Interconnected Channel and Pond Routing Model (ICPR) 2002 Streamline Technologies, Inc. Page 1 of 3

Similar documents
Istokpoga Marsh Watershed Improvement District (IMWID) Minor Impoundment Project. May 23, 2012

FROZEN MEET AND GREET AT EPCOT NORWAY PAVILION STORMWATER CALCULATIONS FOR

DRAINAGE REPORT FOR. Creeks Crossing

K-BAR RANCH Pond Excavation

Engineering Report. 5.5 Acre Tract Panama City Beach Parkway Panama City Beach, Florida. for

PONDS 3.2 Technical Memo SUBJECT:

PREDEVELOPMENT VERSUS POSTDEVELOPMENT VOLUME ANALYSIS: An Application of Continuous Simulation Modeling using PONDS Version 3 Software

Continuous Simulation Modeling of Stormwater Ponds, Lakes, & Wetlands: A BUILT-IN APPLICATION OF PONDS 3.2

Continuous Simulation Example Problem

PONDS 3.2 TECHNICAL MEMO

Summary of Detention Pond Calculation Canyon Estates American Canyon, California

Modeling Percolation from Multiple Ponds in Close Proximity Using ICPR. The ASCE Suncoast Branch Water Resources Luncheon Sarasota, Florida

Stormwater Retention Pond Recovery Analysis

Modeling the Hydrologic Impacts of Control Structures Utilizing LiDAR, ICPR, and GIS Technologies

Effect of the Underlying Groundwater System on the Rate of Infiltration of Stormwater Infiltration Structures.

CVEN 339 Summer 2009 Final Exam. 120 minutes allowed. 36 Students. No curve applied to grades. Median 70.6 Mean 68.7 Std. Dev High 88 Low 24.

Detention Pond Design Considering Varying Design Storms. Receiving Water Effects of Water Pollutant Discharges

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT DANIEL ASH POND B MISSISSIPPI POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. Part PLANT MCINTOSH ASH POND 1 GEORGIA POWER COMPANY

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT BARRY ASH POND ALABAMA POWER COMPANY

Treatment Volume: Curve Numbers. Composite CN or Not? Treatment Volume: Curve Numbers. Treatment Volume: Calculation. Treatment Volume: Calculation

MD Exhibit MD1 SMALL POND DESIGN CHECKLIST. ProjectName. Engineering Firm Date Submitted. Vicinity Map Pond Summary Sheet (MD-ENG-14) Pond Class

BMP Design Aids. w w w. t r a n s p o r t a t i o n. o h i o. g o v. Equations / Programs

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GASTON GYPSUM POND ALABAMA POWER COMPANY

Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox and WMS

Design of Stormwater Wetlands

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT GREENE COUNTY ASH POND ALABMA POWER COMPANY

Runoff Hydrographs. The Unit Hydrograph Approach

Applicant s Handbook, Volume II (including Appendices A through F`) is Incorporated by Reference in Rule , F.A.C.

RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART PLANT DANIEL NORTH ASH MANAGEMENT UNIT MISSISSIPPI POWER COMPANY

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257

LAKE LABELLE ENGINEERING REPORT

RE: Final Drainage Letter: Northwest Aurora Alley Improvements 2016

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND 3 (AP-3) GEORGIA POWER COMPANY

INITIAL INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN PLANT MCMANUS ASH POND A (AP-1) 40 CFR

Astra Engineering LLC

RETENTION BASIN EXAMPLE

EART 204. Water. Dr. Slawek Tulaczyk. Earth Sciences, UCSC

INITIAL RUN-ON AND RUN-OFF CONTROL PLAN 40 C.F.R. PART 257

Environmental Design Group

Hydrologic Calibration:

Surface Skimmer and Baffle Sediment Basins, Modeling the Benefits

HY-12 User Manual. Aquaveo. Contents

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT BOWEN ASH POND 1 (AP-1) GEORGIA POWER COMPANY

Appendix F. Flow Duration Basin Design Guidance

REFERENCES AND DESIGN AIDS FOR ENVIRONMENTAL RESOURCE PERMIT APPLICANT S HANDBOOK VOLUME II

Drainage Analysis. Appendix E

Chapter 1 Introduction

Final Drainage Report

NC2 Ash Disposal Area Run-on and Run-off Control System Plan

STORMWATER MANAGEMENT REPORT FOR TAVARES EAST DISTRIBUTION SUBSTATION

Level 6 Graduate Diploma in Engineering Hydraulics and hydrology

Hydrologic Study Report for Single Lot Detention Basin Analysis

DETENTION BASIN DESIGN USING RATIONAL HYDROGRAPHS

Permeable Pavement Hydrologic Modeling

Example 1: Pond Design in a residential development (Water Quantity calculations for a Wet Pond and Wet Extended Detention Pond)

SAN GORGONIO PASS CAMPUS - PHASE I

FIRM NAME DESIGNER: CHECKER: DATE: FPID #: DESCRIPTION: COUNTY: DRAINAGE DESIGN CHECKLIST. Designers Initials. Checkers Initials.

Inflow Design Flood Control System Plan

Introduction to Hydrology, Part 2. Notes, Handouts

CEE3430 Engineering Hydrology

San Francisco State University Site 1 Vegetated Infiltration Basin Monitoring Report: Rainy Seasons and

Module 3. Lecture 6: Synthetic unit hydrograph

HYDROLOGIC-HYDRAULIC STUDY ISABELLA OCEAN RESIDENCES ISLA VERDE, CAROLINA, PR

Inflow Design Flood Control System Plan

Design Example Residential Subdivision

GENERAL AND FLOODING STANDARDS SUBMISSION BRUNSWICK LAYOVER FACILITY BRUNSWICK, MAINE PREPARED FOR:

Modelling and Analysis of EES Systems Using SWMM

HERPIC County Storm Drainage Manual

Analysis of Runoff Reduction and Hydrologic Cycle Utilizing LID Concepts

December 6, Nate Hatleback Project Manager City of Thornton 9500 Civic Center Drive Thornton, CO 80229

Run-on and Run-off Control System Plan

Hydrologic Engineering Center Hydrologic Modeling System (HEC-HMS) Sunil KUMAR Director, National Water Academy

APPENDIX K OPERATIONS AND FINAL COVER SURFACE WATER MANAGEMENT SYSTEM DESIGN

Environmental Services Division Public Works Department

Water Resources Management Plan

Hydrology Study. For Bella Terrazza Portion of Lot 1, Block 39, Subdivision of S Tract, Rancho El Cajon El Cajon, CA 92021

CONSISTENCY BETWEEN CUHP AND RATIONAL METHODS James C.Y. Guo, PhD, P.E., and Ben Urbonas, P.E., D.WRD 08/04/2008

Opti-Tool: A BMP Optimization Tool for Stormwater Management in EPA Region 1

November 21, City of Thornton 9500 Civic Center Drive Thornton, CO (303) RE: Maverik Thornton, CO - Drainage Report

HYDROLOGY CHECKLIST FOR LAND DISTURBANCE PERMITS

Initial Inflow Design Flood Control System Plan

INFLOW DESIGN FLOOD CONTROL SYSTEM PLAN 40 C.F.R. PART PLANT YATES ASH POND B (AP-B ) GEORGIA POWER COMPANY

Technical Memorandum

LID PLANTER BOX MODELING

Extended Detention Basin Design

Autumn semester of Prof. Kim, Joong Hoon

Computation of excess stormflow at the basin scale. Prof. Pierluigi Claps. Dept. DIATI, Politecnico di Torino

12d Solutions Pty Ltd CIVIL AND SURVEYING SOFTWARE

Run-on and Run-off Control System Plan

ENVIRONMENTAL RESOURCE PERMIT APPLICATION

SWFWMD RAI No. 1 Comments 8a & 8b Response Appendix G Proposed Drainage Design Criteria

Stormwater Treatment Measure Sizing and Design Considerations SMCWPPP C.3 Workshop June 21, 2017

SOUTHEAST TEXAS CONTINUING EDUCATION

Appendix C.1. Design Example 1 Shallow Wetland (W-1)

1. Stream Network. The most common approach to quantitatively describing stream networks was postulated by Strahler (1952).

EXPLICIT FUNCTIONS FOR IMPLICIT RESERVOIR ROUTING

Modeling Infiltration BMPs

GROUNDWATER TABLE HYDRAULIC IMPACT ASSESSMENT GUIDE FOR INFILTRATION BMPS

Hydrotechnical Design Guidelines for Stream Crossings

Transcription:

Input Report ==== Basins ============================================================================== Name: DRF-1 Node: DRF-1 Status: Onsite Group: BASE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh256 Peaking Factor: 256.0 Rainfall File: Flmod Storm Duration(hrs): 24.00 Rainfall Amount(in): 8.000 Time of Conc(min): 10.00 Area(ac): 2.470 Time Shift(hrs): 0.00 Curve Number: 91.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 ---------------------------------------------------------------------------------------------------- Name: PRE-1 Node: PRE-1 Status: Onsite Group: PRE Type: SCS Unit Hydrograph CN Unit Hydrograph: Uh256 Peaking Factor: 256.0 Rainfall File: Flmod Storm Duration(hrs): 24.00 Rainfall Amount(in): 8.000 Time of Conc(min): 13.00 Area(ac): 2.470 Time Shift(hrs): 0.00 Curve Number: 88.00 Max Allowable Q(cfs): 999999.000 DCIA(%): 0.00 ==== Nodes =============================================================================== Name: DRF-1 Base Flow(cfs): 0.000 Init Stage(ft): 3.530 Group: BASE Warn Stage(ft): 5.000 Type: Stage/Area *** Point data generated with Chamber Tool *** Manufacturer=StormTech Model=SC-310 (October 2008) Chamber Bot Elev=1.70 ft Number of Chambers=217.00 Pit Bot Elev=1.20 ft Pit Length=650.00 ft Pit Width=12.00 ft Pit Height=2.33 ft Gravel Porosity=0.40 Stage(ft) Area(ac) 1.200 0.0716 1.700 0.0716 1.700 0.1234 1.742 0.1229 1.825 0.1218 1.908 0.1204 1.992 0.1190 2.075 0.1172 2.158 0.1150 2.242 0.1132 2.325 0.1104 2.408 0.1082 2.492 0.1046 2.575 0.1010 2.658 0.0964 2.742 0.0910 2.825 0.0813 2.908 0.0770 2.992 0.0738 3.033 0.0716 3.530 0.0716 ------------------------------------------------------------------------------------------ Name: OUTFALL Base Flow(cfs): 0.000 Init Stage(ft): 1.200 Group: BASE Warn Stage(ft): 2.000 Type: Time/Stage Time(hrs) Stage(ft) 0.00 1.200 36.00 1.200 Interconnected Channel and Pond Routing Model (ICPR) 2002 Streamline Technologies, Inc. Page 1 of 3

Input Report ------------------------------------------------------------------------------------------ Name: PRE-1 Base Flow(cfs): 0.000 Init Stage(ft): 0.000 Group: PRE Warn Stage(ft): 0.000 Type: Stage/Area Stage(ft) Area(ac) ==== Weirs =============================================================================== Name: HW-1 From Node: DRF-1 Group: BASE To Node: OUTFALL Flow: Both Count: 1 Type: Vertical: Mavis Geometry: Rectangular Span(in): 15.00 Rise(in): 15.00 Invert(ft): 3.530 Control Elevation(ft): 3.530 Bottom Clip(in): 0.000 Top Clip(in): 0.000 Weir Discharge Coef: 3.200 Orifice Discharge Coef: 0.600 TABLE ==== Percolation Links =================================================================== Name: Perc From Node: DRF-1 Flow: Both Group: BASE To Node: OUTFALL Count: 1 Surface Area Option: User Specified Bottom Elev(ft): 1.200 Surface Area(ac): 0.180 Vertical Flow Termination: Horizontal Flow Algorithm Aquifer Base Elev(ft): -3.000 Perimeter 1(ft): 1324.000 Water Table Elev(ft): 1.200 Perimeter 2(ft): 1481.000 Ann Recharge Rate(in/year): 0.000 Perimeter 3(ft): 2266.000 Horiz Conductivity(ft/day): 13.900 Distance 1 to 2(ft): 25.000 Vert Conductivity(ft/day): 9.300 Distance 2 to 3(ft): 150.000 Effective Porosity(dec): 0.400 Num Cells 1 to 2: 10 Suction Head(in): 5.000 Num Cells 2 to 3: 75 Layer Thickness(ft): 3.000 ==== Hydrology Simulations =============================================================== Name: 25-YR Filename: C:\Users\PSUTITARNNONTR\Desktop\New folder\25-yr.r32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Flmod Rainfall Amount(in): 8.00 Time(hrs) Print Inc(min) 24.000 5.00 ---------------------------------------------------------------------------------------------------- Name: PRE Filename: C:\Users\PSUTITARNNONTR\Desktop\New folder\pre.r32 Override Defaults: Yes Storm Duration(hrs): 24.00 Rainfall File: Flmod Rainfall Amount(in): 8.00 Time(hrs) Print Inc(min) 30.000 5.00 ==== Routing Simulations ================================================================= Name: 25-YR Hydrology Sim: 25-YR Filename: C:\Users\PSUTITARNNONTR\Desktop\New folder\25-yr.i32 Interconnected Channel and Pond Routing Model (ICPR) 2002 Streamline Technologies, Inc. Page 2 of 3

Input Report Execute: Yes Restart: No Patch: No Alternative: No Max Delta Z(ft): 1.00 Delta Z Factor: 0.00500 Time Step Optimizer: 10.000 Start Time(hrs): 0.000 End Time(hrs): 25.00 Min Calc Time(sec): 0.5000 Max Calc Time(sec): 60.0000 Boundary Stages: Boundary Flows: Time(hrs) Print Inc(min) 25.000 15.000 Group Run --------------- ----- BASE Yes Interconnected Channel and Pond Routing Model (ICPR) 2002 Streamline Technologies, Inc. Page 3 of 3

Input Report Basin Name: DRF-1 Group Name: BASE Simulation: 25-YR Node Name: DRF-1 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh256 Peaking Fator: 256.0 Spec Time Inc (min): 1.33 Comp Time Inc (min): 1.33 Rainfall File: Flmod Rainfall Amount (in): 8.000 Storm Duration (hrs): 24.00 Status: Onsite Time of Conc (min): 10.00 Time Shift (hrs): 0.00 Area (ac): 2.470 Vol of Unit Hyd (in): 1.000 Curve Number: 91.000 DCIA (%): 0.000 Time Max (hrs): 12.04 Flow Max (cfs): 11.33 Runoff Volume (in): 6.922 Runoff Volume (ft3): 62064 -------------------------------------------------------------------------------- Basin Name: PRE-1 Group Name: PRE Simulation: PRE Node Name: PRE-1 Basin Type: SCS Unit Hydrograph Unit Hydrograph: Uh256 Peaking Fator: 256.0 Spec Time Inc (min): 1.73 Comp Time Inc (min): 1.73 Rainfall File: Flmod Rainfall Amount (in): 8.000 Storm Duration (hrs): 24.00 Status: Onsite Time of Conc (min): 13.00 Time Shift (hrs): 0.00 Area (ac): 2.470 Vol of Unit Hyd (in): 1.000 Curve Number: 88.000 DCIA (%): 0.000 Time Max (hrs): 12.08 Flow Max (cfs): 9.87 Runoff Volume (in): 6.564 Runoff Volume (ft3): 58856 Interconnected Channel and Pond Routing Model (ICPR) 2002 Streamline Technologies, Inc. Page 1 of 1

Input Report Max Warning Max Delta Max Surf Max Max Name Simulation Stage Stage Stage Area Inflow Outflow ft ft ft ft2 cfs cfs DRF-1 25-YR 5.41 5.00 0.0050 3120 11.02 9.26 OUTFALL 25-YR 1.20 2.00 0.0000 0 9.26 0.00 Interconnected Channel and Pond Routing Model (ICPR) 2002 Streamline Technologies, Inc. Page 1 of 1

PONDS Version 3.3.0229 Retention Pond Recovery - Refined Method Copyright 2008 Devo Seereeram, Ph.D., P.E. Project Data Project Name: Single Family Homes at Harbour Sound Simulation Description: Project Number: ERP APP ID 690912 Engineer : ZNS Engineering, L.C. Supervising Engineer: Date: 07-11-2014 Aquifer Data Base Of Aquifer Elevation, [B] (ft datum): -5.00 Water Table Elevation, [WT] (ft datum): 1.20 Horizontal Saturated Hydraulic Conductivity, [Kh] (ft/day): 6.95 Fillable Porosity, [n] (%): 25.00 Vertical infiltration was not considered. Geometry Data Equivalent Pond Length, [L] (ft): 523.4 Equivalent Pond Width, [W] (ft): 11.5 Ground water mound is expected to intersect the pond bottom Stage vs Area Data Stage (ft datum) Area (ft²) 1.20 3118.9 1.70 5375.3 1.74 5353.5 1.83 5305.6 1.91 5244.6 1.99 5183.6 2.08 5105.2 2.16 5009.4 2.24 4931.0 2.33 4809.0 2.41 4713.2 2.49 4556.4 2.58 4399.6 2.66 4199.2 2.74 3964.0 2.83 3541.4 2.91 3354.1 2.99 3214.7 3.03 3118.9 3.53 3118.9 Single Family Homes at Harbour Sound 07-18-2014 13:47:36 Page 1

PONDS Version 3.3.0229 Retention Pond Recovery - Refined Method Copyright 2008 Devo Seereeram, Ph.D., P.E. Discharge Structures Discharge Structure #1 is active as weir Structure Parameters Description: Control Structure Weir elevation, (ft datum): 3.53 Weir coefficient: 3.13 Weir length, (ft): 1.25 Weir exponent: 1.5 Tailwater - disabled, free discharge Discharge Structure #2 is inactive Discharge Structure #3 is inactive Single Family Homes at Harbour Sound 07-18-2014 13:47:37 Page 2

PONDS Version 3.3.0229 Retention Pond Recovery - Refined Method Copyright 2008 Devo Seereeram, Ph.D., P.E. Scenario Input Data Scenario 1 :: 6,725 ft³ slug load Hydrograph Type: Modflow Routing: Slug Load Routed with infiltration Treatment Volume (ft³) 6725 Initial ground water level (ft datum) default, 1.20 Time After Storm Event (days) 0.100 0.250 0.500 1.000 1.500 Time After Storm Event (days) 2.000 2.500 3.000 3.500 4.000 Single Family Homes at Harbour Sound 07-18-2014 13:47:37 Page 3

PONDS Version 3.3.0229 Retention Pond Recovery - Refined Method Copyright 2008 Devo Seereeram, Ph.D., P.E. Summary of Results :: Scenario 1 :: 6,725 ft³ slug load Time (hours) Stage (ft datum) Stage Minimum 0.000 1.20 Maximum 0.002 2.63 Rate (ft³/s) Volume (ft³) Inflow Rate - Maximum - Positive 0.002 1120.8330 Rate - Maximum - Negative None None Cumulative Volume - Maximum Positive 0.002 6725.0 Cumulative Volume - Maximum Negative None None Cumulative Volume - End of Simulation 96.000 6725.0 Infiltration Rate - Maximum - Positive 0.002 0.5785 Rate - Maximum - Negative None None Cumulative Volume - Maximum Positive 72.000 6725.0 Cumulative Volume - Maximum Negative None None Cumulative Volume - End of Simulation 96.000 6725.0 Combined Discharge Rate - Maximum - Positive None None Rate - Maximum - Negative None None Cumulative Volume - Maximum Positive None None Cumulative Volume - Maximum Negative None None Cumulative Volume - End of Simulation 96.000 0.0 Discharge Structure 1 - simple weir Rate - Maximum - Positive None None Rate - Maximum - Negative None None Cumulative Volume - Maximum Positive None None Cumulative Volume - Maximum Negative None None Cumulative Volume - End of Simulation 96.000 0.0 Discharge Structure 2 - inactive Rate - Maximum - Positive disabled disabled Rate - Maximum - Negative disabled disabled Cumulative Volume - Maximum Positive disabled disabled Cumulative Volume - Maximum Negative disabled disabled Cumulative Volume - End of Simulation disabled disabled Discharge Structure 3 - inactive Rate - Maximum - Positive disabled disabled Rate - Maximum - Negative disabled disabled Cumulative Volume - Maximum Positive disabled disabled Cumulative Volume - Maximum Negative disabled disabled Cumulative Volume - End of Simulation disabled disabled Pollution Abatement: 36 Hour Stage and Infiltration Volume 36.000 1.29 6433.5 72 Hour Stage and Infiltration Volume 72.000 1.20 6725.0 Single Family Homes at Harbour Sound 07-18-2014 13:47:38 Page 4

PONDS Version 3.3.0229 Retention Pond Recovery - Refined Method Copyright 2008 Devo Seereeram, Ph.D., P.E. Plot of Cumulative Volumes and Pond Stage vs Elapsed Time Scenario 1 :: 6,725 ft³ slug load 0 12 24 36 48 60 72 Elapsed Time (hrs) Y1 Axis: Cumulative Inflow Cumulative Infiltration Cumulative Discharge Y2 Axis: Pond Stage Cumulative Volumes (ft³) Elevation (ft datum) 8000 7000 6000 5000 4000 3000 2000 1000 0-1000 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 Single Family Homes at Harbour Sound 07-18-2014 13:47:38 Page 5