Experimental Studies of Thermal Transport in Heat Transfer Fluids Using Infrared Thermography

Similar documents
Preparation and Characterization of Copper Oxide -Water Based Nanofluids by One Step Method for Heat Transfer Applications

CHAPTER 4. SYNTHESIS OF ALUMINIUM SELENIDE (Al 2 Se 3 ) NANO PARTICLES, DEPOSITION AND CHARACTERIZATION

The effects of Fe/Al 2 O 3 preparation technique as a catalyst on synthesized CNTs in CVD method.

Synthesis and Characterization of nanocrystalline Ni-Co-Zn ferrite by Sol-gel Auto-Combustion method.

CHAPTER 4 SYNTHESIS, CHARACTERIZATION AND MICROENCAPSULATION PROCESS OF THE NANO SILICA

Studies on Structural and Optical Properties of Iron doped Cds Nanoparticles ABSTRACT

Novel concept of rechargeable battery using iron oxide nanorods. anode and nickel hydroxide cathode in aqueous electrolyte

(received: 31/7/2004 ; accepted: 25/9/2004)

Supporting Information. Top-down fabrication of crystalline metal-organic framework nanosheets. Experimental section

Synthesis and Characterization of Cadmium Sulfide Nanoparticles

Facile synthesis of Fe 3 O 4 nanoparticles on metal organic framework MIL- 101(Cr): characterization and its catalytic activity

Thermal Property and Structural Characteristics of Ni0.9Cu0.1Fe2O4 Ferrite Material

Magnetic, Electric and Structural Properties of Ni Substituted Co-Zn Ferrite Nanoparticles Synthesized by Sol-Gel Method.

CHAPTER 8 CONCLUSIONS AND SCOPE FOR FUTURE WORK

Controlled Fabrication and Optical Properties of Uniform CeO 2 Hollow Spheres

Synthesis of porous hollow silica nanostructures using hydroxyapatite nanoparticle templates

Dielectric, Magnetic, Electric and Structural Properties of Ni 0.2 -Co x -Zn 0.8-x Ferrite Nanoparticles Synthesized by Sol-Gel Auto Combustion Method

Synthesis and Characterization of Nickel Oxide Nano Particles

Synthesis and Characterization of Zinc Iron Sulphide (ZnFeS) Of Varying Zinc Ion Concentration

Morphology and Active-Site Engineering for Stable Round-Trip Efficiency Li-O 2 Batteries: A Search for the Most Active Catalytic Site in Co 3 O 4

Ibn Al-Haitham Jour. for Pure & Appl. Sci Vol. 32 (1) 2019

Supplementary Electronic Information for:

SYNTHESIS AND CHARACTERIZATION OF TITANIUM METAL CARBON NANO TUBES

Characterization of SrAlO:Dy nano phosphors

Structural and Optical properties of Nickel Sulphide(NiS) nanoparticles

CHAPTER 6. SYNTHESIS OF CoFe 2 O 4 POWDER VIA PVA ASSISTED SOL-GEL PROCESS 2

CONTENTS INTRODUCTION EXPERIMENTAL

Preparation and Investigation of Cu-Co- Al2O3 Nanocrystalline Metal Matrix Composites

Supporting Information. Copper inks formed using short carbon chain organic Cuprecursors

PREPARATION OF NEODYMIUM HYDROXIDE NANORODS AND NEODYMIUM OXIDE NANORODS BY A HYDROTHERMAL METHOD

Supporting Information. Selective Metallization Induced by Laser Activation: Fabricating

Supplementary Information

Chapter 4 SYNTHESIS AND CHARACTERIZATION OF MAGNISIUM OXIDETRANSITION METAL OXIDE NANOCOMPOSITES

CHAPTER 6 ENHANCEMENT OF CRITICAL CHARACTERISTICS OF TRANSFORMER OIL USING NANOMATERIALS

Green synthesis of copper nanoparticles and conducting nanobiocomposites

High Resolution X-ray Diffraction

Supporting Information. Low temperature synthesis of silicon carbide nanomaterials using

Electronic Supplementary Information

Preparation, Sem Characterisation And Proportion Optimization Of Nano Composite Based Cost Effective Solar Absorber

Optical parameter determination of ZrO 2 thin films prepared by sol gel dip coating

SYNTHESIS AND CHARACTERIZATION OF LEAD ZIRCONATE BY HOMOGENEOUS PRECIPITATION AND CALCINATIONS

Synthesis and Characterization BaFe 12-2x Ni x Co x O 19 Using Chemical Coprecipitation and Variations of Calcination Temperature

By *T.Khalil, **J. Bossert,***A.H.Ashor and *F. Abou EL-Nour

Synthesis of Y 2 O 3 Nanoparticles by Modified Transient Morphology Method

Coupling Hollow Fe 3 O 4 -Fe Nanoparticles with Graphene Sheets for High-performance Electromagnetic Wave Absorbing Material

Optical Properties of Cerium Ferrite

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Ultra-large scale syntheses of monodisperse. nanocrystals via a simple and inexpensive route

Growth and Micro-structural Study of Bismuth Antimony Telluride for Thermoelectric Applications

Cadmium Oxide Nano Particles by Sol-Gel and Vapour- Liquid-Solid Methods

Supporting information

Crystal Growth, Optical and Thermal Studies of 4-Nitroaniline 4- Aminobenzoic Acid: A Fluorescent Material

Electronic Supplementary Information A general method to prepare transition-metal ammonium phosphate nanoflake constructed microspheres

Supporting Information for

Effect of Magnesium Doping on the Physicochemical Properties of Strontium Formate Dihydrate Crystals

Facile Synthesis of Silver Nano/Micro- Ribbons or Saws assisted by Polyoxomolybdate as Mediator Agent and Vanadium (IV) as reducing agent.

Synthesis of silicon carbide from coal fly ash and activated carbon powder

Selective growth of Au nanograins on specific positions (tips, edges. heterostructures.

Preparation and properties of PTFE anti-friction coating

Studies on X doped (X = Al, Zn and Cu) and undoped Lead Iodide single crystals relating to XRD

EFFECT OF MANGANESE SUBSTITUTION ON Co Ga AND Co Tl FERRITE NANOPARTICLES PREPARED BY HYDROTHERMAL ROUTE

Journal of Chemical and Pharmaceutical Research, 2017, 9(1): Research Article

Contact Angle of TiO 2 /SnO 2 Thin Films Coated on Glass Substrate

Chapter 3. Synthesis and characterization. of GDC electrolyte material

CHAPTER VI CROSSLINKING OF CHITOSAN WITH COTTON FABRIC

Supplementary Information

Supporting Information

CHAPTER 8 SYNTHESIS AND CHARACTERIZATION OF COPPER DOPED NICKEL-MANGANESE MIXED FERRITE NANOPARTICLES BY CO-PRECIPITATION METHOD

Cubic CeO 2 Nanoparticles as Mirror-like Scattering Layer for Efficient Light Harvesting in Dye-Sensitized Solar Cells

Characterization of Li 3+ /Mg SO 4.7H 2 O Crystal

6th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2016)

Structural and Magnetic Studies of Nickel- Boron alloy

Study of Structural, Morphological and Dielectric Properties of Copper doped Ni 0.3 Cu. V. R. Pande, * R. B. Bhise

Fabrication and Characterization of a Polypyrrole Coated Copper Nanowire Gas Sensor

A comparative study on electrorheological properties of various silica/conducting polymer core/shell nanospheres

In situ generation of Li 2 FeSiO 4 coating on MWNT as a high rate cathode material for lithium ion batteries

Effects of different metal ion doping on nano crystalline LiMn 2 O 4 as cathodes for Lithium ions batteries

Particle Size Effect on the Properties of Cerium Oxide (CeO2) Nanoparticles Synthesized by Hydrothermal Method 30

Supplementary Information

Electronic Supplementary Information (ESI) available for:

Structure and Luminescence Properties of Y 2 O 3 :Eu 3+ Nanophosphors

PVP-Functionalized Nanometer Scale Metal Oxide Coatings for. Cathode Materials: Successful Application to LiMn 2 O 4 Spinel.

CHAPTER 5 GROWTH OF POTASSIUM TETRA BORATE (K 2 B 4 O 11 H 8 ) SINGLE CRYSTALS BY LOW TEMPERATURE SOLUTION GROWTH METHOD AND ITS CHARACTERISATION

MORPHOLOGICAL CHARACTERISATION OF POLY METHYL METHACRYLATE FOR SURFACE COATING OF METALS

GROWTH AND CHARACTERIZATION OF NANOSTRUCTURED CdS THIN FILMS BY CHEMICAL BATH DEPOSITION TECHNIQUE

Investigation into Electrospun LaMnO 3 Nanofibres

DEVELOPMENT OF TUNGSTEN OXIDE HYDRATE PHASES DURING PRECIPITATION-WASHING-RIPENING PROCESS

Growth and study of barium oxalate single crystals in agar gel

Water-Enhanced Oxidation of Graphite to Graphene Oxide with Controlled Species of Oxygenated Groups

LiNi 0.5 Mn 1.5 O 4 porous nanorods as high-rate and long-life cathode for Li-ion batteries

Effect of templates on catalytic activity of ordered mesoporous ceria for CO oxidation

Australian Journal of Basic and Applied Sciences. Effect of PH on Cobalt Oxide Nano Particles Prepared by Co-Precipitation Method

Solvothermal Synthesis of Cobalt and Copper Sulfides Nanoparticles with High Light Absorptance for New Solar Selective Coatings

for New Energy Materials and Devices; Beijing National Laboratory for Condense Matter Physics,

Formation of Cupric Oxide Films on Quartz Substrates by Annealing the Copper Films

Preparation of silver powder through glycerol process

Structural and Optical Properties of Co1-xZnxFe2O4 Synthesis by Sol-Gel Auto Combustion Method

Nanoconfinement Crystallization of Frustrated Alkyl Groups: Crossover of Mesophase to Crystalline Structure

Analysis of Heat Transfer Coefficient of CuO/Water Nanofluid using Double Pipe Heat Exchanger

XRD, FTIR and Microstructure Studies of Calcined Sugarcane Bagasse Ash

Transcription:

ISSN (Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 2014 2014 International Conference on Innovations in Engineering and Technology (ICIET 14) On 21 st &22 nd March Organized by K.L.N. College of Engineering and Technology, Madurai, Tamil Nadu, India Experimental Studies of Thermal Transport in Heat Transfer Fluids Using Infrared Thermography Murugalakshmi G.K 1, Selvakumar N 2 1 PG Student, Centre for Nano Science & Technology, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, TamilNadu, India 2 Professor, Centre for Nano Science & Technology, Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, TamilNadu, India. ABSTRACT: The efficiency of the cooling system is critical in industrial sectors could damage the electrical equipments due to poor thermal conductivity. Nanofluids are novel class of fluids, prepared by dispersing the nanoparticles in liquids like water, ethylene glycol, oil and oleic acid etc., to increase the thermal conductivity of heated substrates. The liquid droplets are placed on the substrate and are heated to various levels, thereby hydrothermal waves are induced and it is observed in thin fluid layers. Using Infrared Thermography technique heat transfer, drop radius, drying of substrates and its wetting angle are measured. It is a non-contact, non-destructive test measurement technique which detects the emitted infrared radiation from the substrate above absolute zero according to black body radiation law. Three different metal oxide nanofluids (Copper oxide, Iron oxide and Aluminium oxide) were prepared and nanoparticles are characterized using SEM, AFM and FT-IR. Using TGA and DTA, thermal stability and weight loss of the nanoparticles are studied. Copper Oxide nano fluid shows reduced weight loss, enhanced thermal stability and thermal conductivity when compared to other fluids. Keywords: Hydrothermal waves, Heat transfer fluids, Thermal stability, Infrared Thermography and Thermal conductivity. 1. INTRODUCTION Developments of many industrial and new technologies are limited by existing thermal management and it needs high performance cooling. Nanofluids, a new and innovative heat transfer fluids represent an emerging field. The heat capacity is high in electrical machines due to high temperature. It damages the electrical equipment and so the efficiency of system is critical and thus leads to energy losses. This is due to large sized particle, density, viscosity, sedimentation and concentration of the fluid used in the machines. Nanofluids are stable colloidal suspensions of nanoparticles, Nanofibres and Nanocomposites in common base fluids [1]. The smallest particles in the nanofluids exhibit thermo-physical properties such as thermal conductivity, thermal diffusivity, viscosity and heat transfer. The prepared nanoparticles are Aluminium oxide, Copper oxide and Iron oxide and are dispersed in base fluids such as Water, Oil and Ethylene glycol. Thermal conductivity and heat transfer of nanofluids are studied by varying the proportion of nanoparticles and volume concentration of base fluids. Then the best nanofluid is compared with maximum desirable properties. Using Infrared Thermography (IRT), the thermal conductivity, heat transfer, Wetting angle, drop radius and surface drying of substrates are studied. Infrared Technique is a noncontact, non-destructive test measurement method. It has inbuilt FLIR THERMACAM software which helps in detecting the Infrared radiations emitted from the substrate. Infrared Thermography is an Imaging Technique using Copyright to IJIRSET www.ijirset.com 1176

Thermographic camera detects radiation in infrared range of electromagnetic Spectrum and produces Hydroxide pellets are dissolved in 60ml distilled water and it was poured in round bottomed flask continued with magnetic stirring. In the mean time the ph was maintained about 6-7. The colour of the solution become black and precipitate was formed. It was then washed 2-3 times with distilled water. It was configured to get pure precipitate and kept in oven for 2h at 80 o C. The Copper Oxide nanoparticle was obtained. 2.1.3 Aluminium oxide nanoparticle: images called Thermograms. IR radiation is emitted by all objects above absolute zero according To black body radiation law. The amount of radiation increases with the temperature. It utilizes a camera like device used for detecting Hot-Spots, which are temperature differentials [3]. The thermal treatment processes are characterised by DTA/TGA [10]. The morphological structure and properties of nanoparticles were characterized by SEM, AFM and FT-IR. A model shown in Fig 1 demonstrates that the hydrothermal waves on evaporating ethanol droplets [4]. Fig 1. Hydrothermal waves II. MATERIALS AND METHODS 2.1 Synthesis of nanoparticle 2.1.1 Iron oxide particle The Iron Oxide nanoparticles were synthesized using self combustion method. About 8g of Iron Nitrate was dissolved in 100ml distilled water. 9g of Citric Acid was dissolved in 100ml distilled water. Both the solutions were mixed together and ph was maintained to 10 by adding Ammonia in to it. Then the solution was kept in hot bath, until the solution becomes ash by maintaining the temperature at about 80 o C. Then the ash was collected and calcinated at 700 o C for 3h. Iron oxide nanoparticle was obtained. 2.1.2 Copper oxide particle The Aluminium Oxide nanoparticle was synthesized by self combustion method. 8g of Aluminium nitrate was dissolved in 100ml distilled water and 9g of citric acid was dissolved in 100ml distilled water. Both the solutions were mixed and ph was maintained about 10. It is then kept in hot plate at 80 o C. After sometimes, self combustion takes place and ash was collected in Black colour. Then the ash is calcinated at 800 o C for 3h in muffle furnace. The white coloured aluminium oxide nanoparticle was obtained. 2.2 Characterization of the sample The calcined powder were identified using XRD (X- Ray Powder Diffractometer) with CuKα radiation and differential thermal analysis (DTA) and Thermogravimetric analysis (TGA) curves of the precursors were recorded by an equipment TG-DTG-DTA. The dispersion of powders and morphology of particles were characterized using Scanning Electron Microscope (SEM), and the particles arrangement are seen with the help of Atomic Force Microscope (AFM). III. RESULTS AND DISCUSSIONS 3.1 XRD analysis of the samples 3.1.1 Iron oxide particle Clearly the structural features of iron oxide are explored from the XRD data which is shown in Fig 2. The peak intensities show that the powder possesses the characteristics perfect crystal and purity. The XRD pattern of Fe2O3 powders revealed that well developed reflection of Fe 2 O 3 nanoparticle (JCPDS. No. 89-8104). A number of strong Bragg reflections can be seen which corresponds to the reflection of Fe 2 O 3 nanoparticle. The XRD pattern of the sample exhibits the characteristics peak at 2θ=24.213 o, which corresponds to the (012) plane. It also exhibits peaks at 2θ=33.255 o, 2θ=35.722 o, 2θ=49.54 o, 2θ=53.547 o, 2θ=55.87 o, 2θ=62.75 o and 2θ=63.213 o are indexed as planes (104), (110), (202), (020), (021), (022) and (311) respectively. The peak at 2θ=39.408 o which corresponds to the (006) plane confirms the presence of Fe 2 O 3 nanoparticle. The copper oxide nanoparticle was synthesized using precipitation method [5]. 0.4 mol of copper acetate was dissolved in distilled water and 4ml of Acetic acid was added in round bottomed flask and magnetically stirred. After that 3g of Sodium Copyright to IJIRSET www.ijirset.com 1177

s CuO distributed particles. It was clear that the particles obtained were in nano size ranging from 100-nm. 600 Fig 4. SEM image of iron oxide nanoparticle Fig 2. XRD pattern of Iron oxide nanoparticle. 3.1.2 Copper oxide nanoparticle The structural features of Copper Oxide are explored from XRD data which is shown in Fig 3. The XRD pattern of final powders revealed well developed reflection of CuO nanoparticle (JCPDS. No. 89-2838). A number of Bragg reflections can be seen which corresponds to the reflection of CuO nanoparticle. The XRD pattern of the sample exhibits the characteristics peak at 2θ = 34.97 o, which corresponds to the (002) plane. It also exhibits peaks at 2θ = 48.25 o, 2θ = 67.46 o, 2θ=31.95 o, 2θ=51.387 o, 2θ=58.3 o, 2θ=61.00 o, 2θ=68.145 o, 2θ=74.58 o and 2θ=75.280 o are indexed as planes (202), (113), (110), (112), (202), (310), (220), (004) and (222) respectively. The peak at 2θ = 38.17 o which corresponds to the (111) plane confirms the presence of CuO nanoparticle. s 300 Fe2O3 3.2.2 Copper oxide nanoparticle: The SEM image of CuO nanoparticle is depicted in Fig 5. The SEM image shows the particle size and reveals the presence and uniformity of the distributed particles with fibrous nature. It was clear that the particles obtained were in nano size ranging from 100-180nm. Fig 5. SEM image of CuO nanoparticle 3.2.3 Aluminium oxide nanoparticle: The SEM image of Al 2 O 3 nanoparticle is depicted in Fig 6. The SEM image shows the morphology of nanoparticles, particle size and reveals the presence and uniformity of the distributed particles. It was clear that the particles obtained were in nano size ranging from 125-175nm. 100 0 20 30 40 50 60 70 Position [ 2Theta] (Copper (Cu)) Fig 3. XRD pattern of CuO nanoparticle 3.2 SEM analysis of nanoparticle: 3.2.1 Iron oxide particle The SEM image of iron oxide particle is depicted in Fig 4. The SEM image shows the particle Fig 6. SEM image of Al 2O 3 nanoparticle size and reveals the presence and uniformity of the Copyright to IJIRSET www.ijirset.com 1178

3645.86 3284.42 3123.81 2758.37 2346.96 832.69 652.57 547.25 Transmittance [%] 99.90 99.95 0 5 DTG ug/min DTA uv TG % DTG ug/min DTA uv TG % Experimental Studies of Thermal Transport in Heat Transfer Fluids Using Infrared Thermography 3.3 AFM analysis of Copper oxide nanoparticle: It demonstrates 3D AFM images of CuO nanoparticle ablated in acetone with scanning area of 2.5μmx2.5μm. The average grain size reaches 50 nm in diameter. It can be noticed that the particles are regularly arranged with same morphologies as shown in fig 7. 3.5 TG/DTA ANALYSIS: 3.5.1 Copper oxide nanoparticle The typical TG/DTA exothermic profile and characteristic temperatures of θ to α phase transformation takes place. DTA profiles were recorded with heating rate of 10 o C/min -1. The thermal gravimetric analysis data of the given CuO nanoparticle shown in Fig 9 indicates that weight loss of the material is observed between the temperature range from 350-500 o C of about 0.2%. This weight loss is mainly due to the evaporation of water in the sample. This compound is thermally stable and weight loss is reduced when compared to other samples. Above 800 o C, the weight loss is reduced to 10%, it may be due to oxygen loss. 90.00.0 80.00 99.0 70.00 98.0 97.0 60.00 0.0 96.0 50.00 95.0-40.00 94.0 -.0 30.00 93.0 Fig 7. AFM image of CuO nanoparticle -300.0 20.00 10.00 92.0 91.0 3.4 FT-IR Analysis of Copper oxide nanoparticle: -.0 0.00 90.0 89.0 The black coloured copper oxide powder was examined and it reveals that the powder has very less impurities. Also it was confirmed using XRD techniques. The peak 547 cm -1 proved that Cu-O bond stretching vibrations, the peak 2346cm -1 indicates the O-H bond stretching vibrations and between 3000-3 cm -1 indicates the C-H bond vibrations shown in Fig 8. -10.00.0 300.0.0 500.0 600.0 700.0 800.0 900.0 Temp Cel Fig 9. TG/DTA curve for CuO nanoparticle 3.5.2 Aluminium oxide nanoparticle 40.00 90.0 20.00 80.0 99.0 70.0 98.0 0.00 60.0 97.0 50.0-20.00 40.0 96.0-40.00-60.00 30.0 20.0 10.0 0.0 95.0 94.0 93.0-80.00-10.0 92.0 600 Temp Cel 800 1000 3500 3000 2500 0 Wavenumber cm-1 D:\FTIR\2012-14\12MNT02\CuO Nov18.0 CuO Nov18 Instrument type and / or accessory 18/11/2013 Page 1/1 Copyright to IJIRSET www.ijirset.com 1179 1500 Fig 8. FT-IR image of CuO particle 1000 500 Fig10. TG/DTA curve for Al 2O 3 nanoparticle The typical TG/DTA exothermic profile and characteristic temperatures of θ to α Al 2 O 3 phase transformation. DTA profiles were recorded with heating temperature of 1050 o C at heating rate of 10 o C/min -1. The thermal gravimetric analysis data of the given Al 2 O 3 nanoparticle shown in Fig 10 indicates that weight loss of the material is observed between the temperatures range

from 50-150 C of about 7%. This weight loss is mainly due to the evaporation of water content in the sample. This compound is less stable and weight loss is high compare to other samples. Above 900 C, the weight loss is reduced to 5%, it may be due to oxygen loss. IV. CONCLUSIONS Nanofluids such as Iron oxide, Copper oxide and Aluminium oxide were prepared and its morphological structure and properties were analysed using SEM, AFM, FT-IR. The thermal stability and weight loss of the nanoparticles were tested using TG/DTA. The thermal stability of copper oxide was stable when compared to aluminium oxide and iron oxide nanoparticles. However, the weight loss is 0.2% less for copper oxide; it was thermally stable up to 800 o C. It shows that performance like thermal stability and weight loss of copper oxide was better when compared to other metal oxide nanoparticles. ACKNOWLEDGEMENT The work described in this paper was supported by Mepco Schlenk Engineering College, Centre for Nano Science and Technology branch. I thank my guide for the great success of work and Coworkers. REFERENCES [1] Smith et al., Kinetically driven self assembly of highly ordered nanoparticle monolayer, vol 5, 1986, pp. 265-270. [2] Girard et al., Temperature discontinuity at the surface of an evaporating droplet, applied physics. vol 9, 6, pp. 6406-6415. [3] Sefiane et al., Micro scale temperature measurement at an evaporating liquid meniscus, Thermal fluid science. Vol 5, 8, pp. 157-162. [4] John Philip et al., Effect of fluid flow in an evaporating water droplet, Applied physics. vol 6, 9, pp. 9204-9210. [5] Eastman J.A. et al., Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing nanoparticles, applied physics, vol 4, 1, pp. 716-720. [6] Keblinski et al., investigation on convective heat transfer and flow features of nanofluids, Heat Transfer. Vol 26, 9, pp. 125-151. [7] Xue.Q et al., A model of thermal conductivity of nanofluids with interfacial shell, Materials Chemistry and Physics, vol 5, 5, pp. 298 301. [8] Hajian. R et al., The experimental study of nanofluid effects on thermal performance with response time of heat pipe, Energy conversion and management, vol 15, 2012, pp. 63-68. [9] Graham, A.L. (1981). On the viscosity of suspension of solid spheres.appl. Sci. Res., vol 37 1981, pp. 275-286. [10] Nagasaka, Nagashima, Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hotwire method, J. Phys. E: Sci. Instruments., vol 14, 1981, pp. 1435-1439. Copyright to IJIRSET www.ijirset.com 1180