Quilted Stratum Process for High- performance CFRP Production

Similar documents
Design and Manufacturing of a TP Composite Bumper Beam by QSP

Tailored blank line with Fiberforge and Fibercon systems

Page 3. How to produce a net shape Thermoplastic Composite part in one minute with the QSP

Production of UD-Tape Based Thermoplastic Composite Parts

Thermoplastic composites in large-scale production

RTM/INFUSION processes TRY AUTOMATION (Carbon Fiber Reinforced Thermoset liquid way injection )

News Release. Composites in a Complete Package. K 2013 Trade press conference June 25 and 26 in Ludwigshafen, Germany

Individualized mass production of tailored thermoplastic composite blanks

HIGH-VOLUME MANUFACTURE OF A COMPOSITE DOOR MODULE BY A NOVEL 3D-PREFORM TECHNOLOGY

Engineering Division. Full-scale Composite Development From idea to production

Thermoplastic Overmolded Continuous Fiber Structures

SME Advanced Thermoplastic Composites Seminar

News Release. First Composite Parts plus Application Service. K 2013 Trade press conference June 25 and 26 in Ludwigshafen, Germany

Les procédés composites grandes cadences

LIGHTWEIGHT CONSTRUCTION. Light work: using innovative processes to produce innovative products

Maximum productivity, minimum unit costs

D-LFT PROCESS: IN-LINE COMPOUNDING & COMPRESSION MOLDING OF LONG-GLASS-FIBER REINFORCED POLYMERS

DRIVING FORCES FOR COST-EFFECTIVE COMPOSITES: NEW DEMANDS ON MATERIALS AND PROCESSES

Integrated solutions for more efficiency in FRP lightweight engineering

THERMOPLASTIC COMPOSITE PARTS BASED ON ONLINE SPUN COMMINGLED HYBRID YARNS WITH CONTINUOUS CURVILINEAR FIBRE PATTERNS

T-RTM TECHNOLOGY AND PROCESSING OF THERMOPLASTIC TAPES TWO TECHNOLOGIES MANAGING A COMMON CHALLENGE

PRESS RELEASE. Pioneering and Safe - FRIMO at FAKUMA 2015

Cevotec GmbH Munich, Germany milestones in composites

Mandatory Checkpoints for a Higher Composite Market Share in Automotive / 03 / 2017

INTEGRATION OF POLYMER AND COMPOSITE MATERIALS FOR ENHANCED DESIGN FREEDOM AND COST-EFFICIENCY

Injection moulding of lightweight parts

CHAPTER - 1 INTRODUCTION

Use of Long Fiber Thermoplastic in Automotive Market Creig Bowland President Colorado Legacy Group LLC

Funktionsintegrierter Leichtbau mit Carbonfaser verstärkten Thermoplastwerkstoffen. Dr. Andreas Erber Werkstoff-Forum; Hannover Messe

Zero-waste composite parts production by an integrative approach of the UD and Crossply technology

FLEXIBLE & AUTOMATED PRODUCTION OF COMPOSITE PARTS

Seat Pan Opel Astra OPC

STAXX COMPACT Low Scrap for high volume part production. CFK Convention Dr. Matthias Meyer. Broetje-Automation GmbH

MANUFACTURING SOLUTIONS FOR HYBRID OVERMOLDED THERMOPLASTIC UD COMPOSITES

Additive Manufacturing Technology

Mikael CHAILLY, Benedikt ECK One-Shot process for visible parts: Numerical simulations

MACHINERY AND DEVICES FOR USE IN THE MEDICAL INDUSTRY. A Member of Brückner Group

NC processing centre

EFFICIENT MANUFACTURING OF COMPOSITES TODAY AND TOMORROW

Smart production technology for complex fiber composites. SAMBA & ARTIST STUDIO Full automation for complex fiber composites from CAE to fiber lay-up

TURNKEY PROJECTS. Technology and system partner for individually automated production cells

Continuous Fiber Reinforced Thermoplastic (CFRT ) Inserts for Injection Over-Molding in Structural Applications

HIGH PERFORMANCE INDUSTRIETECHNIK

Welcome. Centre for Lightweight Composite Technologies. offering processing solutions for production of endless fibre reinforced composite parts

Innovative process for lightweight construction and Automated insert over-molding John Ward ARBURG, Inc.

automation Ready for advanced system solutions

Recently acquired by. Recently acquired by

High Performance Composite Body Panels via the Resin Spray Transfer Process. Dale Brosius Quickstep Composites LLC

Modular Biesse Concept

Composites Composite Production Methods. Remko Akkerman Laurent Warnet C O M PO SI T ES GRO U P U N I V ERSI T Y O F T W EN T E

香港塑膠工程師學會. K-Fair Advanced Plastic Manufacturing Technology Study Mission to Germany and Austria October 2016

TUNING UP YOUR PRODUCTION. A Member of Kiefel

FiberForm Perfect combination of thermoforming and injection molding

Ballistic protection materials

ENL Overview. with focus on Slovak facility. ENL Ltd & ENL SK, s.r.o ENL SK, s.r.o., J. Hollého 160, Ve!ké Kosto!any, Slovak Republic

DESIGN AND MANUFACTURE OF ANISOTROPIC HOLLOW BEAM USING THERMOPLASTIC COMPOSITES

3M TM Dyneon TM Fluoroelastomers. Reducing efforts to accelerate efficiency. Primer free bonding for innovative lightweight solutions.

NEW PROCESSES FOR MASS PRODUCTION OF THERMOPLASTIC COMPOSITE LIGHTWEIGHT COMPONENTS

Continuous Production of Thermoplastic Honeycomb Sandwich Components for Automotive Interiors. Low Weight Low Cost Technology

Customized heat treatment systems for. press hardening

Plastic Pallet Molding 101 By Richard Morgan Wilmington Machinery

Composites in Automotive Bangkok July 2017

Aerospace and Automotive Seat Frames from Carbon and PPS Thermoplastic Tape. Bob Newill Ticona Engineering Polymers

A WARM WELCOME TO MFTECHNIK GMBH

MANUFACTURING WITH COMPOSITES 1

IN-LINE THERMOFORMING MACHINES. Complete turn key IN-LINE installations. from material handling through to boxing units of finished products

IN-LINE THERMOFORMING MACHINES. Complete turn key IN-LINE installations. from material handling through to boxing units of finished products

THE ROLE OF RECYCLED CARBON FIBRES IN COST EFFECTIVE LIGHTWEIGHT STRUCTURES

Handling Guide Online

Trends in lightweight design for the automotive industry

The Sandvik double belt system

Honeycomb Sandwich Panel Technology

AUTOMATED SOLUTION TO HIGH VOLUME MANUFACTURING USING LOW-COST PCM TOWPREG

From Carbon Fiber to Carbon Fiber Reinforced ThermoPlastics

Ch 14 Single-Station Manufacturing Cells

" Light weight Technology - new approach Thermoplastic RTM / Surface RTM and Fiber Form Technology "

Profiling systems and roll-formed profiles MACHINES TOOLS PROFILES

4 SOFTWARE. BySoft 7

QUALITY INSPIRES. Advanced thermoplastic composites

harness manufacturing

Production needs us. Particle foam solutions for the most successful companies.

IN-line. thermoforming system. More than just fast: Reliable

Press release. The hybrid is the future of e-mobility

COMPOSTAMP Project. Development of aeronautical thermoplastic composite parts by forming/overmolding

Introduction to Aerospace Engineering

New Thermoplastic Tapes and Processes Target Cost. Jim Mondo TenCate Advanced Composites SME Advanced Thermoplastic Composites Seminar April 6, 2017

Cost-effective composite technologies for large-scale production

... successful composite solutions

Investigation of novel preforming technologies for large-scale composite production

Concept Laser Industry Specific Solutions

Composite Simulation as Example of Industry Experience

Press release. T-RTM fit for large series. KraussMaffei presents Thermoplastic Resin Transfer Molding (T-RTM) at K 2016

Structural development and optimization of rotor blades for wind turbines Lessons from the aerospace industry. Josef Mendler Christoph Katzenschwanz

AUTOMOTIVE COMPOSITES CONFERENCE & EXHIBITION.

Medical Solutions. American Manufacturing, Serving the World

Roll Forming of Advanced High- Strength Steels

ZLP. Center for Lightweight- Production-Technology

Determining Appropriate Cooling System For Plastic Injection Molding Through Computer Simulation

GLOBAL COMPETENCE IN ALUMINIUM SOLUTIONS

Transcription:

PRODUCTION TECHNICAL THER M OPLASTICS Quilted Stratum Process for High- performance CFRP Production By presenting the Quilted Stratum Process Pinette is showing up a new process for a high-volume fibre plastic production for the automotive industry. The new process can produce parts which are ready for assembly within 40 to 90 s. Also, it allows to produce parts with variable material thickness and various materials in one part. Additional functionality of the part will be realised by integration of overmoulding and the possibility to include metal inserts. Authors LENNART WEDHORN is Marketing Assistent of Pinette Emidecau GmbH in Zernien (Germany). ROBERT EBELING is Branch Manager of Pinette Emidecau GmbH in Zernien (Germany). The Quilted Stratum Process (QSP) is an innovative approach for the design and production of high-performance thermoplastic composites and multi-material parts. The concept used achieves the goal of combining high performance, low cost and short cycle times. To reach these goals and to create a new process, the research and development was based on three main criteria: } full integrated process: from raw materials to net shaped part } priority on production performance: low costs and cycle times } getting a minimal waste rate by the process, but also in the design of the part by using the right material at the right place. The outstanding properties of composites and the advantages of using these materials to reduce the weight of structures are well known in the industry. The choice of the right process for an optimised production is still an issue because there is still no viable solution. The existing solutions are made for small batches or causing high production costs. Production process and automated production lines for high volume production with low cycle times are not available or have To reach a cycle time between 40 to 90 s the process works with several units which are working parallel. limitations in cycle times and flexibility (per material variations). The already optimised processes of the automotive industry reaching a high level of automatisation to reduce the cycle time of duroplast parts. But these processes are still too expensive for the mid-range car production. By using technical thermoplast materials it is possible to decrease the production costs, cycle time and weight of the parts. So it is possible to realise a clean and fast production process. To design an optimum process these criteria have been realised: } Integration of the complete process from raw material to finished part : 50 lightweight.design 1 2017 WORLDWIDE

Figure 1 Process steps of QSP ( Pinette Emidecau Industries) focused on maximum added value of the finished parts. On one hand by using standardised raw material the QSP allows a worldwide procurement capability. On the other hand it is possible to reduce the waste rate by using tapes with different width. This advantage is also usable by using purchased pre-cut tapes from raw material suppliers. } Cycle time: to reach a cycle time between 40 to 90 s the process works with several units which are working parallel (stacker steps per layer, final contour cutting, pre-heating station, final heating station, forming and overmolding). } Multi-material parts: the material supply system was designed to allow using various materials (organosheets, short-fibre) in addition to the unidirectional (UD) tapes. } Optimisation of material usage: netshape preforms are produced with the right material at the right place to allow a one-shot production. The QSP system has been developed by Cetim in cooperation with Pinette. Loiretech (contact heater), Compose (tooling) as well as ECN, ENS Cachan and ONERA (Research Laboratories) have been further development partners. As a result of this development process a pilot line in industrial scale has been set up. Currently various customer parts are produced and optimised. The connected segments of the line are all working together in parallel to guarantee a minimum cycle time. These segments can be split up in 5 units which are also able to produce independently, Figure 1. Pultrusion and Extrusion Starting from continuous fibre combined with a thermoplastic material. The tapes are produced with low costs and taking account width, thickness and fibre reinforcement (UD, glass and/or carbon). The advantage of producing own UD tapes in various thickness and widths allows QSP to reduce the material waste to a minimum. If UD-Tapes are available from raw material suppliers the line is able to use the tapes as well and allows to optimise the preform in terms of best waste rate. Cutting Tailored patches defined by a specific FEA analysis method are cut from different tapes without dust pollution. The patch preparation unit cuts the tape with a linear cutting system. If it is necessary to place thicker layers with the same fibre orientation it is possible to use several rolls (layers) at the same time. The different layers will be welded after positioning. The offline working cutting unit guarantees a maximum of flexibility. After cutting the patches are stacked automatically onto a positioning material palette. An alternative cutting system can produce various forms for e.g. partial reinforcements by using a high dynamic robot cutting system. Figure 2. Preform Assembly An optimised multi-thickness and multi-layer net-shape preform Figure 3 is assembled from patches cut before. The patches are picked from carriers and placed and welded in precise position on a conveyor system. The preform is built successively while passing the stacker stations. Volume 10 1 2017 lightweight.design 51

PRODUCTION TECHNICAL THER M OPLASTICS Heating and Transport The preform is heated very quickly to process temperature using a fast and innovative system. After reaching the process temperature it will be transferred to the exact position of the press/mould by a robot handling system. The heating process is a split process of two steps. The preform will be heated up by a contact heating station which is transforming the preform into a plastic condition providing prime energy into the part. The second heating step consists of an innovative infrared heating system which allows to melt the complete preform in a short time. The optimised robot handling system was designed to place the heated preform in the press with a minimum of temperature loss providing an optimum consolidation. Figure 4. Figure 3 Preform ( Pinette Emidecau Industries) Figure 2 High-speed cuttinghead ( Pinette Emidecau Industries) Thermoforming and Overmoulding The preform will be placed in a vertical press which has the advantage that the preform can be placed without losing time and also a vertical transport is preventing the preform from unintended forming or distortion. After forming the part will be overmoulded directly in the press. Furthermore it is possible to place metal parts in the mould to combine them with the part. Scalable System Using a newly developed thermoplastic pultrusion process, fibres are impregnated continuously on a large volume of material. The manufacturer chooses the fibre/matrix combination and adapts the size of the resulting tape to the needs of the final part. This step eliminates the need to purchase costly semi-products of standard sizes, many of which are scrapped during the process. Alternatively roll material from material suppliers can be used to feed the cutting statuions. The patch preperation area can flexibly be equipped with patch preparation stations according to the requirement and allows the simultaneous processing of various tapewidths. The final forming-overmoulding step allows manufacturing of complex shapes in a short time, with design freedom provided by the injection process. This technology is the most suitable for high volume production. The use of QSP preforms opens a significant optimisation potential, compared to woven organosheets of constant thickness and orientation. The cutting system has been evaluated all along 2013 among different existing technologies (water jet, laser, machining, ultrasonic ) and a flexible process able to cut tapes from 0.2 mm to 3 mm has been chosen. At the end, a head with ultrasonic blades was specially developed to cut patches with a minimum waste as fast as possible without dust keeping the quality of the material. For example, for a tape of PA6 with glass fibres and 0.5 mm thick, the cutting speed can be up to 500 mm/s. The assembly machine has been developed to produce netshape, multi-thickness and multi-orientation preforms as defined in calculations before. The system has the capacity of producing one preform per minute, which means a capacity up to 10 kg/min of preform production. The sequence of handling- (stacker-) steps working parallel provides one cycle time per layer. Also, the assembly system is very flexible because it can use different additional materials like e.g. organo sheets while assembling the 2-D preform. The innovative heating system combines a conduction oven with an infrared oven. The first oven is the most effective system to enter energy as fast as possible to the preform, staying below the fusion temperature. To help preventing the blank from air inclusions it will be straightened. In the second step the infrared oven heats up preform to the fusion temperature 52 lightweight.design 1 2017 WORLDWIDE

Figure 4 Heating times ( Pinette Emidecau Industries) needed for the stamping. The major issue of a classic infrared oven is to get a good homogeneity on temperatures between surface and through the multi-thickness preform. The system developed here can reduce significantly this issue, reducing also the cycle time with a better quality on the final heating. For example, for a multi-thickness preform PA6 glass fibre, with thickness between The connected segments of the line are all working together in parallel to guarantee a minimum cycle time. 1.5 mm and 3 mm, the process can heat it in about 60 s to process temperature everywhere throughout the crosssection, at the same time reducing oxidation on this type of material. Finally, the fast transfer system with needles allows the use of netshape preforms. After stamping, there is no more operation needed to finish the part. Moreover, during the stamping, many operations are done at the same time (one shot operation) to get a maximum of added value on the part: } overmoulding to add reinforced ribs or any other plastic functions, and to have a final netshape part ready to use } creation of holes to prepare future assembly, with or without metal inserts } integration of multi-materials assembly inside the mould, to allow direct assembly, Figure 5. Each unit of the process is working parallel. Each one was defined and optimised to achieve a final short cycle time as required in the automotive industry, that means between 40 to 90 s per cycle. Figure 5 Screw insert ( Pinette Emidecau Industries) Designing a QSP Part QSP is not the result of a dogmatic material approach, it gives the capacity to the engineer to design an integrated multi-material part with the right material at the right place. The mechanical strength envelop shows the local areas where you need anisotropy resistance or not and the level of stress. For areas with high level of anisotropy, carbon fibres are usually used for high resistance or stiffness and glass or bio sourcing fibres for lower requirements. Areas without anisotropy, Volume 10 1 2017 lightweight.design 53

PRODUCTION TECHNICAL THER M OPLASTICS Figure 6 Design example of a suspension arm ( CETIM/ONERA/PSA) steel, aluminium and magnesium can be used as well depending on the level of stress. For areas with specific functionality, short fibres reinforced polymers can be used. The QSP system provides the right solution of mixing all these requirements and materials for an optimised result in cycle time and cost. Studying the potential for a process requires the existence of a numerical design chain. To allow an easy design of a QSP part it is possible to use a special software which calculates where to place the right patches corresponding to the mechanical stress level. Using a newly developed thermoplastic pultrusion process, fibres are impregnated continuously on a large volume of material. The focus of this software is the optimisation of the fibre orientation, placing of single patches and to validate the feasibility of a part. Among other, the tool enables linking the final 3-D shape and the initial flat preform. In this way, the designer has all information needed for designing to cost, Figure 6. A lot of parts have a high potential to safe weight by using the complete QSP process. For example the QSP line already produced a seat back out of six patches which is 30 % lighter than its original steel version, Figure 7. Conclusion QSP can answer the question of mass, cost and cycle time reduction for various parts of the automotive industry. It is not limited to automotive, it can also be used by aerospace industry to reduce costs and to increase the production rate. With a cycle time of 40 to 90 s the QSP can produce parts made of different materials and various material thickness on one part. For example it is possible to produce a part which is made from glass fibre with local reinforcements of carbon fibres in relevant areas. To allow a mass production with QSP it was designed as a one-shot process. By using a tool with integrated overmoulding injection additional functionalities such as reinforcement ribs and metallic inserts can be added. That way a part leaves the press as a finished part, ready for assembly. Figure 7 Seating shell ( CETIM/ADEME/Faurecia) Reference [1] Callens, C.; Champenois, C.: The Quilted Stratum Process: A breakthrough for thermoplastic and multimaterial parts. CETIM Technical Paper 54 lightweight.design 1 2017 WORLDWIDE

International, Digital, Interactive: The new emagazine from ATZ ATZworldwide loaded with the newest findings in research and development of automotive engines Test now for 30 days free of charge: www.atz-worldwide.com ATZ emagazine has 80 pages packed with information: company news and the latest products specialist articles from industry and research Keyword search: The search function enables you search for a keyword in the complete issue in a matter of seconds Didactically prepared: Animations and editorial videos offer genuine added value and complement the specialist articles from the automotive industry PDF downloads: The classic function for saving and downloading articles Interactive contents: Jump immediately to your selected article with one click Responsive HTML5 implementation: User-friendly and direct without This ensures that you have access an app: HTML5 technology provides to your emagazine not only from a direct link to the website, ensuring desktops and laptops but also from access without an app store cover story smartphones and tablets Volume 10 1 2017 lightweight.design 55 guest comment interview on the