Cristaux 3D. Fabriquer de tels objets aux longueur d'ondes optiques???

Similar documents
Metodi di fabbricazione PhC

Properties of Inverse Opal Photonic Crystals Grown By Atomic Layer Deposition

Supplementary Information

ZnS-based photonic crystal phosphors fabricated using atomic layer deposition

Fabrication of photonic band-gap crystals

A discussion of crystal growth, lithography, etching, doping, and device structures is presented in

Microelectronics. Integrated circuits. Introduction to the IC technology M.Rencz 11 September, Expected decrease in line width

Fabrication Process. Crystal Growth Doping Deposition Patterning Lithography Oxidation Ion Implementation CONCORDIA VLSI DESIGN LAB

Lect. 2: Basics of Si Technology

Microstructural Characterization of Materials

Low-cost, deterministic quasi-periodic photonic structures for light trapping in thin film silicon solar cells

Review of CMOS Processing Technology

Simple fabrication of highly ordered AAO nanotubes

Czochralski Crystal Growth

Assembly of Highly Ordered Three-Dimensional Porous Structure with Nanocrystalline TiO 2 Semiconductors

FABRICATION OF CMOS INTEGRATED CIRCUITS. Dr. Mohammed M. Farag

CMOS Fabrication. Dr. Bassam Jamil. Adopted from slides of the textbook

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 5: Fabrication processes

The Physical Structure (NMOS)

Introduction to CMOS VLSI Design. Layout, Fabrication, and Elementary Logic Design

Polymer-based optical interconnects using nano-imprint lithography

Microstructure of Electronic Materials. Amorphous materials. Single-Crystal Material. Professor N Cheung, U.C. Berkeley

Introduction to Lithography

Fabrication and Characterization of Two-Dimensional Photonic. Crystal Microcavities in Nanocrystalline Diamond

Fabrication and Layout

A Functional Micro-Solid Oxide Fuel Cell with. Nanometer Freestanding Electrolyte

Micro-Nano Fabrication Research

Lecture 0: Introduction

Lecture 1A: Manufacturing& Layout

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

OPTIMIZATION OF ALD GROWN TITANIA THIN FILMS FOR THE INFILTRATION OF SILICA PHOTONIC CRYSTALS. A Dissertation Presented to The Academic Faculty

Lecture 5. SOI Micromachining. SOI MUMPs. SOI Micromachining. Silicon-on-Insulator Microstructures. Agenda:

HYPRES. Hypres MCM Process Design Rules 04/12/2016

Cost Effective 3D Glass Microfabrication for Advanced Packaging Applications

Lecture 22: Integrated circuit fabrication

Multiphoton lithography based 3D micro/nano printing Dr Qin Hu

Make sure the exam paper has 9 pages total (including cover page)

ATOMIC LAYER DEPOSITION FOR PHOTONIC CRYSTAL DEVICES

IC/MEMS Fabrication - Outline. Fabrication

Mater. Res. Soc. Symp. Proc. Vol Materials Research Society

3. Monodomain porous alumina obtained by nanoimprint lithography

Lecture 5: Micromachining

Physics and Material Science of Semiconductor Nanostructures

PROCESS FLOW AN INSIGHT INTO CMOS FABRICATION PROCESS

Chemical Vapor Deposition

CMOS VLSI Design. Introduction. All materials are from the textbook Weste and Harris, 3 rd Edition CMOS VLSI DESIGN. Introduction

VLSI. Lecture 1. Jaeyong Chung System-on-Chips (SoC) Laboratory Incheon National University. Based on slides of David Money Harris

There are basically two approaches for bulk micromachining of. silicon, wet and dry. Wet bulk micromachining is usually carried out

UT Austin, ECE Department VLSI Design 2. CMOS Fabrication, Layout Rules

Micro- and Nano-Technology... for Optics

ELEC 3908, Physical Electronics, Lecture 4. Basic Integrated Circuit Processing

Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching

Atomic layer deposition in porous structures: 3D photonic crystals

MEMS Fabrication. Beyond Integrated Circuits. MEMS Basic Concepts

Macroporous silicon: Homogeneity investigations and fabrication tolerances of a simple cubic three-dimensional photonic crystal

Vertically aligned Ni magnetic nanowires fabricated by diblock-copolymer-directed Al thin film anodization

Metallization deposition and etching. Material mainly taken from Campbell, UCCS

CHAPTER - 4 CMOS PROCESSING TECHNOLOGY

Microfabrication of Integrated Circuits

L5: Micromachining processes 1/7 01/22/02

EFFECT OF CRYSTALORIENTATIONIN OXIDATION PROCESS OF VLSI FABRICATION

Complexity of IC Metallization. Early 21 st Century IC Technology

Structure color. Photonic Structures: Discovery, Replication & Application. Yunyun Dai

TSV Processing and Wafer Stacking. Kathy Cook and Maggie Zoberbier, 3D Business Development

Nanofabrication with Laser Holographic Lithography for Nanophotonic Structures

Optical properties of a three-dimensional silicon square spiral photonic crystal

Supporting Information

Silicon Wafer Processing PAKAGING AND TEST

NanoSystemsEngineering: NanoNose Final Status, March 2011

ECE321 Electronics I

Lecture 2: CMOS Fabrication Mark McDermott Electrical and Computer Engineering The University of Texas at Austin

Supplementary Materials for

1. Photonic crystal band-edge lasers

Semiconductor Technology

EUV Transmission Lens Design and Manufacturing Method

General Introduction to Microstructure Technology p. 1 What is Microstructure Technology? p. 1 From Microstructure Technology to Microsystems

Local Oxide Growth Mechanisms on Nickel Films

Chapter 3 Silicon Device Fabrication Technology

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

Fabrication of GaAs-based photonic band gap materials

Fabrication of GaAs-based photonic band gap materials

the surface of a wafer, usually silicone. In this process, an oxidizing agent diffuses into the wafer

Reviewers' Comments: Reviewer #1 (Remarks to the Author)

Modified spontaneous emission from erbium-doped photonic layer-by-layer crystals

EUV Transmission Lens Design and Manufacturing Method

EE 330 Lecture 9. IC Fabrication Technology Part II. -Oxidation -Epitaxy -Polysilicon -Planarization -Resistance and Capacitance in Interconnects

More on VLSI Fabrication Technologies. Emanuele Baravelli

Enlargement of Grains of Silica Colloidal Crystals by Centrifugation in an

Chapter 2 Manufacturing Process

VLSI Digital Systems Design

2008 Summer School on Spin Transfer Torque

Luminescent and Tunable 3D Photonic Crystal Structures

Photonics applications IV. Fabrication of GhG optical fiber Fabrication of ChG planar waveguide Fabrication of ChG PC structure

7-2E. Photonic crystals

Fabrication Technology

Macroscopic Arrays of Block Copolymers with Areal Densities of 10 Terbit/inch 2 and Beyond

EE40 Lec 22. IC Fabrication Technology. Prof. Nathan Cheung 11/19/2009

Supporting Information for Effects of Thickness on the Metal-Insulator Transition in Free-Standing Vanadium Dioxide Nanocrystals

The Effect of Interfacial Roughness on the Electrical Properties of Organic Thin Film Transistors with Anisotropic Dielectric Layer

Transcription:

Cristaux 3D Fabriquer de tels objets aux longueur d'ondes optiques???

A la main, une sphère l'une après l'autre... 5μm 5μm dissolve latex spheres 4-layer [111] silica diamond lattice 6-layer [001] silica diamond lattice F. Garcia-Santamaria et al., Adv. Mater. 14 (16), 1144 (2002)

Moins désespéré : C Up to ~ 27% gap for Si/air diamond-like: rods ~ bonds rod layer B A hole layer S. G. Johnson et al., Appl. Phys. Lett. 77, 3490 (2000)

Making Rods & Holes Simultaneously side view substrate Si top view

Making Rods & Holes Simultaneously expose/etch holes substrate A A A A A A A A A

Making Rods & Holes Simultaneously backfill with silica (SiO 2 ) & polish substrate A A A A A A A A A

Making Rods & Holes Simultaneously deposit another Si layer layer 1 substrate A A A A A A A A A

Making Rods & Holes Simultaneously dig more holes offset & overlapping layer 1 B B B B substrate B B B B B B B A A A B B B B B B B A A A B B B B B B B A A A

Making Rods & Holes Simultaneously backfill layer 1 B B B B substrate B B B B B B B A A A B B B B B B B A A A B B B B B B B A A A

Making Rods & Holes Simultaneously etc... and dissolve silica when done layer 1 layer 2 substrate layer 3 C C C C B B B B one period C B C B C B C B C A B C A B C A B C C B C B C B C B C A B C A B C A B C C A B C A B C A B C A B C B C B C B C A A A

Making Rods & Holes Simultaneously etc... hole layers layer 1 layer 2 substrate layer 3 C C C C B B B B one perio d C B C B C B C B C A B C A B C A B C C B C B C B C B C A B C A B C A B C C A B C A B C A B C A B C B C B C B C A A A

Making Rods & Holes Simultaneously etc... rod layers layer 1 layer 2 substrate layer 3 C C C C B B B B one perio d C B C B C B C B C A B C A B C A B C C B C B C B C B C A B C A B C A B C C A B C A B C A B C A B C B C B C B C A A A

M. Qi, H. Smith, MIT A More Realistic Schematic

e-beam Fabrication: Top View 5 μm M. Qi, H. Smith, MIT

M. Qi, H. Smith, MIT e-beam Fabrication: Side Views

Adding Defect Microcavities 740nm 450nm C C C C B' B B layer 3 B B 2 layer 1 layer 5 4 580n m layer 7 6 substrate Easiest defect: don t etch some B holes non-periodically distributed: suppresses sub-band structure low Q = easier to detect from planewave M. Qi, H. Smith, MIT

Structure tas de bois (Woodpile structure) Up to ~ 17% gap for Si/air diamond-like bonds K. Ho et al., Solid State Comm. 89, 413 (1994) H. S. Sözüer et al., J. Mod. Opt. 41, 231 (1994)

1.25 Periods of Woodpile (4 log layers = 1 period) Si gap http://www.sandia.gov/media/photonic.htm S. Y. Lin et al., Nature 394, 251 (1998)

1.25 Periods of Woodpile @ 1.55μm (4 log layers = 1 period) Si gap 180nm 1.3μm S. Y. Lin et al., Nature 394, 251 (1998)

Woodpile by Wafer Fusion 2nd substrate + logs, rotated 90 and flipped substrate + first log layer S. Noda et al., Science 289, 604 (2000)

Woodpile by Wafer Fusion fuse wafers together substrate + first log layer S. Noda et al., Science 289, 604 (2000)

Woodpile by Wafer Fusion dissolve upper substrate substrate + first log layer S. Noda et al., Science 289, 604 (2000)

Woodpile by Wafer Fusion double, double, toil and trouble S. Noda et al., Science 289, 604 (2000)

S. Noda et al., Science 289, 604 (2000) Woodpile by Wafer Fusion

S. Noda et al., Science 289, 604 (2000) Woodpile Gap from 1.3 1.55μm

S. Noda et al., Science 289, 604 (2000) Finally, a Defect!

Stacking by Micromanipulation microsphere into hole break off suspended layer lift up and move to substrate tap down holes onto spheres spheres enforce alignment goto a; K. Aoki et al., Appl. Phys. Lett. 81 (17), 3122 (2002)

Stacking by Micromanipulation K. Aoki et al., Appl. Phys. Lett. 81 (17), 3122 (2002)

Yes, it works: Gap at ~4μm 20 layers 50nm accuracy: (gap effects are limited by finite lateral size) K. Aoki et al., Nature Materials 2 (2), 117 (2003) 1μm

A Metal Photonic Crystal Start with Si woodpile in SiO 2 dissolve Si with KOH fill with Tungsten via chemical vapor deposition (CVD) (on thin TiN layer) dissolve SiO 2 with HF J. G. Fleming et al., Nature 417, 52 (2002)

Holographic Lithography Four beams make 3d-periodic interference pattern absorptive material (1.4μm) k-vector differences give reciprocal lattice vectors (i.e. periodicity) D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) & M. Campbell, Nature, 404, 53 (2000)

Holographic Lithography beam polarizations + amplitudes (8 parameters) give unit cell D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) & M. Campbell, Nature, 404, 53 (2000)

Holographic Lithography 10μm huge volumes, long-range periodic, fcc lattice backfill for high contrast D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) & M. Campbell, Nature, 404, 53 (2000)

Holographic Lithography [111] cleavages simulated structure 5μm [111] closeup 1μm titania inverse structure D. N. Sharp et al., Opt. Quant. Elec. 34, 3 (2002) & M. Campbell, Nature, 404, 53 (2000)

Colloids (opals) (evaporate) silica (SiO 2 ) microspheres (diameter < 1μm) sediment by gravity into close-packed fcc lattice!

http://www.icmm.csic.es/cefe/ Colloids (opals)

Inverse opals fcc solid spheres do not have a gap but fcc spherical holes in Si do have a gap 3D sub-micron colloidal spheres Infiltration Template (synthetic opal) complete band gap Remove Template Inverted Opal ~ 10% gap between 8th & 9th bands small gap, upper bands: sensitive to disorder

A More Perfect Crystal meniscus 65 C 1 micron silica spheres in ethanol evaporate solvent 80 C Convective Assembly Heat Source Capillary forces during drying cause assembly in the meniscus Extremely flat, large-area opals of controllable thickness Nagayama, Velev, et al., Nature (1993) & Colvin et al., Chem. Mater. (1999)

A More Perfect Crystal

Inverse-Opal Photonic Crystal Y. A. Vlasov et al., Nature 414, 289 (2001)

Inverse-Opal Band Gap good agreement between theory (black) & experiment (red/blue) Y. A. Vlasov et al., Nature 414, 289 (2001)

Inserting Defects in Inverse Opals e.g., Waveguides Three-photon lithography with laser scanning confocal microscope (LSCM) Wonmok, Adv. Materials 14, 271 (2002)

GLAD = GLancing Angle Deposition 15% gap for Si/air diamond-like with broken bonds doubled unit cell, so gap between 4th & 5th bands O. Toader and S. John, Science 292, 1133 (2001)

GLAD = GLancing Angle Deposition seed posts glancing-angle Si only builds up on protrusions evaporated Si rotate to spiral Si S. R. Kennedy et al., Nano Letters 2, 59 (2002)

GLAD = GLancing Angle Deposition S. R. Kennedy et al., Nano Letters 2, 59 (2002)

Auto-cloning start with an old layer-by-layer modify layering slightly (14% gap for Si/SiO 2 /air) (don t forget the holes) S. Fan et al., Appl. Phys. Lett. 65, 1466 (1994) S. Kawakami et al., Appl. Phys. Lett. 74, 463 (1999)

Competition between 3 processes clones shape of substrate Auto-cloning neutral atoms ions diffuse deposition leaves trenches (shadows) bias sputtering cuts corners (prefers 60 ) re-deposition fills trenches so, only planar patterning is in substrate only drilling needs alignment minimize etch roughness S. Kawakami et al., Appl. Phys. Lett. 74, 463 (1999)

Auto-cloning E. Kuramochi et al., Opt. Quantum. Elec. 34, 53 (2002)

Yablonovite diamond-like fcc crystal earliest fabrication-amenable alternative to diamond spheres image: http://www.ee.ucla.edu/labs/photon/ (Topology is very similar to 2000 layer-by-layer crystal) E. Yablonovitch, T. M. Gmitter, and K. M. Leung, Phys. Rev. Lett. 67, 2295 (1991)

Making Yablonovite e-beam mask + chemically-assisted ion-beam etching GaAs 460nm C. C. Cheng et al., Physica Scripta. T68, 17 (1996)

Making ~Yablonovite (II) electrochemical + focused-ion-beam (FIB) etching (deep vertical holes) S i =3.1μm A. Chelnokov et al., Appl. Phys. Lett. 77, 2943 (2000)