The Effect of Processing and Density on P/M Soft Magnetic Properties. Ian W. Donaldson, GKN Sinter Metals, Worcester, MA, USA

Similar documents
Use of Binder-Treated Ferrous PM Premixes for Improved PM Part Production and Part Density

P/M High Strength Magnetic Alloys

Advanced Binder Treated FY Francis Hanejko & William Tambussi. Hoeganaes Corporation Cinnaminson, NJ USA

Development of New Soft Magnetic Composite Material Possessing Higher Levels of Magnetic and Mechanical Performance.

SINGLE PRESSED SINGLE SINTERED P/M PRODUCTS FOR HIGH DENSITY, HIGH PERFORMANCE APPLICATIONS

PROPERTIES OF SEVERAL ANCORDENSE TM PROCESSED HIGH PERFORMANCE MATERIALS

Effect of Processing and Material Selection on P/M Part Magnetic Properties

ADVANCED PROPERTIES OF HIGH DENSITY FERROUS POWDER METALLURGY MATERIALS

Processing of Ferro-Phosphorus-Containing Mixes in Low Hydrogen Atmospheres

APPUCATION OF HIGH PERFORMANCE MATERIAL PROCESSING - ELECTROMAGNETIC PRODUCTS. Francis G. Hanejko, George W. Ellis, Timothy J.

Atomized Low Apparent Density (AD) Iron Powder For Advanced PM Applications

Key words: Dimensional precision, prealloyed, sinter hardening,tempering

Opportunities for Conversion of Powertrain Components from Malleable/Ductile Cast Irons to Powder Metallurgy

The Effect of Bonding Method on the Properties of Low Alloy PM Steels

SINTERING OF CHROMIUM CONTAINING PM STEELS PROCESSED TO HIGH DENSITY

Methods to Improve the Fatigue Life of Sinter-Hardened Components

Lean Hybrid Low-Alloy PM Molybdenum Steels

NEW HIGH PERFORMANCE P/M ALLOY SUBSTITUTES FOR MALLEABLE AND DUCTILE CAST IRONS

PROPERTIES OF DIFFUSION BONDED ALLOYS PROCESSED TO HIGH DENSITIES. F. G. Hanejko and H. G. Rutz Hoeganaes Corporation Riverton, NJ 08077

Hardenability Response of Fe-Mo-Ni-C Powder Metallurgy Alloys

Improved Lubricant System for Enhanced Premix Performance. Chris Schade, Peter Sokolowski and Kylan McQuaig

EFFECT OF POST SINTERING THERMAL TREATMENTS ON DIMENSIONAL PRECISION AND MECHANICAL PROPERTIES IN SINTER-HARDENING PM STEELS

EFFECT OF CURING CONDITIONS ON PROPERTIES OF IRON-RESIN MATERIALS FOR LOW FREQUENCY AC MAGNETIC APPLICATIONS.

F. Chagnon and Y. Trudel. Quebec Metal Powders Limited

Binder Treated Products for Higher Densities and Better Precision

Maximizing the Value and Performance of Chromium, Manganese, and Silicon Containing PM Steels

EFFECT OF MOLYBDENUM CONTENT IN PM STEELS

HOEGANAES INSULATED POWDER COMPOSITES CHARACTERISTICS AND ELECTROMAGNETIC APPLICATION GUIDELINES

CHROMIUM ADDITIONS TO THE ANCORLOY MD SERIES. Patrick King, George Fillari, Francis Hanejko Hoeganaes Corporation Cinnaminson, NJ 08077

Development of a Lubricant System for Improved Performance of Premixes

CHAPTER 2: LITERATURE SURVEY

ABSTRACT INTRODUCTION

HIGHER GREEN STRENGTH MATERIALS FOR GREEN HANDLING. Patrick King, George Poszmik, and Robert Causton Hoeganaes Corporation Cinnaminson, NJ 08077

Cost Effective Material for Heat Treated Gear Applications

Challenges in Processing of P/M Chromium Manganese Low-Alloy Steels

Effect of Chromium on Magnetic Characteristics of Powder Processed Fe-0.35wt%P Alloy

Effect of Case Carburizing on Mechanical Properties And Fatigue Endurance Limits of P/M Steels. *Hoeganaes Corporation Cinnaminson, NJ 08077

CONTINUING IMPROVEMENTS IN BINDER TREATMENT TECHNOLOGY. F. J. Semel and S. H. Luk Hoeganaes Corporation Riverton, New Jersey 08077

Magnetic properties of stainless steels. Dr M.Mantel R&D Center Ugitech Fr. Schmolz&Bickenbach Group

SURFACE MODIFICATIONS OF PM STAINLESS STEELS FOR ENHANCED CORROSION RESISTANCE

Development of P/M Fe P soft magnetic materials

Machinability Enhancement of PM Stainless Steels Using Easy-Machinable Stainless Steel Powder. Bo Hu, Roland T. Warzel III, Sydney Luk

MACHINABILITY EVALUATION OF SELECTED HIGH GREEN STRENGTH P/M MATERIALS. T.M. Cimino, S.H. Luk HOEGANAES CORPORATION RIVERTON, NJ 08077

Cost effective manufacturing of tungsten heavy alloy foil and sheet material

Machinability Enhancement of PM Stainless Steels Using Easy-Machinable Stainless Steel Powder. Bo Hu, Roland T. Warzel III, Sydney Luk

ALUMINUM POWDER METALLURGY

Standard Specification for Low-Carbon Magnetic Iron 1

PRODUCTION OF STAINLESS STEEL POWDERS BY ADVANCED STEELMAKING TECHNOLOGY. Christopher T. Schade and John Schaberl

SUPRA 50 - SP 510. Fe-Ni SOFT MAGNETIC ALLOYS

Engineered Lubricant System for Demanding Applications. Peter Sokolowski and Chris Schade Hoeganaes Corporation Cinnaminson, NJ 08077

Powder Metallurgy. by Haipan Salam

OPTIMAL USE OF SOFT MAGNETIC POWDER COMPOSITES (SMC) IN ELECTRIC MACHINES

ALUMINIUM ALLOY ADDITION EFFECTS ON THE BEHAVIOUR OF SOFT MAGNETIC MATERIALS AT LOW FREQUENCIES

A SUPERIOR SINTER-HARDENABLE MATERIAL. M.C. Baran, A.H. Graham, A.B. Davala, R.J. Causton, and C. Schade Hoeganaes Corporation Cinnaminson, NJ 08077

SURFACE-HARDENABLE HEAT TREATED P/M STEELS

CHROMIUM STEELS FOR HIGH PERFORMANCE PM APPLICATIONS. Patrick King and Bruce Lindsley Hoeganaes Corporation Cinnaminson, NJ 08077

DEVELOPMENT OF STAINLESS STEEL AND HIGH ALLOY POWDERS. Christopher T. Schade Hoeganaes Corporation, Cinnaminson, NJ

Chapter 18: Powder Metallurgy

Mechanical Properties of PM Alloy Systems with Silicon and Vanadium Additions

EFFECT OF CARBON CONTENT AND SINTERING TEMPERATURE ON MECHANICAL PROPERTIES OF IRON- BASED PM PARTS PRODUCED BY WARM COMPACTION

25 s/50g. The Effect of Compaction Pressure on Ancorsteel 85 HP with 0.5 w/o Zinc Stearate Green Density. Green Strength (MPa)

Metal Powder Industries Federation. Allowing Fit, Form, & Function to Drive Design

Dr. M. Sayuti, ST.,M.Sc JURUSAN TEKNIK INDUSTRI FAKULTAS TEKNIK UNIVERSITAS MALIKUSSALEH

Leadership in Soft Magnetic Alloys

Dimensional Control in Cu-Ni Containing Ferrous PM Alloys

Dust Core with Low Core-loss for High-frequency Applications

PROCESSING EXPERIENCE OF GREEN STRENGTH ENHANCED MATERIAL SYSTEMS

MuShield s High Permeability Magnetic Shielding per ASTM A753 Alloy Type 4

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Review Article. Pure Iron and Low Carbon Steels - Soft Magnetic P/M Materials

SINTERABILITY OF HIGH-SPEED STEELS M2, M3/2 AND T15

Dimensional Analysis of Sintered Compacts of Atomized Ferrous Powders from Indian Sponge Iron

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF PM STEELS ALLOYED WITH SILICON AND VANADIUM

Typical Powder Morphology

Diffusion-bonded Molybdenum Steel Powders for High Strength Applications. Dipl.-Ing. Guido Olschewski, Dipl.-Ing. Gregor Nitsch

Properties of Various Malleable Iron Powder Grades François Chagnon, Julie Campbell-Tremblay and Maryam Moravej

A Study of Additive Diffusion in Ferrous Powder Metal Compacts Using Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy

Temperature time profile this determines the grain growth, i.e. their final size in the order of some µm, and the properties of grain boundaries.

Heat Sink Manufacturing

The Improvement in Strength of Sintered Machine Parts

Machinability Additives for Improved Hard Turning of PM Steel Alloys

Powder-Metal Processing and Equipment

Development of Self Lubricating Sintered Iron Based Ternary Alloy for Tribological Applications

Powder Metallurgy. Powder-Metal Processing and Equipment 11/10/2009

Journal of Chemical and Pharmaceutical Research, 2017, 9(4): Research Article. P/M Processed Fe-Ni Alloys for Soft Magnetic Applications

Metallurgy, Alloys, and Applications p. 1 Introduction and Overview p. 3 Major Groups of Copper and Copper Alloys p. 3 Properties of Importance p.

DESIGNING LOW ALLOY STEEL POWDERS FOR SINTERHARDENING APPLICATIONS

VDM Alloy 80 A Nicrofer 7520 Ti

NITROGEN ALLOYING OF PM STEELS: PROCESSING AND PROPERTIES

VACUUM SINTERING AND SINTER-HARDENING OF Mo AND Ni LOW ALLOYED STEEL

DILATOMETRIC INVESTIGATION OF Fe-Mn-Cr-Mo PM STEELS WITH DIFFERENT CARBON CONCENTRATIONS

The Influence of Silicon on the Mechanical Properties and Hardenability of PM Steels

THE INFLUENCE OF MICROSTRUCTURE AND CARBIDE PARTICLES ON THE CREEP BEHAVIORS OF P/M ALLOYS. A.E. Segall - Washington State University-Vancouver

Soft Magnetic Cobalt-Iron Alloys. VACOFLUX and VACODUR

C Si Mn Cr Mo Cu Ni P S

The Science and Engineering of Materials, 4 th ed Donald R. Askeland Pradeep P. Phulé. Chapter 7 Strain Hardening and Annealing

A Metallographic Investigation Into the Effect of Sintering on an FC-0205 Premix. Thomas F. Murphy, George B. Fillari, Gerard J.

Innovative process to die compact injection molding powders

Faster, consistent flow is obtained.

Influence of nickel addition on magnetic and electro-mechanical behaviour of permalloys

IMPROVE THE CONSISTENCY OF COMPONENTS BY USING AN IMPROVED BONDED MIX

Transcription:

he Effect of Processing and Density on P/M Soft Magnetic Properties Ian W. Donaldson, GKN Sinter Metals, Worcester, MA, USA Fran Hanejko, Hoeganaes Corporation, Cinnaminson, NJ, USA Abstract: With the trend towards more widespread use of automotive electric systems such as electric power steering, new opportunities exist for P/M soft magnetic alloys. hese applications require high density for magnetic properties and precision. o meet density, precision and geometry complexity requirements, secondary operations are usually employed, which degrade magnetic properties. Annealing can be utilized for recovery of the magnetic properties, but with the potential for dimensional changes. hrough the use of an advanced binder system, higher densities with subsequent increases in magnetic properties can be achieved in a single compaction step. he influence of secondary operations, processing methods such as the use of an advanced binder system and annealing are presented for Fe, Fe-P and Fe-Ni materials. Introduction: he powder metallurgy process offers near net shape for magnetic components. his, coupled with the ability to modify and control the chemical composition along with the resultant magnetic properties comparing to wrought materials, have led to growth opportunities. he trend in automotive applications has been with more complex geometries and tighter tolerances, which has allowed for the replacement of low carbon steels. he proper selection of the P/M materials along with the appropriate processing conditions will result in the magnetic properties required for the specific application. Processing and post processing effects on density and microstructure, which in turn affect the soft magnetic response and physical properties, must be understood and controlled. he effects of various processes and microstructures on these properties have been written about earlier [1,2,3,4]. his paper further explores these effects for development of tactics in manufacturing prototypes and production parts. est Methods: est specimens were processed and evaluated as described in each section. For warm compaction, AncorMax D processing was with a heated die at 60 C and with ANCORDENSE processing, the powder and die were heated to 135 C. ensile properties were developed from flat, un-machined dogbone tensile bars according to ASM E8 and MPIF Standard 10 [5]. DC hysteresis loops were generated per ASM A773/A773M-01 on either standard toroid shapes (3.60 cm OD x 2.23 cm ID x 0.62 cm high) or on other samples as described with an OS Walker AMH 20 Hysteresisgraph. After processing, the samples tested for magnetic response were wound with primary and secondary turns of #28 AWG wire. 1

RESULS AND DISCUSSION Primary and post processing considerations can be more important for soft magnetic components than structural components due to the significant impact these can have on the soft magnetic response. Figure 1 shows various processing routes that can be utilized in producing magnetic components. Pure Iron Powders Premix Operation Lubricants, Alloys (P, Si) Compaction ANCORDENSE or AncorMax D Process Warm Compaction Pre-Sinter Repress DPDS Process Sinter Secondary Operations Machining, Coining, Sizing, Annealing, etc. Finished Part Figure 1: Processing Routes for P/M Soft Magnetic Components Prototype Processing At a prototype stage, machining of blanks is a common method for testing the feasibility of design. But this can lead to a difference in properties as compared to the production process that may be utilized. A test was performed comparing machined blanks and production parts made with Ancorsteel 45P. he production process was compaction to 7.15 g/cm 3, sintered at 1120 C, then coined to a 7.2 g/cm 3 density as a means to qualify dimensions. he blanks were pressed to a 7.2 g/cm 3 density, sintered at 1120 C, and then machined to the final dimensions. No annealing was performed on either of the sample groups. he samples were wound with 58 primary and secondary #28 AWG wire and tested with a drive field of 1195 A/m. Both samples were measured at <0.01% total carbon. It was found that the machined samples had a 34% lower permeability (1290 versus 1950) and 25% higher coercivity (236.4 A/m versus 179.1 A/m) than the coined parts. Compaction Magnetic performance improves with increasing density provided the post compaction processing is the same. Figure 2 shows maximum permeability of different materials (Ancorsteel 1000, 1000B, 1000C, 45P and 80P) as a function of density and purity level. Impurities levels are lower for Ancorsteel 1000C as compared to Ancorsteel 1000B, which is lower than Ancorsteel 1000. All samples were sintered at 1120 C in 25-75 v/o N 2 -H 2 atmosphere. As noted, the permeability increases with increasing density level and with increasing purity level. Additions of Fe 3 P improve both the maximum permeability and material resistivity because the phosphorus promotes liquid phase sintering and stabilization of the BCC phase. 2

Maximum Permeability 5000 4500 4000 3500 3000 2500 2000 Ancorsteel 80P Ancorsteel 45P Ancorsteel 1000C Ancorsteel 1000B Ancorsteel 1000 1500 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3 7.4 7.5 Density (g/cm 3 ) Figure 2: Maximum Permeability as a Function of Density and Purity Level Increasing density at compaction results in an increase in sintered densities with subsequent increase in soft magnetic properties. Figure 3 shows the comparison of Ancorsteel 45P compacted via conventional and warm compaction (AncorMax D and ANCORDENSE) methods. As shown, the soft magnetic properties show an increase with increasing density. Linear regression of the properties for these processing conditions revealed a strong linear relationship with density regardless of compaction method, with R 2 values > 0.96. 8000 7000 AncorMax D ANCORDENSE 1.6 1.4 Maximum Permeability 6000 5000 4000 3000 2000 Conventional Conventional AncorMax D 1.2 1 0.8 0.6 0.4 Bmax () 1000 0.2 0 6.73 6.90 7.07 7.23 7.42 Density (g/cm 3 ) 0 Max Perm Bmax Figure 3: Permeability and Bmax for Ancorsteel 45P Sintered at 1120 C in 75 v/o Hydrogen and 25 v/o Nitrogen as a Function of Density and Compaction Method 3

Sintering he sintering process can have an affect on the magnetic performance. Increasing temperature will provide for an improvement. Interstitials such as carbon, nitrogen and oxygen will also have an influence, such as forming magnetic domain-pinning precipitates or oxides, which degrade the properties. For example, with increasing nitrogen content, a decrease in permeability and increase in coercivity occurs (see Figure 4), with a more pronounced effect occurring at a higher sintering temperature. Control of the sintering process to minimize the effect is of importance. he effect of sintering temperature on 50/50 Fe-Ni with a 0.4% Si content is detailed in able 1. As expected, the soft magnetic properties improve with increasing temperature since grain growth and pore coalescence is enhanced at the higher temperature. With this material, the Si content can affect the sintering kinetics and resultant permeability. A comparison at 1180 C is shown, with a greater difference seen at the higher compaction pressure. Permeability was improved up to 46% at the higher density. Maximum Perm 5500 5000 4500 4000 3500 3000 1120 C - Hc 1120 C -µmax 1260 C -µmax 1260 C - Hc 2500 0.0 0 0.000 0.002 0.004 0.006 0.008 0.010 Sintered Nitrogen Content (w/o) 2.0 160 1.5 120 1.0 80 0.5 40 Coercive Force @1195 (A/m) Figure 4: Effect of Nitrogen and Sintering emperature on 45P Compacted at 7.3 g/cm 3 via ANCORDENSE and Sintered in a 25-75 N 2 -H 2 Atmosphere Si Content 0.4% 0.3% Compaction Pressure, MPa 415 Sintering emperature C Sintered Density g/cm 3 Permeability Coercive Force A/m Maximum Induction 1120 6.60 5000 49.35 0.81 1180 6.65 7900 45.37 0.84 1260 6.74 11000 41.39 0.95 1120 7.15 8000 54.9 1.01 1180 7.22 9500 51.74 1.09 690 1260 7.27 12000 43.78 1.14 415 1180 6.72 8500 50.15 0.85 690 1180 7.24 13900 50.94 1.07 able 1: Effect of Sintering emperature and Si Content for 50/50 Fe-Ni Sintered in a 25-75 N 2 -H 2 Atmosphere ested at a 1195 A/m Drive Field 4

Secondary Operations Various secondary operations can be utilized to achieve the performance requirements of the application. Quite often, sizing or coining is used to qualify the dimensions. he effects of this process will vary based on the amount of cold work that is induced. he plastic deformation associated with sizing strains the iron lattice, which restricts the magnetic domain movement under a magnetic field resulting in a decrease in maximum permeability and coercivity. able 2 shows a comparison of magnetic properties for 45P undergoing full feature sizing at 6.8 g/cm 3. As shown, a significant drop in magnetic properties occurs with sizing. With the addition of annealing, the maximum permeability can be recovered. Condition Max. Permeability HC (A/m) Induction () As-Sintered 2260 157.6 1.10 Sintered and Sized 1160 214.1 0.98 Sintered, Sized and Annealed (815 C for 60 Minutes) 2270 176.7 1.12 able 2: Effect of Sizing on 45P at 6.8 g/cm 3 Measured at 1195 Drive Field With the addition of an annealing operation, the amount of time at temperature can affect the overall cost of the component, so optimization of the process with respect to the performance objectives of the application needs to be realized. Sample parts were compacted at 7.15 g/cm 3 with Ancorsteel 45P, sintered at 1120 C, then sized to 7.20 g/cm 3. hese were then tested as a function of time at temperature. he results are shown in able 3. As can be seen, only a 2% and 9% improvement was seen in permeability at 30 and 60 minutes, respectively, as compared to 15 minutes. Coercivity decreased 2% and 5% at 30 and 60 minutes, respectively, as compared to 15 minutes. Another aspect of the coining process that needs to be considered is the reduction of elongation. For example, this is important when the magnetic component is press fit over a shaft. he effect can be significant. For example, an Fe ring compacted to a 7.0 g/cm 3 density, sintered at 1180 C in an 80-20 N 2 -H 2 atmosphere had an elongation greater than 6%. Coining the ring to a density of 7.3 g/cm 3 resulted in a reduction of the elongation to 1.6%. Drive Field @1195 A/m Drive Field @1990 A/m Condition Max Perm Hc A/m Bmax Br Max Perm Hc A/m Bmax As Coined 1100 230.8 1.03 0.583 1100 242.0 1.215 0.616 15 Min 3640 134.5 1.314 1.172 3417 140.1 1.371 1.186 30 Min 3700 132.1 1.328 1.185 3550 136.9 1.382 1.211 60 Min 3950 128.2 1.371 1.234 3712 132.1 1.428 1.248 able 3: Effect of Annealing ime at 815 C in 25-75 N 2 -H 2 for 45P at 7.2 g/cm 3 Br 5

Another secondary operation that has been utilized on magnetic components as a method to seal porosity prior to a surface coating is steam treatment. he effect of steam treatment on Ancorsteel 45P at 7.2 g/cm 3 density sintered at 1120 C in 90-10 N 2 -H 2 atmosphere is shown in able 4. An 18% decrease in maximum permeability and an 8% increase in coercivity were measured. Condition Max. Permeability HC (A/m) Induction () As-Sintered 3250 125.0 1.306 Steam reatment 2660 136.1 1.212 able 4: Steam reatment Effect on 45P at 7.2 g/cm 3 Measured at 1195 A/m Drive Field SUMMARY he P/M route provides a flexible and cost effective method for manufacturing parts for soft magnetic applications. Various processing operations that can be utilized for achieving desired part performance objectives, but the proper selection coupled with the appropriate processing method is essential to meet the required performance targets of the specific application. Increasing densities, either by conventional compaction or warm compaction methods, and increasing sintering temperatures provide for improved magnetic properties. he choice of secondary operations needs to be evaluated with respect to the impact it will have on the magnetic properties. he addition of annealing may be required to restore the properties to a level that is necessary for the performance of the component. Each of the process steps employed in the manufacture of the P/M component must be understood and controlled. REFERENCE 1. Narasimhan, K.S., Kasputis, D.J., Fillari, G., Lynn, J.C., Processing of Ferro-Phosphorus- Containing Mixes in Low Hydrogen Atmospheres, Advances in Powder Metallurgy & Particulate Materials-2002, Vol. 14, pp. 132-137 2. Guo, R., Cheng, C., Lee, J., Developing a Soft Magnetic P/M Component used in Wireless Communication Devices with High Green Strength Lubricants,, Advances in Powder Metallurgy & Particulate Materials-2002, Vol. 14, pp. 73-78. 3. Hanejko, F.G., Rutz, H.G., Oliver, C.G., Effects of Processing and Materials on Soft Magnetic Performance of Powder Metallurgy Parts, Advances in Powder Metallurgy & Particulate Materials- 1992, Vol. 6, pp. 375-401 4. Lall, C., he Effect of Sintering emperature and Atmosphere on the Soft Magnetic Properties of P/M Materials, Advances in Powder Metallurgy & Particulate Materials-1992, Vol. 3, pp. 129-138 5. Standard est Methods for Metal Powders and Powder Metallurgy Products, Metal Powder Industries Federation, Princeton, NJ, 2003 6