROGEN PEROXIDE- BASED FORMULATION (AHP-5) AGAINST VRE AND MRSA

EVALUATION OF THE HYGIENE STATUS IN SEVERAL MEAT AND DAIRY PROCESSING ESTABLISHMENTS IN R.MACEDONIA

IN THIS SECTION MICROBIOLOGY TESTING EXPERT SOLUTIONS FOR PRODUCT DEVELOPMENT. Bacterial Endotoxin (LAL) Testing

Industry Research Needs

POU Ozone Food Sanitation: A Viable Option for Consumers & the Food Service Industry

The Role of Predictive Microbiology in Microbial Risk Assessment

ANALYTICAL REPORT: Comparison of the Microbial Recovery Efficacy of QI Medical EnviroTest Paddles versus a Conventional Contact Plate

Efficacy of Hypobromous Acid from Sodium Hypochlorite-Activated HB2 against non-o157 Pathogenic E. coli

Lessons from USDA s Mandatory HACCP Rule for Meat and Poultry

3M Food. with 3M. TB Effective Date: Number: April 2, 2013 Supersedes: New Technology Products Originating.

OPERATOR S MANUAL FOR DETECTION AND ENUMERATION OF ENTEROBACTERIACEAE BACTERIA IN FOOD, SERIAL DILUTIONS OF FOOD, AND ENVIRONMENTAL SPONGE SAMPLES

Pr oject Summar y. Rapid quantification of culturable and viable-but-nonculturable Escherichia coli O157:H7 in beef products using EMA-Real Time PCR

FINAL REPORT LOW LEVEL DISINFECTION EVALUATION VIOGUARD KEYBOARD

FSIS PERSPECTIVE ON PATHOGEN PERFORMANCE STANDARDS. Patricia S. Schwartz, Ph.D. Office of Policy and Program Development FSIS, USDA

Identifying and Controlling Listeria in Food Processing Facilities. James L. Marsden, Ph.D. Executive Director Food Safety Chipotle Mexican Grill

3M Condensation Management Film (CMFi) Hygienic Evaluation of

Achieving FSIS HACCP Validation Compliance. March 15 th and 17 th, 2016

Test Method of Specified Requirements of Antibacterial Textiles for Medical Use FTTS-FA-002

HPP Safety Validations: a Key Element for the Production of Innovative Dips and Wet Salads. October 17, 2016 Lincoln, NE

Nationwide Microbiological Baseline Data Collected by Sponge Sampling during 1997 and 1998 for Cattle, Swine, Turkeys, and Geese

Shelly McKee. Poultry Products Safety & Quality Program Department of Poultry Science Auburn University

FINAL REPORT LOW LEVEL DISINFECTION EVALUATION VIOGUARD KEYBOARD

Testing for Salmonella in Raw Meat and Poultry Products Collected at Federally Inspected Establishments in the United States, 1998 through 2000

Report BerryMeat. Antimicrobial effect for different preparations from 8 plants during storage at 18 C for 1½ year. Flemming Hansen.

Journal of Atoms and Molecules

Microbiological Standards for Reusable Plastic Containers within Produce Grower Facilities within Ontario and Quebec

Antimicrobial Lab Test Report

Microban SilverShield Technology: Reduction of Listeria Monocytogenes Contamination of Refrigeration Units

Microbial Survival. Created on 2/25/ :05 AM

Study Title Determination of the Antiviral Effectiveness of KHG FiteBac Technology Test Substance Delivered via Pipette Against MS2 Bacteriophage

The following guidelines are intended to control contamination by. 4Escherichia coli (E. coli) O157:H7 and other pathogenic Shiga-toxin producing E.

CDx XPRESS RAPID PATHOGEN DETECTION SYSTEM

Pathogen Reduction: a food safety priority

RapidChek SELECT Salmonella Test Kit

Produced by Agriculture and Extension Communications, Virginia Tech

ABCs of Validation. Ruth L. Petran. Corporate Scientist, Food Safety 03 April 2012

Premium PAA. Sanitation with Peracetic Acid

Actero Listeria Enrichment Media Product Information

Continuous Food Safety Innovation as a Management Strategy : Private Sector Perspective

Microbiological Standards for Reusable Plastic Containers within Produce Grower Facilities

High pressure processing: Food safety benefits and considerations

igem 2018 InterLab Study Protocol Before You Begin

Executive Summary. Principal investigators:

Study Title Antimicrobial Activity and Efficacy of Seal Shield's Electroclave. Test Method Custom Device Study. Study Identification Number NG7233

USING CRITICAL PARAMETERS TO ENSURE EFFICACY OF SELECTED HARVEST AND FABRICATION INTERVENTION STRATEGIES USED TO. A Thesis CODY JOHN LABUS

General Descriptions: Smart Organics Harvest Clean. Performance Advantages. Directions for Use. Precautions. Shipping

GIAOURIS, N. CHORIANOPOULOS, AND G.-J. E. NYCHAS

REPLACEMENT FOR APPENDIX A IN COOKED MEATS. Andrew Milkowski, Ph.D. Adjunct Professor of Meat Science, University of Wisconsin

Phages for Food Protection Controlling Listeria monocytogenes in Meat, Cheese, Salmon & Vegetables with organic Phage solutions

Introduction. Michael J. Miller, Ph.D. RMM»

Symbio Alliance. Laboratory Training - RTO Technical Services.

3.2 Test for sterility

Control of Listeria monocytogenes at the Retail Level. Catherine N. Cutter Department of Food Science Pennsylvania State University

Microbiological Testing: Vegetables/Produce

POU Ozone Food Sanitation: A Viable Option for Consumers & the Food Service Industry

DESTRUCTION OF SELECT HUMAN PATHOGENIC BACTERIA IN MUSHROOM COMPOST DURING PHASE II PASTEURIZATION

Interpretation Guide. Environmental Listeria Plate

Microbiological Standards for Reusable Plastic Containers within Produce Grower Facilities within Ontario and Quebec

Formation, destruction and removal of Escherichia coli

Transcription:

Oklahoma State University Peter M. Muriana, Ph.D. Associate Professor Dept. Animal Sciences & Oklahoma Food & Ag Products Center Oklahoma State University Stillwater, OK 77- -7- TEL; -7- FAX peter.muriana@okstate.edu Electrolyzed Water Efficacy of electrolyzed water on foodborne pathogens of concern to the meat and poultry processing industry A report prepared for: SanAquel LLC Industrial Road Bristow, OK 7 sales@sanaquel.com Version: /7/

Efficacy of Electrolyzed Water on Foodborne Pathogens of Concern to the Meat & Poultry Industry A report prepared for SanAquel LLC, based on research performed by Peter Muriana, Ph.D. (Oklahoma St. Univ.). Effect of EW on Listeria monocytogenes, E. coli O7:H7, and S. enteritidis L. monocytogenes is the leading pathogen of concern on ready-to-eat (RTE) meat products and has been the focal point of USDA-FSIS with manufacturers of RTE meat and poultry products. E. coli O7:H7 has been the main pathogen of concern in raw ground beef, resulting in illnesses and deaths due to the consumption of even a few cells. Salmonella enteritidis has been the leading cause of illness associated with egg-related salmonella foodborne illnesses because the ovaries of laying hens can become infected with S. enteritidis, resulting in the internal contamination of retail shell eggs. Each of these significant foodborne pathogens were placed in a solution of electrolyzed water and removed and plated on Tryptic Soy Agar every minutes for up to minutes (,,, and min). The same was done with.% buffered peptone water (BPW) which most laboratories use for making dilutions of food samples for plating. A third solution was also used in which the electricity to the cell in the generator unit was turned off (i.e., non-electrolyzed water, or NEW), such that the fluid would be of similar base composition to that which was used for making electrolyzed water, except for the components generated by the electrical current. As you can see with Figures,, and, no organisms were detected from among the different organisms after the first min. From these results, the lethality of electrolyzed water is impressive and may provide extreme interest from within the food processing industry where these microorganisms are routinely problematic to food processors and consumers alike. 7 Effect of Electrolyzed Water on E. coli O7 H7 Effect of Electrolyzed Water on Salmonella enteritidis 7 Log C FU/m L E. coli BPW E. coli NEW E. coli EW Log CFU/mL Salmonella BPW Salmonella NEW Salmonella EW Below detectable limits (no recoverable viable cells) Below detectable limits (no recoverable viable cells) Treatment Time (minutes) Figure. E. coli O7:H7 resuspended in buffered peptone water (BPW), non-electrolyzed water (NEW), and electrolyzed water (EW). Treatment Time (minutes) Figure. Salmonella enteritidis resuspended in buffered peptone water (BPW), non-electrolyzed water (NEW), and electrolyzed water (EW).

The results indicate that Electrolyzed Water is lethal to exposed cells of various foodborne pathogens, resulting in significant reductions when placed in contact for even minutes. Additional tests will examine shorter contact times and what affect EW has on strong biofilm-forming strains of Listeria monocytogenes Electrolyzed Water gave greater than -log reduction of E. coli O7, Listeria monocytogenes, and Salmonella enteritidis in solution within min. Log CFU/ml 7 Effect of Electrolyzed Water on L. monocytogenes Treatment Time (min) Lmono - BPW Lmono - Non-EW Lmono - EW Figure. Listeria monocytogenes resuspended in buffered peptone water (BPW), non-electrolyzed water (NEW), and electrolyzed water (EW).. Variable capacity of strains of L. monocytogenes to form biofilms I have developed a fluorescent biofilm assay for detection of strong (or weakly) attaching strains of L. monocytogenes using microtiter plates as an attachment substrate. After several days of incubation of individual strains, the plates are washed and tested for fluorescent signal after addition of a fluorescent substrate. Strains of interest are those that show the greatest levels of fluorescence along with those that show the least (for comparative purposes). Using this assay on individual isolates in microtiter wells, we can distinguish strongly adhering strains from weakly adhering strains based on the fluorescent signals obtained (Fig. ). Fluorescent plate assay: Microtiter plates, plate washer, & plate reader The significance to the food and meat processing industry is that although we attribute equal pathogenicity to all strains of Listeria monocytogenes, it is known they have different levels of virulence. Similarly, not all isolated found in meat processing plants are equally capable of lingering around based on the results we have been obtaining. It would be uniquely interesting to find out what relationship, if any, do the strongly attaching strains have with virulence as attachment is one of the first steps in pathogenicity (i.e., attaching to epithelial cells for uptake and intracellular survival by L. monocytogenes). Figure. Fluorescent plate assay and results obtained with various strains of L. monocytogenes isolated from processing plants, raw, and ready-to-eat meats.

. Visual analysis and quantification of select strains of L. monocytogenes in biofilms. Strains of L. monocytogenes that had tentatively been identified as strongly adhering strains have were examined by scanning electron microscopy (SEM) in comparison with weakly adherent strains after similar period of attachment using a similar number of cells (Fig. ) Figure. Scanning electron microscopy (SEM) of strains of Listeria monocytogenes differentiated by our fluorescence plate assay into strongly adherent (top row) and weakly adherent strains (bottom row). In order to better quantify the numbers of cells, we examined a protease detachment assay to remove the attached cells without injury. This allows us to quantify the numbers of CFU (cellforming-units) during comparisons with strong and weakly attaching strains, or after various treatments (Fig. ). The difference in attachment capacity, given the same starting level and attachment time, is,-fold greater for the strongly adhering strains than the weak. Relative Fluorescent Units - Control Bax Lysis Lipo.B. Cellulase 77 99- L og C F U/m L. 9.. 7........ Control Lipo.B. Bax Lysis Cellulase 77 99- L. monocytogenes Strain L. monocytogenes Strain Figure. Fluorescence assay of microplate wells containing strong and weakly-adherent strains of L. monocytogenes, before and after protease detachment (left). Plate counts of control buffer washes of attached cells and proteolytically detached cells from microplate attachment assays. With strongly adherent L. monocytogenes, only.% of attached cells are detected in the buffer wash, whereas with weakly adhering strains, as many cells are obtained with buffer washes as are obtained after protease detachment, indicating a weaker attachment.

. Inactivation of strongly adhering strains of Listeria monocytogenes using electrolyzed water We have also shown that the attached bacteria can be detached by a short protease treatment, thereby releasing the cells for quantitative enumeration by plate count. When protease release was performed after treatment of cells with either buffer (no EW treatment) or for various timed intervals of EW treatment (-, -, -, -sec), no detectable Listeria were recovered after treatment for even seconds (Fig. 7). These strongly attaching strains of Listeria monocytogenes represent the most potent strains for attachment in food processing facilities (approximately,-fold greater than weakly attaching Listeria) and are problematic to the food processing industry. An antimicrobial treatment that would inactivate these microorganisms would be immensely beneficial to the food processing industry. Effect of Electrolyzed Water on L. monocytogenes Biofilm Viability Log CFU/ml 9 You 7 can search for additional help on the Help menu. 77 99- Strain Control (no protease) Control (after protease) EW min EW min EW sec EW sec Figure 7. Treatment of strong biofilm-forming strains of L. monocytogenes with electrolyzed water. Four strongly adhering strains of L. monocytogenes were allowed to attach according to out attachment assay. All wells were washed with buffer and then incubated with buffer (controls) or electrolyzed water (test wells) for min, min, sec, or sec before washing with buffer and followed by protease detachment and microbial plating. All data is presented as the mean of triplicate replications with standard deviations of the mean. Electrolyzed Water gave greater than an -log reduction of the most stronglyadherent strains of Listeria monocytogenes within sec as no detectable Listeria were recovered. Such strains would be the most difficult strains to eliminate from meat and poultry processing facilities.

. Effect of dilution of electrolyzed water on Listeria monocytogenes We also examined the effect of dilution of electrolyzed water obtained directly from the generators (considered as %), using %, 7%, %, and % solutions. Complete inactivation of L. monocytogenes in solution was obtained with as low as 7% EW (made by diluting EW to 7% with distilled water). The results showed that % and even 7% provided no recoverable Listeria when treated for min (Fig. ). Affect of EW Dilutions on Listeria monocytogenes 9 Controls Washed with Buffer (BPW) Washed with % EW Washed with 7% EW Washed with % EW Washed with % EW BPW - min 7 BPW - min BPW - min Log CFU/ml % EW - min % EW - min % EW - min 7% EW - min 7% EW - min 7% EW - min % EW - min % EW - min % EW - min <. log <. log % EW - min % EW - min % EW - min Treatment Figure. The effect of dilution of electrolyzed water. Listeria monocytogenes was inoculated into buffered peptone water or various % solutions of EW and plated after - or -min.. Mode of action of electrolyzed water on Listeria monocytogenes The fluorescent attachment assay is based on the uptake of carboxyfluorescein diacetate (CFDA) by attached cells. Once inside the bacterial cells, CFDA is hydrolyzed to a strongly fluorescing derivative. We examined the level of fluorescence of attached L. monocytogenes cells that have taken up CFDA and converted it into the fluorescent derivative after washing the substrate-treated cells with buffer vs. cells substrate-treated cells washed with electrolyzed water (both sets were then washed with buffer to remove residual external substrate). Treatment with EW resulted in loss of - % of cellular fluorescence obtained with control cells that were simply washed with buffer. The decrease in fluorescence obtained after EW treatment suggests that either there is a loss of cells after EW treatment or, that the integrity of the cell wall is compromised leading to intracellular leakage and death of the cells (Fig. 9).

Effect of EW on L. monocytogenes cells treated with CFDA Control Fluorescence Fluorescence after min EW RFU 77 99- Strain Figure 9. Four strongly adhering strains of Listeria monocytogenes were allowed to attach via our biofilm attachment assay, incubated with fluorescence substrate, and then washed with either buffer or electrolyzed water for min and washed again with buffer before fluorescence assay. Treatment with EW resulted in loss of greater than % of intracellular fluorescein that is retained by the buffer treated cells. 7. Effect of electrolyzed water on Listeria monocytogenes cell morphology The strong adhering strains of Listeria monocytogenes, i.e. strains,, 77, and 99- were allowed to attach to glass chips as per our biofilm attachment assay. Pairs of chips inoculated with the same attachment strain of L. monocytogenes were then washed x with BPW and then split up so that one would be further treated with BPW (control) and the other with electrolyzed water (treatment) for min. After the min treatment, all glass chips were then washed again with BPW and submitted for scanning electron microscopy. Our study shows a dramatic change in the appearance, number, and distribution of cells in the various SEM photo s (Fig. ), suggesting that rinsing with EW results in reduced cell numbers, even when the most stringently adherent cells are used. Furthermore, the data suggests that cell death possibly occurs by disruption as determined by the appearance of cellular debris compared to companion assays washed with buffer (Fig. ). 7

A E B F C G D H Figure. Scanning electron microscopy (SEM) of strong adhering strains of L. monocytogenes (panel A), (B), 77 (C), and 99- (D). Cells were washed with either buffer (left) or full-strength electrolyzed water (right) for min prior to final washing in preparation for SEM imaging.

. Effect of Electrolyzed Water on Slicer Blades. The effect of a -second rinse of % or % Electrolyzed Water was examined on reduction of L. monocytogenes inoculated onto clean and dirty stainless steel slicing blades. The reduction was compared to a -sec rinse using sterile distilled water. A x -inch section on a stainless steel slicing blade was inoculated with. ml of mixed cultures of strongly-adhering strains of L. monocytogenes described earlier. The inoculum was allowed to dry for min before rinse treatments. After a rinse treatment, a sterile x -inch sponge pad (used for taking HACCP surface samples), was moistened with buffer and used to recover remaining cells from the blade surface by swiping the surface in directions. The sponge pad was then placed in a sterile stomacher bag to which was added ml of buffer diluent, stomached for sec, and plated by pour plate for enumeration. The dirty slicing blade was obtained by dragging the blade several times through an RTE turkey deli product to acquire a surface film typical of RTE meats. The -sec rinse treatments were applied as light shower of spray mist from a pressurized canister purchased at a local hardware store. Each sampling was performed in triplicate replications. The data shows that the sterile water rinse resulted in a reduction of the applied cells by rinsing off some of the loosely held inoculum (Fig. ). Application of the % EW on clean blades resulted in a.-log reduction of L. monocytogenes while no recoverable cells were obtained using the % EW (>. log). When dirty slicing blades were used, we obtained only a.-log reduction of L. monocytogenes with % EW but a.-log reduction with % EW (Fig. ). Figure. Clean (left) or dirty (right) slicing blades were inoculated with Listeria monocytogenes and rinsed for -sec with sterile water, % EW, or % EW (~ ORP, ph 7.). The slicing blades were used to make several cuts through RTE deli turkey breast to condition the blade as dirty with an organic load. The results indicate that EW works extremely well on clean surfaces to eliminate residual L. monocytogenes that may have escaped sanitation regimens. The data implicates the degree to which EW may work when organic film is removed via a detergent rinse and 9

followed by EW. Although the effect on the dirty blades may look somewhat reduced, the % EW was still very effective for a short, -sec rinse (as compared with some sanitizers that require a -min contact time for effective eradication of Listeria). Since the % EW contains approximately ppm free chlorine, it will need to be followed by a water rinse. It should be noted that although the reduction obtained with the % EW on dirty blades was not exemplary (.-log reduction), one must consider the compounded effect of frequent periodic rinses with such a microbial intervention that can be freely sprayed directly on food and food contact surfaces, that does not require a postapplication rinse, and that the solution applied (~ph 7.) was not the most effective EW treatment. We hope to follow this work shortly with similar treatments using EW at various lower ph levels whereby we may readily obtain a -log, or greater, reduction on dirty surfaces (ph.,.,., and.). The merit in this treatment will be that it can be applied to food and food contact surfaces with no subsequent rinse treatment, and therefore, periodic re-application of such innocuous solutions may merit from pathogen reduction from repeated application, even during processing operations. 9. Conclusion. Having used the most tenaciously adherent strains that we could identify using our biofilm attachment assay, treatment with Electrolyzed Water results in a quantitative reduction of cell counts as determined from proteinase release assays (Fig. 7), fluorescence assay (Fig. 9), and scanning electron microscopy (Fig. ). The data suggests that application of EW in similar fashion to food processing facilities could significantly reduce, or eliminate, Listeria monocytogenes as an environmental surface contaminant on both clean or dirty surfaces (Fig. ).