Physical Properties of Polyolefin / Bamboo Charcoal Composites

Similar documents
Electrical and Mechanical Properties of Polypropylene/Carbon Black Composites

Effect of Water Absorption on Coconut Fibre Reinforced Functionalized Polyethylene Composites Developed by Palsule Process

Prof. Alcides Lopes Leäo Biocomposites on the Base of Thermoplastic Starch Filled by Wood and Kenaf Fiber

M. Oishi et al. Nano Studies, 2015, 11, DEVELOPMENT OF THERMOPLASTIC STARCH NANOCOMPOSITES FOR WET CONDITIONS

Compatibilized PP/EPDM-Kenaf Fibre Composite using Melt Blending Method

Melting point: 133 C. Algro Brits. ph:

Coconut Fiber Reinforced High Density Polyethylene Composites By Compatibilizer Process

rhdpe/wood Fiber Composites: Effect of Maleic Anhydride on Tensile Properties and Morphology Analysis

RADIATION EFFECTS ON THE PROPERTIES OF POLYETHYLENE FOAMS CROSSLINKED BY ELECTRON BEAM

School of Environmental Engineering, Universiti Malaysia Perlis, Kompleks Pengajian Jejawi 3, Jejawi, Perlis, Malaysia

EFFECT OF REPROCESSING CYCLES ON MORPHOLOGY AND PROPERTIES OF ETHYLENE VINYL ACETATE (EVA) COPOLYMER/OLIVE HUSK FLOUR COMPOSITES

Effect of Modifying Agent (ACR) on Cell Structure and Mechanical Properties of Extrusion-Foamed PVC Sheet

Bull. Mater. Sci., Vol. 33, No. 3, June 2010, pp Indian Academy of Sciences.

MECHANICAL AND PHYSICAL PROPERTIES OF NATURAL RUBBER/HIGH DENSITY POLYETHYLENE HYBRID COMPOSITES REINFORCED WITH MENGKUANG FIBER AND EGGSHELL POWDER

Improvement of Tensile Properties of Recycled Low-Density Polyethylene by Incorporation of Calcium Carbonate Particles

The Potential of Silane Coated Calcium Carbonate on Mechanical Properties of Rigid PVC Composites for Pipe Manufacturing

STATIC DISSIPATIVE BIOPOLYMER COMPOSITES FOR ELECTRONIC PACKAGING

Effect of Water Absorption on Interface and Tensile Properties of Jute Fiber Reinforced Modified Polyethylene Composites Developed by Palsule Process

POLY(LACTIC ACID) BASED SINGLE COMPOSITES

Progress on cellulose nanofiberfilled thermoplastic composites

STUDY ON CHEMICAL TREATMENT OF CELLULOSE FIBER TO IMPROVE HEAT RESISTANCE AND THE MECHANICAL PROPERTY OF COMPOSITE MATERIALS USING TREATED FIBER

Physico-mechanical properties of coir and jute fibre reinforced hybrid polyethylene composites. Shakil Ahmed, Ashraful Ahsan and *Mahbub Hasan

Soft, Processable SEBS Polymers for Compounds

PREPARATION AND CHARACTERIZATION OF EPOXY COMPOSITE REINFORCED WITH WALNUT SHELL POWDER

Mechanical behaviour of low-density polyethylene modified with maleic anhydride in the solid state and composites based on it

Maleic Anhydride Polypropylene Modified Cellulose Nanofibril Polypropylene Nanocomposites With Enhanced Impact Strength

Effect of Fiber Orientation and Loading on the Tensile Properties of Hardwickia Binata Fiber Reinforced Epoxy Composites

Dispersing at its best. TEGOMER Dispersants for Masterbatches and Compounds

Effect of fiber interval on tensile strength of fiber reinforced plastics in multi-fiber fragmentation test

β Silicon Carbide Coated MWCNTs Reinforced Polyetherimide Nanocomposites

Development and Investigation of Mechanical Properties of PEEK Fine Particles Reinforced UHMWPE Composites

Progress on Cellulose Nanofiber-filled Thermoplastic Composites

MECHANICAL PROPERTIES AND CHARACTERIZATION OF INJECTION MOLDED MICROCELLULAR POLYPROPYLENE (PP)/CARBON FIBER COMPOSITE

Contents. Definition Structure Manufacturing Proses Applications Properties Recycling

PROCESS FOR MANUFACTURING A HIGH PERFORMANCE NATURAL FIBER COMPOSITE BY SHEET MOLDING

Utilisation of Nanosize Powder (Montmorillonite) for Compounding Lightweight Polymer Products

5.1 Essentials of Polymer Composites

MECHANICAL PROPERTIES AND MORPHOLOGY OF POLYOLEFIN COMPOSITES WITH COCONUT FLOUR

M. Sawant 1, B. F. Jogi 1, P. K. Brahmankar 1, D. Ratna 2

A STUDY ON THERMAL AND MECHANICAL PROPERTIES OF MECHANICALLY MILLED HDPE AND PP

EFFECT OF INDIAN LIGNOCELLULOSIC FILLERS ON IMPACT PROPERTY OF GPPS

COMPOSITES OF POLYPROPYLENE AND HYDROXYAPATITE: EFFECTS OF COPOLYMERS OF PROPYLENE AND ACRYLIC ACID ON THE MECHANICAL PROPERTIES

Preparation and Tribological Characterization of Linear Low Density Poly-Ethylene Sea Shell (LLDPE/Sea Shell) Bio Composite

The Effect of Electron Beam Irradiation on PE-g-MA Compatibilised Linear Low-density Polyethylene/Soya Powder Blends

EXPERIMENTAL STUDY OF EXTRUSION AND SURFACE TREATMENT OF ORGANO CLAY WITH PET NANOCOMPOSITES

Effect of Cenosphere Concentration on the Mechanical, Thermal, Rheological and Morphological Properties of Nylon 6

EXPERIMENTAL INVESTIGATION OF THE EFFECT OF HYGROTHERMAL AGING ON THE MECHANICAL BEHAVIOR OF CARBON NANOTUBE/PA6 NANOCOMPOSITE

MICRONIZED TALC: A COST-EFFECTIVE FUNCTIONAL FILLER FOR POLYOLEFINS

Tensile Properties and FTIR Analysis of HDPE/ Soya Spent Powder in Oven Aging

PROCESSING AND CHARACTERIZATION OF GREEN COMPOSITES WITH CHOPPED KENAF FIBERS AND RECYCLED EXPANDED POLYPROPYLENE

Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), Pauh Putra, Perlis, Malaysia. 2

Effect of Filler Loading and NaOH Addition on Mechanical Properties of Moulded Kenaf/Polypropylene Composite

Preparation of Biodegradable Materials by Reactive Extrusion

POLYPROPYLENE REINFORCED WITH RECYCLE POLYETHYLENE TEREPHTHALATE AS AN ALTERNATIVE MATERIAL FOR NEW PLASTIC PRODUCT

CHAPTER 3 STUDY OF MECHANICAL PROPERTIES OF CAST RESIN WITH FLYASH AND CEMENT

Dual Wall Heat-Shrinkable Tubing with Hot-Melt Inner Layer

Effect of Powder Mixture Conditions on Mechanical Properties of Sintered Al 2 O 3 -SS 316L Composites under Vacuum Atmosphere

Effect of water absorption on the mechanical properties of continuous carbon fibre reinforced polycarbonate composites

Creation of Advanced Recycle Process to Waste Container and Packaging Plastic Polypropylene Sorted Recycle Plastic Case

PROPERTIES OF HIGH IMPACT MODIFIED PLA AND PLA -FLAX COMPOUNDS

DYNAMIC MECHANICAL ANALYSIS OF COMPATIBILIZER EFFECT ON THE MECHANICAL PROPERTIES OF WOOD FLOUR - HIGH-DENSITY POLYETHYLENE COMPOSITES

Use of Recycled Pulped Chromated Copper Arsenate-Treated Wood Fibre in Polymer Composites

Renewable Bio-composites for Automotive Applications

INFLUENCE OF HOT MELT ADHESIVE CONTAMINANTS ON THE MECHANICAL PROPERTIES OF RECOMPOUNDED THERMOPLASTICS

Effect of Hydrocarbon Solutions on Polymer Concrete

Effect of Alkali Treatment and pmdi Isocyanate Additive on Tensile Properties of Kenaf Fiber Reinforced Thermoplastic Polyurethane Composite

LASER SINTERING OF PA12/PA4,6 POLYMER COMPOSITES. D. Strobbe*, P. Van Puyvelde, J.-P. Kruth*, B. Van Hooreweder*,

MECHANICAL AND ADHESIVE PROPERTIES OF ARAMID/NYLON INSERT INJECTION MOLDING COMPOSITES

AMI - PolymerFoam October 9 th Dr. Chris DeArmitt - CTO

PROCESSING METHODS OF HIGH DENSITY POLYETHYLENE- EXFOLIATED GRAPHENE NANOPLATELET NANOCOMPOSITES FOR AUTOMOTIVE FUEL TANKS APPLICATIONS

A STUDY ON GLASS FIBER REINFORCED POLYMER-CLAY NANOCOMPOSITES WITH SANDWICH STRUCTURE

PROCESS-CONTROLLED TENSILE PROPERTIES OF NEWLY DEVELOPED BAMBOO COMPOSITE MATERIALS

EFFECT OF SURFACE TREATMENT ON MECHANICAL BEHAVIOR OF JUTE FIBER-REINFORCED POLYOPROPYLENE COMPOSITE

Compounding and Processing Additives for Woodfiber-Plastic Composites

MECHANICAL AND ELECTRICAL PROPERTIES OF MICRO/NANOCOMPOSITES VIA CNT DISPERSED RESIN FILM INFUSION PROCESS

Calcium Carbonate in Blown HDPE Film

SOLUTION IMPREGNATION OF NATURAL FIBRES/ABS MATRIX COMPOSITES

Experimental Investigations of Mechanical Properties of Natural Hybrid Fiber, Reinforced Polymer Composite Materials

Effect of water absorption on static and creep properties for jute fiber reinforced composite

Mechanical and Tribological Properties of Epoxy Nanocomposites

Main Campus, Pauh Putra, 02600, Perlis, Malaysia 2 School of Materials Engineering, Universiti Malaysia Perlis,

Mechanical Properties of Interpenetrating Phase Composites using Open-Cell Al foams with Natural Rubber and Polyethylene

PLASTIC PIPE TERMS & DEFINITIONS

Structure, Mechanical and Thermal Properties of Coconut Fiber Reinforced Polypropylene Composites with 2% MAPP as a Compatibilizer

RECYCLING OF PP-BASED SANDWICH PANELS WITH CONTINUOUS FIBERS COMPOSITE SKINS

Omyacarb : The way forward for enhanced sustainable production.

EFFECT OF SHEARING ON DISPERSION, INTERCALATION/EXFOLIATION OF CLAY IN EPOXY

Compressive Properties and Morphology of Polypropylene/Polycarbonate Blends

PVC. PVC / Suspension. PVC / Emulsion

EFFECTS OF WOOD FIBER CHARACTERISTICS ON MECHANICAL PROPERTIES OF WOOD/POLYPROPYLENE COMPOSITES

Polypropylene Based Olefin Block Copolymers for Clear Cold Tough Application

A partner in innovation: Diverse Manufacturing Capabilities

MECHANOCHEMICAL RECYCLING AND PROCESSING OF WASTE CROSSLINKED POLYMERS: WASTE TIRE RUBBER AND WASTE XLPE FROM CABLE SCRAPS

Fiber reinforced plastic composites using recycled materials

Morphological and Mechanical Properties of Injection Molded Recycled Poly(ethylene terephthalate) Samples

ELECTRO CONDUCTIVE THERMOPLASTICS FOR EMI SHIELDING AND STATIC CONTROL

P. Pereira, C. N. Barbosa, J. C. Viana. University of Minho, Portugal

PHYSICAL AND BENDING PROPERTIES OF INJECTION MOULDED WOOD PLASTIC COMPOSITES BOARDS

Effect of Compatibilizing Agent on Mechanical Properties of Waste Paper and Gracinia kola Filled Low Density Polyethylene Composites

Modification of epoxy adhesives to enhance glue ductility in relation to wood adherends

Transcription:

Journal of Metals, Materials and Minerals, Vol.19 No.1 pp.9-15, 29. Physical Properties of Polyolefin / Bamboo Charcoal Composites Siriwan KITTINAOVARAT* and Worawat SUTHAMNOI Department of Materials Science, Faculty of Science, Chulalongkorn University, Phyathai Road, Patumwan, Bangkok 133, Thailand Abstract The physical properties of two kinds of polyolefin / bamboo charcoal composites, based upon polypropylene (PP) and low density polyethylene (LDPE), were studied for varying levels of charcoal inclusion between and 2 phr. A Brabender mixer and two-roll mill were used for the mixing process of both polyolefin and bamboo charcoal composites, followed by compression moulding of the homogeneous mixtures to form the composite materials. The tensile strength and Young s modulus were both found to increase, whilst the elongation at break decreased, in a dose-dependent manner with increasing bamboo charcoal content in the composite materials. The tensile strength of PP / bamboo charcoal composites was higher than that of the original PP, but the tensile strength of LDPE / bamboo charcoal composites was slightly lower than that of LDPE. In addition, the water absorption of both polyolefin / bamboo charcoal composite series were significantly higher than that of either original polyolefin. Finally, the electrical resistance of both polyolefin / bamboo charcoal composites decreased compared to that of pure PP and LDPE. Key words : Polyolefin, Bamboo charcoal, Composite, Polypropylene, Polyethylene Received Mar. 4, 29 Accepted Apr. 27, 29 Introduction Polyolefins are some of the most widely used types of commercial polymers. The most important polyolefins include polyethylene (polyethylene, PE) and polypropylene (PP). PE is produced by polymerizing the olefin ethylene, whilst PP is made from the olefin propylene. Moreover, polyethylene is classified into several different categories based principally on its density and branching since the extent and type of branching, the crystal structure and the molecular weight all strongly affect the mechanical properties of PE. Of these, low density polyethylene (LDPE), defined by a density range of.91.94 g/cm 3, has a high degree of short and long chain branching. The inability of the chains to pack into a crystal structure, and the reduced instantaneousdipole induced-dipole attraction and intermolecular forces result in a lower tensile strength and increased ductility suitable for both thick film rigid containers and thin film applications such as plastic bags and film wrap. Typically polyolefin products are manufactured by extrusion blow moulding, injection moulding, compressing moulding or film extrusion. Polyolefins and especially PE and PP have been widely used in food packaging, clothing, automotive parts, consumer products and industrial appliances. The large numbers of end use applications for polyolefins are often possible because of their durability, excellent chemical resistance, low density, recycling ability and relatively low cost. However, polyolefin chemistry has some intrinsic properties, e.g. lack of optical transparency, hydrophobicity, static generation leading to dust attraction and very poor biodegradability. These problems may be overcome by incorporation of either organic or inorganic fillers such as carbon black, natural fiber, starch, bamboo charcoal or rice husk. Raw bamboo charcoal is made from bamboo branches, shoots and roots by pyrolysis (carbonizing) under high temperatures, typically being processed in a high-performance clay furnace oven heated to about 1ºC, which produces bamboo charcoal of the highest quality. *Corresponding author E-mail: ksiriwan@sc.chula.ac.th

1 KITTINAOVARAT, S. and SUTHAMNOI, W. The resultant bamboo charcoal has innumerable pores in its structure making it an excellent medium for absorbing volatile chemicals (odors), controlling temperature, voiding moisture (e.g. air conditioning), inhibiting the growth of bacteria and fungi, preventing static electricity buildup which otherwise causes static shocks in dry conditions, and also has the ability to absorb far infrared energy from the environment and emit it to help cell activation for promoting blood circulation. (1) Bamboo charcoal has many applications in both conventional and hi-tech industries. (2-3) It can be used in medicines, cosmetics, food processing, health-related products, deodorants and composites. Most of the 1 odd species of bamboo are fast growing and can be harvested and replanted with little damage to the sensitive forest ecosystems and thus bamboos, including the prized moso Bamboo (Phyllostachys heterocycla pubescens), within limitations are a renewable and sustainable environmentally sound product. Many previous studies have shown that the addition of proper filler (either organic or inorganic fillers) is an effective strategy for achieving improved morphology and mechanical properties in polymer composites. In recent years, intensive fillers added in the polymer have been carbon black and clay. Many research articles have studied PP / clay nanocomposites. Nam, et al. prepared the intercalated nanocomposites of PP / clay by using maleic anhydride modified PP (PP- MA) and organophilic clay via melt extrusion process. (4) Mingliang and Demin prepared the organically modified clay (organoclay) by treating Na-montmorillonite with alkylammonium ions through a solid state method. The addition of organoclay did not affect the crystal structure of PP. But impact strength and thermal decomposition temperature of PP / organoclay nanocomposites were higher than those of neat PP when the organoclay content was below 7 wt%. (5) Yui, et al. studied the influence of density polyethylene (HDPE), carbon black structure and PP viscosity on morphology and electrical conductivity of injection-molded HDPE / PP / CB composites. The study found that the electrical resistivity of these mixtures decreased with the increase of HDPE content and increased with increasing the viscosity of the PP matrix. The morphological changes were correlated to the variation of electrical conductivity. (6) Lou, et al. studied the effect of bamboo charcoal on the mechanical properties of polyester (PET) / polypropylene (PP) blend with bamboo charcoal. The tensile strength and impact strength of the PET / PP ext (extrusion grade PP) composites were better than those of the PET / PP inj (injection grade PP) composites with 1% and 2% of polyester composition. (7) Some previous research articles studied the effect of bamboo charcoal addition in the polymer composites. Bamboo charcoal has innumerable pores in its structure making it an excellent medium for preventing static electricity buildup and absorbing volatile chemicals. These two advantages of bamboo charcoal could enhance the water absorption and electrical conductivity of the polyolefin. Therefore, this work is undertaken to investigate the effect of bamboo charcoal loading on the physical properties, water absorption and volume resistivity of polyolefin / bamboo charcoal composites. Material and Experimental Procedures Materials Commercial polypropylene (PP) and lowdensity polyethylene (LDPE) were used as the matrix of the composites. PP with a density of.9 g/cm 3 and a melt flow rate of 2.1 dg/min was supplied by HMC Polymers Company Limited. LDPE having a density of.92 g/cm 3 and a melt flow rate of 2. dg/min was supplied by Thai Polyethylene Co., LTD. Bamboo charcoal used as filler was purchased from Charcoal Home Co., LTD. Prior to use the bamboo charcoal was sieved through a 325-mesh sieve filter to attain a small, and less heterogeneous, particle size preparation. Bamboo charcoal particle size was determined by using Mastersizer 2. According to the tested results, the average particle size of bamboo charcoal was 18.52 micron and the specific surface area of bamboo charcoal was.523 m 2 / g. Methods Polyolefin / Bamboo Charcoal Composite Preparation Bamboo charcoal was compounded with PP or LDPE in order to obtain polyolefin / bamboo charcoal composites, which contain 5-2% (phr) of bamboo charcoal at 5% intervals (i.e., 5, 1, 15 and 2 phr). PP / bamboo charcoal and LDPE / bamboo charcoal composites were prepared by melt mixing of the compounds in a mixing

Physical Properties of Polyolefin / Bamboo Charcoal Composites 11 chamber of a Brabender W3EHT for 1 min at 17ºC or 14ºC, respectively. Polyolefin composites were re-mixed by using a two-roll mill (LAB TECH) for another 1 min at 18ºC for PP/ bamboo charcoal and at 15ºC for LDPE / bamboo charcoal. After the mixing process, composite samples were prepared in the form of a square with dimensions of 6 x 6 and 1 mm thickness by compression moulding. The compression condition for the formation of PP/bamboo charcoal composites was a processing temperature of 18ºC and a pressure of 13 psi for 8 min, followed by cooling at ambient conditions for 1 min, whilst that for LDPE / bamboo charcoal was as above except the processing temperature and pressure were 15ºC and 12 psi, respectively. Mechanical Properties The tensile strength at break, Young s modulus and elongation at break of the polyolefin / bamboo charcoal composites were determined using a Universal Testing Machine (LLOYD LR 1K) according to ASTM D 638, with a gauge length of 25 mm, a crosshead speed of 5 mm/min and a load cell of 1, N. Wallace test equipment was used to cut the standard specimen for testing. Water Absorption The water absorption of polyolefin / bamboo charcoal composites was evaluated according to ASTM D 57-95. Specimens of 2 x 1.5 cm and 1 mm thickness were cut and dried in the oven at 6ºC for 24 hours, and placed in a desiccator for 1 minutes before weighing and then immersed totally into distilled water in a water-bath at ambient conditions for the indicated duration. At the end of each indicated immersion time, the specimens were removed, patted dry with a lint dry cloth and weighed immediately to determine the wet weight of specimen. Water absorption is expressed as the percentage increase in weight relative to the pre-immersed dry sample. The results of the mechanical properties and water absorption tests were obtained by averaging the values of six specimens. Volume Resistivity The volume resistivity of polyolefin / bamboo charcoal composites was determined according to ASTM D 257 by using a Resistivity Adapter of Keithley 615, a High Voltage Supply of Keithley 247 and an Electrometer of Keithley 617. The specimens were placed at 23ºC and 5 % RH for 48 hours before testing. Scanning Electron Microscopy Observation Scanning electron microscopy (SEM) (JEOL JSM-64) was employed to investigate the fracture surface of polyolefin / bamboo charcoal composites. The specimens were immersed in the liquid nitrogen and then fractured. The samples taken from the fractured parts were coated with gold for a few minutes before SEM observation at a magnification of 1, times. Results and Discussion The Influence of Bamboo Charcoal on the Mechanical Properties of Polyolefin / Bamboo Charcoal Composites The effect of bamboo charcoal incorporation with either LDPE or PP on the tensile strength, Young s modulus and elongation at break of the resultant LDPE / bamboo charcoal and PP / bamboo charcoal composites are summarized in Figures 1, 2 and 3, respectively. The tensile strength of PP / bamboo charcoal composites increased slightly with increasing bamboo charcoal content up to 2 phr (the highest tested dose), at which point the resultant composite tensile strength was ~ 15 % higher than pure PP. By contrast, bamboo charcoal incorporation into LDPE did not significantly affect the tensile strength of the LDPE / bamboo charcoal composite, although the tensile strength of all the LDPE / bamboo charcoal composites were slightly lower than that of virgin LDPE. It is concluded that bamboo charcoal presented interfacial adhesion with PP and could add into the PP matrix and reinforce the strength of the PP / bamboo charcoal composite. For LDPE / bamboo charcoal composites, no reinforcement was obtained by the addition of bamboo charcoal in the LDPE matrix, although the bamboo charcoal could also add into the LDPE matrix and had interfacial adhesion with LDPE as well. This may be because the chemical structure of LDPE has a high degree of short and long chain branching. When bamboo charcoal is added into the LDPE matrix may interfere with the entanglement of both short and long chain branches of LDPE and also cause a

12 KITTINAOVARAT, S. and SUTHAMNOI, W. lower intermolecular force, which together would lead to a lower tensile strength. T ensile streng th ( M P a ) 5 45 4 35 3 25 2 15 1 5 5 1 15 2 Bamboo charcoal content (phr) Figure 1. The tensile strength of polyolefin-charcoal composites with different bamboo charcoal contents. Young s modulus is frequently used as a marker to evaluate the rigidity of polymeric materials, and is used as such here. Young s modulus of LDPE / bamboo charcoal and PP / bamboo charcoal composites increased in a dosedependent manner with increasing bamboo charcoal contents. Although pure PP displayed a significantly greater Young s modulus than pure LDPE, the degree of increased Young s modulus induced by the addition of charcoal was broadly similar for both LDPE and PP composites, reaching about ~ 75-8% increase at 2 phr bamboo charcoal. This may be because the bamboo charcoal is comprised of very fine particles and can easily penetrate into the amorphous structures of LDPE and PP and provide a better rigidity for both polyolefin / bamboo charcoal composites. Since the data revealed no evidence of approaching an asymptote, the incorporation of bamboo charcoal at greater than 2 phr into the LDPE and PP matrices potentially could result in even further increases in the tensile strength and Young s modulus and merits further investigation. However, it was not evaluated in this study because the equipment available did not mix bamboo charcoal contents at more than 2 phr with PP or LDPE well enough to ensure homogeneity prior to compression. Heterogeneously mixed composites would impair the mechanical properties leading to erroneous values for the composite materials. Young s modulus is a measure of the ability of a material to withstand changes in length, and indeed the elongation at break of both polyolefin / bamboo charcoal composites decreased rapidly in a dose-dependent manner with increasing levels of bamboo charcoal content in the composites. This may be because the bamboo charcoal, once incorporated with LDPE or PP, agglomerates and reduces the extensibility of the matrix in the composites. The resistance created by the bamboo charcoal particles would reduce the deformability of the PP or LDPE macromolecules. Young 's Modulus (MPa) 12 1 8 6 4 2 5 1 15 2 Bamboo charcoal content (phr) Figure 2. Young s modulus of polyolefin-charcoal composites with different bamboo charcoal contents. % E longation at break 1 9 8 7 6 5 4 3 2 1 5 1 15 2 Bamboo charcoal content (phr) Figure 3. The elongation at break of polyolefin-charcoal composites with different bamboo charcoal contents. Electrical Conductivity of Polyolefin / Bamboo Charcoal Composites The influence of bamboo charcoal content at 1 and 2 phr on the DC electrical resistivity of LDPE / charcoal and PP / charcoal composites is summarized in Table 1. The electrical resistivity of both PP / bamboo charcoal and LDPE / bamboo charcoal composites decreased with increasing

Physical Properties of Polyolefin / Bamboo Charcoal Composites 13 bamboo charcoal contents, but this was more marked for PP than for LDPE (~ 85 and 3% reduction at 2 phr, respectively). The electrical resistivity of both polyolefin / bamboo charcoal composites seemed to reduce substantially. But these values of electrical resistivity of polyolefin / bamboo charcoal were still in the range of insulators. Normally, the electrical resistivity of pure metals extends from approximately 1.5 x 1-8 ohm-meter for silver, the best conductor, to 135 x 1-8 for manganese, the poorest pure metallic conductor. Insulators have electrical resistivity within the approximate range of 1 8 to 1 16 ohmmeters. This is assumed to be because the amount of bamboo charcoal content applied in this study might be insufficient to form conductive networks in the LDPE and PP composite matrices. In addition, the innumerable pores of bamboo charcoal may interrupt the conductive networks. Table 1. The volume resistivity of polyolefin / bamboo charcoal composites Tested Sample Thickness (mm ) Volume Resistivity ( Ω-cm ) 1 16 Virgin PP 98.6 ± 1. 42.3 ± 2.7 PP/bamboo charcoal (1 phr) 13.2 ± 1.1 15. ± 1. PP/bamboo charcoal (2 phr) 13.7 ±.7 6.39 ±.67 Virgin LDPE 16.8 ± 1.5 6.52 ±.19 LDPE/bamboo charcoal 18.8 ± 1.3 6.26 ±.35 (1 phr) LDPE/bamboo charcoal (2 phr) 111.2 ± 1.4 4.61 ±.13 Water Absorption of Polyolefin / Bamboo Charcoal Composites The influence of bamboo charcoal content on the water absorption of LDPE / bamboo charcoal and PP / bamboo charcoal composites is summarized in Figures 4 and 5, respectively. The water absorption of both polyolefin / bamboo charcoal composites increased continuously week by week and also showed a marked dosedependent effect with increasing water absorption at each time point with increasing charcoal levels in the composites. Normally, LDPE and PP do not have good water absorption (<.2%). Bamboo charcoal was not considered as a hydrophilic material, but the significantly increased water absorption of both polyolefin / bamboo charcoal composites was likely to be attributed to the many pores and gaps in the bamboo charcoal structure. Water absorption (% ) 2.5 2 1.5 1.5 day 1 day 7 day 14 day 21 day 28 Time (day) 1/ 1/5 1/1 1/15 1/2 Figure 4. Water absorption of LDPE / bamboo charcoal composites with different bamboo charcoal contents. Water absorption (% ) 2.5 2 1.5 1.5 1 day 7 day 14 day 21 day 28 day Time (day) 1/ 1/5 1/1 1/15 1/2 Figure 5. Water absorption of PP / bamboo charcoal composites with different bamboo charcoal contents. SEM Observation of the Surface of LDPE/ Bamboo Charcoal and PP/Bamboo Charcoal Composites A SEM micrograph of the bamboo charcoal particles is shown in Figure 6. The bamboo charcoal appeared to display a somewhat heterogeneous appearance with particles of different sizes and irregular shapes. Typically, many fine particles and pores were visible in the structure but with smaller particles agglomerated around larger particles with different sizes and irregular shapes. This heterogeneous structure and especially the large number of pores present in the bamboo charcoal could affect its ability to alter the composite water absorption, electrical conductivity and the strength of materials. In contrast, the surface features of LDPE or PP look relatively homogeneous and similar to each other, as seen from SEM micrographs (Figure 7). SEM micrographs of LDPE / bamboo charcoal composites and PP / bamboo charcoal composites, with different contents of bamboo charcoal, are shown in Figures 8 and 9, respectively.

14 KITTINAOVARAT, S. and SUTHAMNOI, W. For both polyolefin / bamboo charcoal composites, the bamboo charcoal granules appeared to have added into the polyolefin matrix, but were distributed much more evenly in the LDPE matrix than in the PP matrix. Presumably, this is because LDPE is a much softer material than PP. The amount of bamboo charcoal granules distributed within the LDPE matrix increased with increasing bamboo charcoal content. Bamboo charcoal distributed more evenly in the polyolefin matrix could provide better properties of Young s modulus and tensile strength of the composite materials. Polyolefin / bamboo charcoal composites contained bamboo charcoal content at 2 phr had better tensile strength and Young s modulus than those of polyolefin / bamboo charcoal composites containing bamboo charcoal content at 15 phr. This may be attributed to the fact that the good distribution pattern of bamboo charcoal in polymer matrix could enhance the physical properties of composite materials. (c) (a) (b) (d) Figure 8. SEM micrographs (x1) of LDPE / bamboo charcoal composites with a bamboo charcoal content of (a) 5 phr (b) 1 phr (c) 15 phr and (d) 2 phr Figure 6. SEM micrograph (x5) of bamboo charcoal (a) (b) LDPE PP (c) (d) Figure 7. SEM micrographs (x1) of LDPE and PP Figure 9. SEM micrographs (x1) of PP / bamboo charcoal composites with a bamboo charcoal content of (a) 5 phr (b) 1 phr (c) 15 phr and (d) 2 phr

Physical Properties of Polyolefin / Bamboo Charcoal Composites 15 Conclusion Thermoplastic composites were made from blending either LDPE or PP with bamboo charcoal at to 2 phr by melt mixing and then compression moulding. The mechanical properties, water absorption and electrical conductivity of both resultant series of polyolefin / bamboo charcoal composites were investigated. The incorporation of bamboo charcoal into the PP matrix enhanced the tensile strength and Young s modulus whilst decreasing the elongation at break in a dose-dependent manner. The tensile strength of LDPE / bamboo charcoal composites was less than that of virgin LDPE. Young s modulus and elongation at break of LDPE/ bamboo charcoal composites showed the same broad trends as observed in PP / bamboo charcoal composites. The water absorption of both polyolefin/ bamboo charcoal composites was significantly greater than that of the original PP or LDPE polyolefin. The electrical resistance of both polyolefin/ bamboo charcoal composites decreased with increasing charcoal content compared with that of pure PP and LDPE. 6. Yui, H., Wu, G., Sano, H., Sumita, M. and Kino, K. 26. Morphology and electrical Conductivity of Injection-molded Polypropylene/Carbon Black Composites with Addition of Highdensity Polyethylene. Polymer. 47 : 3599-368. 7. Lou, C.W., Lin, C.W., Lei, C.H, Su, K. H., Hsu, C. H., Liu, Z.H. and Lon, J.H. 27. PET/PP Blend with Bamboo Charcoal to Produce Functional Composites. J. Mater. Process. Tech. 192 : 428-433. References 1. Superribbon. The major characteristics of bamboo charcoal [online]. Available from: http://www.superribbon.com [26, July 18]. 2. Asada, T., Ohkubo, T., Kawata, K., and Oilawa, K. 26. Ammonia Adsorption on Bamboo Charcoal with Acid Treatment. J. Health. Sci. 52 : 585-589. 3. Ohe, K., Nagae, Y., Nakamura, S., and BABA, Y. 23. Removal of Nitrate Anion by Carbonaceous Materials Prepared from Bamboo and Coconut Shell. J. Chem. Eng. Jpn. 36 : 511-515. 4. Nam, P. H., Pralay, M., Masami, O., Tadao, K., Naoki, H. and Arimitsu, U. 21. A Hierarchical Structure and Properties of Intercalated Polypropylene/clay Nanocomposites. Polymer. 42 : 9633-964. 5. Mingliang, G. and Demin, J. 29. Preparation and Properties of Polypropylene/clay Nanocomposites using an Organoclay Modified through Solid State Method. J. Reinf. Plast. Compos. 28 : 5-16.