Different methods are usually adopted to cure concrete. Concrete strength partly depends on the method and

Similar documents
EFFECT OF CURING METHODS ON THE COMPRESSIVE STRENGTH OF CONCRETE

International Journal of Engineering and Robot Technology

Partial Replacement of River Gravel with Crushed Granite to Determine the Optimum Compressive Strength of Concrete

Effect of Curing Methods on Density and Compressive Strength of Concrete

Effect Of Curing Age On The Compressive Strength Of Concrete Made From Local Granite Chippings

EXPERIMENTAL INVESTIGATION ON RECYCLED PLASTICS AS AGGREGATE IN CONCRETE

Topic 1 - Properties of Concrete. 1. Quick Revision

Study and Analysis of High Performance Concrete and Estimation of Concrete Strength

Comparative Analysis of Non-Destructive Strength of Water Cured and Air Cured Concrete

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

Comparison of Properties of Fresh and Hardened Concrete Containing Finely Ground Glass Powder, Fly Ash, or Silica Fume

The Effect of Local Available Materials on the Properties of Concrete

RECYCLING DEMOLITION WASTE SANDCRETE BLOCKS AS AGGREGATE IN CONCRETE

Evaluation of Structural Performance of Pervious Concrete in Construction

The Influence Of ph On The Compressive Strength Of Concrete

Total 30. Chapter 7 HARDENED CONCRETE

Investigation of The Effect Of Water-Cement Ratio On The Modulus Of Rupture Of Concrete

International Journal of Advancements in Research & Technology, Volume 2, Issue 8, August-2013 ISSN

Downloaded from Downloaded from /1

Destructive and Non- Destructive Testing for Concrete in Sudan - A Comparative Study

Effect of Different Types of Coarse Aggregates on Physical Properties of Mostly Used Grades M20, M25, M30 of Concrete

EFFECT OF PARTIAL REPLACEMENT OF GRANITE WITH WASHED GRAVEL ON THE CHARACTERISTIC STRENGTH AND WORKABILITY OF CONCRETE

An Experimental Study On Strength & Durability Of Concrete Using Partial Replacement Of Cement With Nano Silica

Analysis on Mix Design of High Strength Concrete (M100)

SUITABILITY OF SAW DUST ASH-LIME MIXTURE FOR PRODUCTION OF SANDCRETE HOLLOW BLOCKS

TACAMP 2014 CONCRETE. Presented by Rick Wheeler

2 LITERATURE REVIEW IJSER

EFFECT OF NON-STANDARD CURING METHODS ON THE COMPRESSIVE STRENGTH OF LATERIZED CONCRETE

Water permeability and chloride penetrability of lightweight aggregate concrete. Chen Chung Kho

Concrete. Chapter 10 Properties of Fresh Concrete. Materials of Construction-Concrete 1. Wikipedia.org

Influence of Sawdust Ash (SDA) as Admixture in Cement Paste and Concrete

Use of Super Absorbing Polymers (SAP) for Internal Curing of Conventional Concrete with Low W/C Ratio

INFLUENCE OF PRE-WETTED LIGHTWEIGHT AGGREGATE ON SCALING RESISTANCE OF HIGH PERFORMANCE CONCRETES

Effect of Fly Ash and Silica Fumes on Strength, Stress Strain Behaviour of M 25 Concrete Mix

Study of High Performance Concrete with Silica Fume and Glass Fibre

INTERMITTENT CURING OF M20 CONCRETE

Design of High Strength Concrete Mixes M60 and Investigation of its Strength Parameter

Effect of Aggregate Size and Gradation on Compressive Strength of Normal Strength Concrete for Rigid Pavement

CHAPTER 3 MATERIAL PROPERTIES AND MIX PROPORTIONS

Assessment of Recycled Aggregate Concrete

A Comparative Study of the Methods of Concrete Mix Design Using Crushed and Uncrushed Coarse Aggregates

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 5, Issue 12, June 2016

VOL. 10, NO 20, NOVEMBER, 2015 ISSN ARPN Journal of Engineering and Applied Sciences

Concrete Mix Design. Introduction

EXPERIMENTAL INVESTIGATIONS ON DURABILITY CHARACTERISTICS OF CONCRETE DEVELOPED BY USING BRICK POWDER (BP) AND QUARRY DUST (QD)

Studying of Floating Concrete Report Fall

The hardening is caused by chemical action between water and the cement due to which concrete grows stronger with age.

Comparative Study of Cement Stabilized Clay Brick and Sandcrete Block as a Building Component

Effect of Polypropylene Fibers on Durability Characteristics of No-Aggregate Concrete

EXPLORATORY STUDY OF PERIWINKLE SHELLS AS COARSE AGGREGATES IN CONCRETE WORKS

Fresh Concrete: Batching, Mixing, Transportation, Placing. Lecture No. 07

International Journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

MANASSEH JOEL AND ADIE GABRIEL UTYANKPAN

AN INVESTIGATION INTO THE USE OF GROUNDNUT SHELL AS FINE AGGREGATE REPLACEMENT

Hot Weather Concreting

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 04 Issue: 03 Mar p-issn:

Course Concrete Technology Course Code Theory Term Work POE Total Max. Marks Contact Hours/ week

CIMENT FONDU. Special cement for concrete and mortar solutions

A.S.M. Abdul Awal*, M. W. Hussin

EFFECT OF EARLY CURING ON CONCRETE DURATION BY EVAPORATION REDUCER

International Journal of Advance Engineering and Research Development. The Experimental Investigation of Durability Test on Concrete Cubes

LOW TEMPERATURE CURING EFFECTS ON STRENGTH OF RECYCLED GLASS AGGREGATES CONCRETE

STUDY ON CONCRETE REPLACED WITH CRUSHED CONCRETE FINE AGGREGATE

Effect of Curing Methods And Environment on Properties of Concrete

Experimental Investigation on High Performance Concrete Using Silicafume And Flyash

USE OF WASTE COCONUT SHELLS AS SUBSTITUTE FOR COARSE AGGREGATE IN LIGHT-WEIGHT CONCRETE MIXES

Comparison of different forms of gravel as aggregate in concrete

COMPARING THE COMPRESSIVE STRENGTHS OF CONCRETE MADE WITH RIVER SAND AND QUARRY DUST AS FINE AGGREGATES

Assessment of Concrete Produced with Foundry Waste as Partial Replacement for River Sand

Experimental Study on Glass Fibre Reinforced Steel Slag Concrete with Fly Ash

COMPARATIVE ANALYSIS OF THE COMBINATION OF COARSE AGGREGATE SIZE FRACTIONS ON THE COMPRESSIVE STRENGTH OF CONCRETE

Utilisation of Recycled Aggregate as Coarse Aggregate in Concrete

Concrete In Hot Weather Conditions-Challanges - Precautions

COMPATIBILITY OF SUPERPLASTICIZER BS FUTURA PCX 107 WITH PPC CEMENT FOR M35 GRADE OF CONCRETE

Effect of Curing Conditions on the Freeze-Thaw Durability of Self-Consolidating Concrete Including Fly Ash

STUDY ON SILICA FUME REPLACED CONCRETE WITH SUPER PLASTICIZER

INVESTIGATION OF COMPRESSIVE STRENGTH OF CONCRETE CONTAINING RICE-HUSK-ASH

METHODS OF REDUCING EARLY-AGE SHRINKAGE

Impact of Admixture and Rice Husk Ash in Concrete Mix Design

Influence of Aggregate Sizes on the Performance indices of Self Compacting Concrete (SCC)

PARTIAL REPLACEMENT OF CEMENT IN CONCRETE WITH SUGAR CANE BAGASSE ASH- BEHAVIOUR IN HCl SOLUTION

Effect of Acidic Environment on Hollow Sandcrete Blocks Samson Duna. 1, Fwangmun B.Wamyil 2

IS : Dr. S. RAVIRAJ

Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete. Properties of Concrete

3/4/2015 COLD WEATHER CONCRETE PRACTICES SUCCESSFUL COLD WEATHER CONCRETING

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May ISSN

Environmentally Sustainable Concrete Curing with Coloured Polythene Sheets

A Study of The Hygroscopic Properties Of Hollow Sandcrete Blocks

A Comparative Study on Local and Industrial Chemical Additives on Strength Properties of Sancrete Blocks

FEBFLOW STANDARD WATER REDUCING PLASTICISER FOR CONCRETE

Chapter VI Mix Design of Concrete

An Investigation of Steel Fiber Reinforced Concrete with Fly Ash

ISSN: [Birajdar* et al., 6 (7): July, 2017] Impact Factor: 4.116

CONCRETE MIX DESIGN. Dr. B.N. KRISHNASWAMI TECHNICAL MEETING ON ORGANISED BY CIVIL ENGINEERS & ARCHITECTS ASSOCIATION, KUMBAKONAM

Experimental Study of RHA Concrete

Design Of High Performance Concrete By The Partial Replacement of Cement With Silica Fume using M60 Grade

Experimental assessment on coconut shells as aggregate in concrete

Experimental Investigation on Natural Fiber Concrete with Palm Oil Tree Fiber

A. HIGH-STRENGTH CONCRETE (HSC)

Mitigation of Alkali-Silica Reaction in Mortar with Limestone Addition and Carbonation

Transcription:

www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issues 7 July 2016, Page No. 17161-17171 Effect of Curing Methods on the Compressive Strength of Concrete Obam, Ogah Department of Civil Engineering, University of Agriculture Makurdi, Nigeria Phone: 2348036367216 Email: ogahobam@gmail.com Abstract Different methods are usually adopted to cure concrete. Concrete strength partly depends on the method and duration of curing. The structural use of concrete depends largely on its strength, especially compressive strength. This study uses three curing methods to determine their effects on the compressive strength and density of concrete. These methods are immersion of concrete cubes in curing tank (Ponding), covering of cubes with wet rug (Continuous wetting) and the use of polythene sheet (Water-barrier). Laboratory experimental procedures were adopted. A total of sixty (60) cubes were cast with 1:2:4 mix ratios. The cubes were cured in the laboratory at room temperature. The results showed that the average compressive strength values for 28-day curing vary with curing methods. The cubes cured by immersion have an average compressive strength of 29.7 N/mm 2 while the ones cured by wet rug and polythene sheet have average compressive strength of 26.8 and 24.7 N/mm 2 respectively. The traditional curing by immersion appeared to be the best method to achieve desired concrete strength. Key Words: Curing Method, Compressive Strength, Hydration, Mix Ratio 1. INTRODUCTION Concrete is good in resisting compressive load. It is the most widely used material in construction. It is a heterogonous material obtained by mixing cement, aggregates, water and sometimes admixtures in the required proportion (Mehta and Monteiro, 1993). The use of concrete in civil engineering structures such as building, pavement, bridge, etc. cannot be overemphasized. Concrete curing enhances gain in strength of concrete. It is the process of keeping concrete element in contact with water for a period of time. The Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17160

necessity of curing arises from the fact that hydration of cement can take place only in water filled capillaries. Hydration leads to strength development in concrete. This is why loss of water from fresh concrete must be prevented and ingress of water into the concrete must be allowed for complete and proper strength developments (Neville, 1996). Neville (1996) also defines Curing as procedures used for promoting the hydration of cement, and consists of a control of temperature and of the moisture movement from and into the concrete. Apart from hardening, curing also minimizes shrinkage and cracking of concrete (lambertcorporation, 1999). Gambir (1986), defines curing as process of creation of an environment during a relatively short period immediately after placing and compaction of concrete, favorable to setting and hardening of concrete. A proper curing maintains a suitable warm and moist environment for the developments of hydration products, and thus reduces the porosity in the hydrated cement paste and increases the density of microstructure in concrete. The hydration products extends from the surfaces of cement grains, and the volume of pores decreases due to proper curing under appropriate temperature and moisture. Proper curing greatly reduces drying shrinkage of concrete and makes it resistant to physical or chemical attacks in aggressive environments. Therefore, a suitable curing method is essential in order to produce strong and durable concrete (Klieger, 1956). The rate of hydration is fast at the beginning but continues over a very long time at a decreasing rate. The quantity of the product of hydration and consequently the amount of gel formed depends upon the extent of hydration. The curing allows the hydration to be continued, giving rise to gain in concrete strength. In fact, once curing stops the concrete dries out and the strength gain stops (Murdok, 1995). Broadly, concrete curing processes can be classified into the following categories: I. Methods that maintain the presence of mixing water in the concrete during the early hardening period or The Water adding technique. These include ponding or immersion, spraying or fogging, and saturated wet coverings. These methods afford some cooling through evaporation, which is beneficial in hot weather (http://www.ce.memphis.edu). Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17161

II. Methods that reduce the loss of mixing water from the surface of the concrete, the method is also known as water retaining technique. This can be done by covering the concrete with impervious paper or polythene sheets, or by applying membrane-forming curing compounds (http://www.ce.memphis.edu). III. Methods that accelerate strength gain by supplying heat and additional moisture to the concrete. This is usually accomplished with live steam, heating coils, or electrically heated forms or pads ( Klieger, 1956). IV. Dry-Air curing: dry-air curing is a curing method wherein the concrete cubes are left in open air to be cured at room temperature. Experimental results indicate that Dry-air curing is not an efficient method to achieve good hardened properties of concrete (Ho, 1989). V. Steam curing and hot water curing is sometimes adopted. In steam curing the temperature of steam should be restricted to a maximum of 75 C as in the absence of proper humidity (about 90%), concrete may dry too soon. In hot water curing,, temperature may be raised to any limit. At this raised temperature, the development of strength is about 70% of 28-day strength after 4 to 5 hours. In both cases, the temperature should be fully controlled to avoid non-uniformity. The concrete should be prevented from rapid drying and cooling which would form cracks (Dias, et al, 1990). The method or combination of methods chosen depends on factors such as availability of curing materials, size, shape, and age of concrete, production facilities (in place or in a plant), esthetic appearance, and economics. As a result, curing often involves a series of procedures used at a particular time as concrete ages. The timing and use of each curing method depends on the degree of hardening of the concrete needed to prevent a particular procedure from damaging the concrete surface (ACI 308, 1997). Price (1951) showed that the 28-day compressive strength of concrete cube specimens, continuously moisture cured, had compressive strength 20% higher than those of uncured cubes. It is a known fact that many other factors affect the development of strength of concrete and consequently its durability other than curing or curing technique applied. These factors include quality and quantity of cement used in the mix, grading of aggregates, maximum nominal size, shape and surface texture of Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17162

aggregate, others include water/cement ratios, degree of compaction, and the presence or otherwise of clayey particles and organic matter in the mix ((Price, 1951). Bushlaibi (2012) studied the effect of curing methods on the compressive strength of silica fume high strength concrete. Five curing conditions were used, water curing (for 28 days), no curing, sprinkle curing (sprinkling two times in a day for seven days), plastic curing (sprinkling two times in a day with plastic cover sheet for seven days) and burlap curing (sprinkling two times in a day with burlap cover for seven days), and concluded as follows: i. The compressive strength of the silica fume high strength concrete, as in normal strength concrete, is directly related to curing duration. ii. The adverse effect on the development of concrete compressive strength increases with increasing temperature and test duration. iii. At curing ages of 28 days and beyond, the strength reduction reaches up to 12% of the control strength in some curing conditions. iv. Silica fume high strength concrete is adversely affected by hot dry environment in a manner similar to the way normal strength concrete is adversely affected by excessive moisture evaporation and badly dispersed hydration products, resulting from high curing temperatures. 2. MATERIALS AND METHODS 2.1 Materials The main materials used in this study are crushed granite and River sand aggregates, Ordinary Portland cement (OPC) and portable water. The materials were assessed at Makurdi, Benue State, Nigeria. 2.2 Methods 2.2.1 Sieve Analysis The sieve analysis of the crushed granite and the River sand were carried out as prescribed in the British Standard (BS) 812: section 103.1: 1985. Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17163

2.2.2 The Concrete The concrete mix ratios of 1:2:4 at 0.51 water-cement ratio was used for all the concrete test cubes. The fresh concrete was produced by manually mixing sand, cement and the crushed granite with the specified quantity of water. It was cast into 150mm cube in three layers. 60 concrete cubes were cast in all. 2.2.3. Curing The concrete cubes were demoulded after 24 hours of casting. 20 of the cube specimens were immersed in water in a curing tank for 28 days. Another set of 20 cubes were arranged in one layer on concrete floor and then covered with wet rug. The rug was sprayed with water morning and evening for 28 days. The remaining 20 cubes were arranged on two layers on polythene sheet and the sheet wrapped round the cubes such that no part of cube surface was left exposed. The cubes were left in this condition for 28 days. 2.2.4 Density On the 28th day, all the cubes were removed from curing to be tested for compressive strength. Each cube was surface-dried and weighed (M). Density = 1 V is volume of cube 2.2.5 Compressive Strength Test On the 28th day, all the cubes were removed from curing to be tested for compressive strength. The test was carried out as prescribed in BS 1881: part 116: 1983. Compressive strength = (N/mm 2 ) Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17164

3. RESULTS AND DISCUSSION DOI: 10.18535/ijecs/v5i7.09 3.1 Aggregate Grading The results of sieve analysis of the River sand and the crushed granite aggregates are shown in Figures 1 and 2 respectively. The sand is uniformly graded while the crushed granite aggregate is well graded. The maximum size of the crushed granite is 20 mm. 3.2 Density and Compressive Strength of the Cubes The density and compressive strength results for ponding, continuous wetting and polythene sheet methods are shown in tables 1, 2 and 3 respectively. The mean compressive strength of the cubes cured by ponding method is 29.7 N/mm 2 while the values from wetting and polythene methods are 26.8 and 24.7 N/mm 2 respectively. The mean compressive strength achieved from ponding method is 9.8 and 16.8 percent higher than the strengths gained from wetting and polythene methods respectively. This implies that the traditional method of curing by immersion of concrete in water is superior to the other two methods. However, due to large size of some concrete elements, the use of the other two methods of curing could still be good alternative. Density is directly related to strength of concrete. The average density of the concrete cubes cured by ponding is greater than the other methods of rug wetting and polythene cover. Table 1: Density and Compressive Strength of the Cubes at 28-Day by Complete Immersion (Ponding) Curing Method. Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17165

Sample Mass Density Failure Compressive No. (kg) (Kg/m 3 ) Load Strength (KN) (N/mm 2 ) 1 9.488 2811 740 32.9 2 8.127 2412 760 33.8 3 8.060 2390 600 26.7 4 8.814 2612 660 29.3 5 8.220 2443 784 34.8 6 9.187 2721 600 26.7 7 8.152 2422 580 25.8 8 8.541 2532 600 26.7 9 8.069 2390 680 30.2 10 8.463 2512 680 30.2 11 8.100 2403 720 32.0 12 8.428 2490 740 32.9 13 8.720 2582 680 30.2 14 8.825 2613 640 28.4 15 8.180 2431 740 32.9 16 8.650 2563 600 26.7 17 8.490 2521 620 27.6 18 9.100 2690 608 27.0 19 8.472 2513 700 31.1 20 8.310 2462 640 28.4 Table 2: Compressive Strength of the Cubes at 28-Day by Rug Wetting Curing Method Sample No. Mass Density Failure Compressive (kg) (Kg/m 3 ) Load Strength Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17166

(KN) (N/mm 2 ) 1 8.240 2440 500 22.2 2 8.574 2543 520 23.1 3 8.047 2381 520 23.1 4 8.369 2482 700 31.1 5 8.766 2603 540 24.0 6 7.892 2431 720 32.0 7 8.465 2511 700 31.1 8 8.466 2512 680 30.2 9 8.500 2520 580 25.8 10 8.420 2490 600 26.7 11 8.476 2512 520 23.1 12 8.319 2461 708 31.5 13 8.720 2580 516 22.9 14 8.610 2550 680 30.2 15 7.985 2372 548 24.4 16 8.150 2410 520 23.1 17 8.750 2591 700 31.1 18 8.222 2441 660 29.3 19 8.410 2490 560 24.9 20 8.075 2393 600 26.7 Table 3: Compressive Strength of the Cubes at 28-Day by Polythene Curing Method Sample No. Mass Density Failure Compressive (kg) (Kg/m 3 ) Load Strength (N/mm 2 ) Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17167

(KN) 1 7.964 2362 560 24.9 2 9.234 2742 500 22.2 3 8.284 2450 520 23.1 4 8.369 2482 700 31.1 5 8.766 2600 540 24.0 6 7.892 2342 480 21.3 7 8.728 2582 500 22.2 8 8.227 2442 664 29.5 9 8.103 2400 580 25.8 10 8.257 2453 508 25.6 11 8.334 2470 580 25.8 12 8.428 2490 480 22.6 13 8.947 2652 588 26.1 14 9.127 2700 648 28.8 15 8.220 2440 516 22.9 16 8.350 2472 488 21.7 17 7.910 2340 520 23.1 18 7.997 2373 660 29.3 19 8.620 2550 480 21.3 20 8.416 2491 508 22.6 Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17168

Percentage passing Percentage passing DOI: 10.18535/ijecs/v5i7.09 100 90 80 70 60 50 40 30 20 10 0 0.01 0.1 1 10 Particle Size (mm) Figure 1: Grading curve of the River sand 90 80 70 60 50 40 30 20 10 0 1 10 100 Particle Size (mm) Figure 2: The Grading Curve of the Crushed Granite 4. CONCLUSION Curing of concrete is important in achieving its desired strength. Many methods are employed in curing; the study examined three of these methods. The structural use of concrete depends on its strength. It is therefore, necessary to pay proper attention to the process of hardening of concrete. Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17169

This research uses three curing methods to determine their effects on the compressive strength and density of concrete. These methods are immersion of concrete cubes in curing tank (Ponding), covering of cubes with wet rug (Continuous wetting) and the use of polythene sheet (Water-barrier). Laboratory experimental procedures were used. A total of sixty (60) cubes were cast with 1:2:4 mix ratios at 0.51 water-cement ratio. The results showed that the average compressive strength values for 28-day vary with curing methods. The mean compressive strength realized from ponding method is 9.8 and 16.8 percent higher than the strengths gained from wetting and polythene methods respectively. This implies that the traditional curing by immersion appeared to be the best method to achieve desired concrete strength. It should be noted that the other two methods have better advantage of accommodating larger-size concrete elements. REFERENCES American Concrete Institute (ACI) 308-1997, Standard Practice for Curing Concrete British Standard (BS) 1881: part 118: 1983; Method for determination of compressive strength of cubes BS 812: part 103.1: 1985; Sieve analysis Bushlaibi (2012); Curing Effect on Concrete Properties, htt:/www.concretecuring.light.edu; assessed in September 22, 2015 at 19 hours GMT. Dias, W. P., Khoury, G. A. and Sullivan, P. J. (1990); Mechanical Properties of Hardened Cement Paste Exposed to Temperature Up to 700 C. ACI Material Journal, 87(2); 160-166 Gambir M. L. (1986); Concrete Technology, Third Edition. Tata Mcgraw-Hill Publishing Company Limited Ho, D, W. (1989); Influence of humidity and Curing Time on the Quality of Concrete. Cement and Concrete Research, 19(3), 457-464 Klieger, P.H. (1958); Effect of Mixing and Curing on Concrete Strength. ACI Journal, Proceeding, 4(12); 1063-1081. Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17170

Kosmatka (2003); Design and Control of Concrete Mixtures. Portland Cement Association, Skokie, Iuinois LambertCorporation (1999); Civil Engineering Materials, Fifth Edition. Palgrave Houndmills Ltd, Hampshire New York Mehta and Monteiro (1993); Concrete Structure, Properties and Materials; Prentice-Hall, Englewood Cliffs Murdock, L.S. (1995); Concrete Materials and Practice; Roland Ph. Ltd, Neville A.M. (1996); Properties of concrete, Fifth Edition, Wesley Longman Ltd, London Price, W. (1951); Factors Influencing Concrete Strength, American Concrete Institute Journal, Vol. 47, 417-422 htt:/www.ce.memphis.edu; Curing Methods in Concrete. It was assessed in April 5, 2016 at 08 hours GMT. Obam, Ogah, IJECS Volume 5 Issue 7 July 2016 Page No.17160-17171 Page 17171