Weed management practices in irrigated organic finger millet (Eleusine coracana (L.) Gaertn.)

Similar documents
Weed management practices on nutrient removal by weeds and its relation to yield of finger millet in eastern dry zone of Karnataka

Behaviour of Weeds under Non - Chemical Methods of Weed Management in Maize

INFLUENCE OF HERBIGATION BASED INTEGRATED WEED MANAGEMENT PRACTICES ON GROWTH AND YIELD OF AEROBIC RICE

International Journal of Social Sciences and Entrepreneurship Special Issue 2, 2014

Effect of Non-Chemical Weed Management Practices on Weed Control Efficiency and Grain Yield in Organic Rice Production

K. S. SOMASHEKAR*, B. G. SHEKARA 1, K. N. KALYANA MURTHY AND L. HARISH 2 SUMMARY

Dual culture of rice and green manure crops : a low cost and eco-specific technology for weed management in semi-dry rice

International Journal of Science, Environment and Technology, Vol. 6, No 1, 2017,

Evaluation of Oxyfluorfen (23.5% EC) Herbicide on Weed Control, Economics and Profitability of Groundnut in the Western Zone of Tamil Nadu

Evaluation of chlorimuron ethyl and quizalofop-p-tefuryl alone and in combination for weed management in irrigated soybean

INFLUENCE OF WEED MANAGEMENT PRACTICES ON GROWTH AND YIELD ATTRIBUTES IN AEROBIC RICE UNDER SODIC SOIL CONDITION

Integrated weed management in chickpea (Cicer arietinum L.) under rainfed conditions of Karnataka, India

Impact of live mulches, cover crops and herbicides on weeds, growth attributes and yield of direct seeded rice (Oryza sativa L.)

Impact of High Density Planting and Weed Management Practices on Weed Density, Weed Drymatter and Yield of Bt Cotton

Influence of Planting Methods, Intercrop and Integrated Weed Management Practices on Yield of Turmeric (Curcuma domestica Val.)

Effect of foliar nutrition of urea and diammonium phosphate on seed yield and economics of sesame (Sesamum indicum L.) under rainfed situation

Comparative bio-efficacy of different weedicides and cultural practices against Grasses, Sedges and Broad-leaf weeds in Direct Seeded Rice

Effect of Quinchlorac on Grassy Weeds in Transplanted Rice

IJIRST International Journal for Innovative Research in Science & Technology Volume 1 Issue 11 April 2015 ISSN (online):

Effect of Integrated Weed Management Practices on Growth and Yield of Bt-Cotton in Telangana State, India

Effectiveness of New Herbicides in the Management of Leptochloa chinensis in Direct Seeded Rice

Growth Parameters of Pigeonpea and Greengram as Influenced by Different Cropping Geometry and Intercropping Ratio

Performance of Pigeonpea (Cajanus cajan) Intercropping as Influenced by Row Ratios and Nutri Cereal Crops

Performance of Sunflower as Influenced by Establishment Technique and Weed Management

Awareness of environmental sustainability has

WEED MANAGEMENT IN AEROBIC RICE UNDER SOUTH GUJARAT CONDITIONS USADADIA, V. P.; PATEL, P. B.; *BAVALGAVE, V. G. AND PATIL, V. A.

STABILIZATION OF AGRICULTURAL PRODUCTION THROUGH AGRI-HORTI SYSTEM UNDER RAINFED CONDITIONS PATEL, A. G.* AND SHAKHELA, R. R.

ALUATION OF AZIMSULFURON FOR WEED CONTROL IN

COMPARATIVE STUDY ON WEEDS MANAGEMENT IN RICE (Oryza sativa L.) UNDER SRI (SYSTEM OF RICE INTENSIFICATION)

Evaluation of Pre-emergence Herbicides and Hand Weeding on Weed Control Efficiency and Performance of Transplanted Early Ahu (Boro) Rice

Efficacy of Penoxsulam Against Weeds in Transplanted Rice

Effect of Different Doses of Herbicides on Weed Control Efficiency, Growth and Productivity of Transplanted Rice (Oryza sativa)

Enhancing Rice Productivity by Adopting Different Cultivation Methods

Influence of Post Emergence Application of Glyphosate on Weed Control Efficiency and Yield of Transgenic Maize

Carryover effect and plant injury from oxyfluorfen herbicide applied in transplanted rice

Effect of Methods and Time of Sowing on Soil Moisture and Yield Paramaters under Machine Transplanted Rice Fallow Blackgram (Phaseolus Mungo L.

Integrated nutrient management in transplanted rice(oryza sativa L.)

PERFORMANCE OF MAIZE- URDBEAN INTERCROPPING AS INFLUENCED BY WEED MANAGEMENT IN BHADRA COMMAND AREA OF KARNATAKA

Effect of Chemical Weed Management on Growth and Yield Attributes of Kharif Sorghum (Sorghum bicolor L.)

Early Post Emergence Herbicide and Their Influence on Weed Population Dynamics in Transplanted Rice (Oryza Sativa L.)

Economics of paddy based cropping system under south Gujarat condition

R. V. JOSHI, B. J. PATEL AND K. M. PATEL*

Weed Management Strategies in Pigeonpea under Alfisol and Vertisol

YIELD RESPONSE OF FINE RICE TO NP FERTILIZER AND WEED MANAGEMENT PRACTICES

Participatory Appraisal of Integrated Plant Nutrient Supply System in Semi-Temperate Rice and Maize Based Cropping Systems of Jammu and Kashmir, India

Effect of Integrated Weed Management on Yield, Quality and Economics of Summer Sorghum (Sorghum bicolor L.)

Eco-friendly Weed Management Options for Crop Production: A Review

Effect of Improved Production Technologies on Growth and Yield of Hybrid Maize

Effect of High Density Planting and Weed Management Practices on Productivity and Economic Analysis of Bt Cotton

Bio efficacy and Persistence of Oxyfluorfen in Aerobic Rice

Pearlmillet ( Pennisetum glaucum L.) is one of the

Integrated Weed Management in Aerobic Rice (Oryza sativa L.)

Influence of SRI (System of Rice Intensification) Method of Cultivation on Seed Quality Parameters of Rice (Oryza sativa L.)

Crop establishment and weed managment effects on rice productivity and weed dynamics

Non-chemical weed management in organic rice

Effect of Sowing Methods, Nutrient Management and Seed Priming on Seed Yield and Yield Attributes of Finger Millet (Eleusine coracana G.

Life Science Archives (LSA)

Profitable Cropping Systems for Southern Telangana Zone of Telangana State, India

STUDIES ON PLANTING TECHNIQUE-CUM-IRRIGATION METHODS UNDER VARIED LEVELS OF NITROGEN ON GROWTH AND DEVELOPMENT OF WINTER MAIZE (Zea mays L.

VI SUMMARY. and maize-sunflower sequential cropping systems

Integrated Nutrient Management for Yield and Economics of Maize (Zea mays L.) In-Rice-Gingelly-Maize Cropping System through Integrated Farming System

Effect of organic manures and liquid organic manures on growth, yield and economics of aerobic rice cultivation

To assess the scope of brown manuring in aerobic rice in central Punjab

PRODUCTION POTENTIAL OF MAIZE AND MUSTARD UNDER DIFFERENT INTERCROPPING SYSTEMS IN MOISTURE DEFICIT SUB-TROPICAL AREAS OF JAMMU AND KASHMIR, INDIA

EFFECT OF DIFFERENT SOURCES OF NUTRITION AND IRRIGATION LEVELS ON YIELD, NUTRIENT UPTAKE AND NUTRIENT USE EFFICIENCY OF WHEAT

Application of 50 kg K2O/ha, 30 days prior to harvesting of plant cane with irrigation water, resulted in better sprouting of winter harvested cane.

Dry matter accumulation studies at different stages of crop growth in mesta (Hibiscus cannabinus)

EFFICACY OF POST-EMERGENCE HERBICIDE QUIZALOFOP ETHYL FOR CONTROLLING GRASSY WEEDS IN GROUNDNUT

Impact of balanced fertilization and legume mixture on fodder oat (Avena sativa L.)

EFFECT OF INTEGRATED NUTRIENT MANAGEMENT ON GROWTH CHARACTERISTIC OF KHARIF MAIZE

EFFECT OF PLANTING GEOMETRY AND DURATION OF INTERCROPS ON PERFORMANCE OF PIGEONPEA-FINGER MILLET INTROCROPPING SYSTEMS.

Keywords: maize, variety, crop arrangement, weed interference, mixture.

PROFITABILITY OF POST EMERGENCE HERBICIDES UNDER TRANSPLANTED RICE IN VERTISOLS

Impact of Weed Management Practices on Biomass and Grain Yield of Two Varieties of Paddy in Lowland Area of Far-Western Nepal

CONTEMPORARY RESEARCH IN INDIA (ISSN ): VOL. 7: ISSUE: 1 (2017)

Weed Management in Ajwain (Trachyspermum ammi)

Agriculture Update Volume 12 TECHSEAR OBJECTIVES

Corn Flour as Weed Control Agent: Effect on Crops and Weed Seeds Germination

A Study on inter-cropping system and weed management practices on weed interference and productivity of maize

THE PERFORMANCE OF NEW PEARL MILLET HYBRIDS WITH GREENGRAM UNDER SOLE CROPPING AND INTERCROPPING SYSTEMS IN SEMI-ARID ENVIRONMENT

ABSTRACT Field experiment was conducted during and on deep black soil. Results revealed

Response of Finger Millet under Organic Nutrient Management in Groundnut (Arachis hypogaea L.) Finger Millet (Eleusine coracana L.

DILIP SINGH*, D. R. SINGH, V. NEPALIA AND AMINA KUMARI

International Journal of Science, Environment and Technology, Vol. 5, No 5, 2016,

Weed Indices as Influenced by Propaquizafop and Imazethapyr Mixture in Soybean

ORGANIC NUTRIENT MANAGEMENT IN CHILLIES BENGAL GRAM BABY CORN SEQUENCE

Study of Genetic Divergence in Finger Millet (Eleusine coracana (L.) Gaertn) Germplasm

STUDIES ON INTEGRATED NUTRIENT MANAGEMENT IN WHEAT

EFFICACY OF POST EMERGENCE HERBICIDES ON WEED CONTROL EFFICIENCY, PARTITIONING OF DRYMATTER AND YIELD OF BLACKGRAM (VIGNA MUNGO (L.

Influence of organic manures and weed control methods on weed control efficiency in winter irrigated cotton

Performance of chickpea as influenced by mulching practices in maize-chickpea cropping system

Influence of Moisture Regimes on Yield and Water Use Efficiency of Chickpea Cultivars (Cicer arietinium L.)

Economic Evaluation of Rice-Maize-Green Manure Cropping System under Different Tillage and Weed Management Practices in Conservation Agriculture

Impact of Land Configuration, Seed Rate and Fertilizer Doses on Growth and Yield of Blackgram [Vigna mungo (L.) Hepper]

TOTAL PRODUCTIVITY, NUTRIENT UPTAKE AND ECONOMICS OF RICE-WHEAT CROPPING SYSTEM AS INFLUENCED BY Crotalaria juncea GREEN MANURING

Influence of industrial wastes on growth, yield and yield attributing characters of rice

ASSESSING THE LAND EQUIVALENT RATIO (LER) OF TWO CORN [ZEA MAYS L.] VARIETIES INTERCROPPING AT VARIOUS NITROGEN LEVELS IN KARAJ, IRAN

Effect of Herbicides on Yield and Economics of Sunflower (Helianthus annuus L.)

Nutrient Uptake of Maize and Its Associated Weeds As Influenced by Sequential Application of Herbicides

ICAR-Networ. esearch Modipuram, Meerut (UP) Phone: ;

Transcription:

Scholars Journal of Agriculture and Veterinary Sciences e-issn 2348 1854 Sch J Agric Vet Sci 2014; 1(4A):211-215 p-issn 2348 8883 Scholars Academic and Scientific Publishers (SAS Publishers) (An International Publisher for Academic and Scientific Resources) Weed management practices in irrigated organic finger millet (Eleusine coracana (L.) Gaertn.) 1 *Basavaraj Patil, 2 V. C. Reddy 1 Department of Agronomy, UAS, GKVK, Bangalore-560065, India 2 Professor of Agronomy, MRS, Hebbal, Bangalore, India *Corresponding Author Name: Basavaraj Patil Email: Abstract: Field experiment was conducted to know the effect of weed management practices on weed flora and weed growth in irrigated organic finger millet. All weed management treatments had significantly lower total weed density and weed dry weight as compared to unweeded control. Stale seed bed technique + inter cultivation twice at 20 and 35 DAP (23.9/m 2 and 10.3 g/m 2 ) significantly lowered the total weed density as well as weed dry weight and was on par with hand weeding twice at 20 and 30 DAP (22.6/m 2 and 9.4 g/m 2 ). Higher total weed density and weed dry weight was found in unweeded check (245.9/m 2 and 105.1 g/m 2 ). Highest weed control efficiency was found in manual weeding (93.2 %) followed by stale seedbed combined with inter cultivation twice (91.6 %) and passing wheel hoe twice with one manual weeding (88.7 %). Grain yield was significantly higher in hand weeding twice (5460 kg/ha) followed by stale seedbed combined with inter cultivation twice (5365 kg/ha). The stale seedbed technique with inter cultivation twice at 20 and 35 DAP followed by hand weeding twice at 20 and 30 DAP recorded the highest net return and B:C ratio (Rs. 56,939 and 56,545/ha and 2.61, and 2.56, respectively). Keywords: Organic, Stale seedbed, Inter cultivation, Weed index (WI), Weed control efficiency (WCE) INTRODUCTION Finger millet (Eleusine coracana (L.) Gaertn.) ranks third in importance among millets in the country in both area (1.27 million ha) and production (1.91 million tonnes) after sorghum and pearl millet. Karnataka state shares 60.8 per cent of the area and two third of its production (68.4 per cent) [1]. Finger millet is an important dry land crop due to its resilience and ability to withstand aberrant weather conditions and generally grown in soils having poor water supplying capacity and nutrients. It is commonly referred as ragi in Karnataka, is one of the major staple food of farming communities of southern Karnataka. Apart from human consumption, straw is used as good fodder for cattle and the green straw is suitable for making silage. Organic farming is being practiced in more than 130 countries of the world with a total area of 30.4 m. ha (0.65% of the total agricultural land) with 0.7 million number of organic farmers world over [14]. It is gaining momentum in India owing to the concerns expressed on the safety of environment, soil, water and food chain. In India it is estimated that 528,171 ha area is under organic with 44,926 certified farmers (0.3% of the total cultivated area) [10]. Cultivating crops organically, and at the same time maintaining higher production levels is a big challenge. Since chemical intervention is not permitted for weed management, non chemical weed management is the major limitation in field crops like ragi, paddy and other cereals under organic farming. A concern about the potential increase in weed population due to non use of herbicides is rated as serious problem in organic farming [4].In any organic agriculture system, adopting cost effective weed management practices is a major issue for achieving sustainable production levels. In organic agriculture weed management should simulate the principles of biological processes for desired suppression of weeds. Preventive weed management practices, higher plant population, manipulating crop geometry, stale-bed technique, competitive crop varieties, intercrops and cover crops, crop rotation are available at present which could be followed in an integrated manner where ever feasible. Weeding through non-chemical means have to be undertaken within the critical period of the crop. More dependence on the use of efficient mechanical weeding tools is also advocated in organic agriculture. Hence, the present study was initiated to find out effective and economical weed management practices in organic finger millet. MATERIALS AND METHODS The field experiment was conducted during kharif season 2012 at the Main Research Station, Hebbal, Bengaluru, to identify the suitable methods of managing weeds in organic finger millet. It was laid out Available Online: http://saspjournals.com/sjavs 211

in Randomized Complete Block Design (RCBD) with three replications. The soil of the experimental field was sandy loam having ph of 6.55 with 236 kg N, 27.2 kg P 2 O 5 and 176.2 kg K 2 O/ha. The variety used for the experiment was GPU-28. The experiment comprised of twelve treatments Passing wheel hoe at 20, 30 and 40 DAP; Inter cultivation twice at 20 and 35 DAP; Stale seedbed technique; Passing wheel hoe at 20, 30 and 40 DAP + one hand weeding at 45 DAP; Inter cultivation twice at 20 and 35 DAP + one hand weeding at 45 DAP; Stale seedbed technique + Inter cultivation twice at 20 and 35 DAP; Organic mulching @10 t/ha after transplanting; Growing cover crops (Horse gram/cowpea) and mulching at 55 DAP; Directed spray of Eucalyptus leaf extract on weeds; Directed spray of cattle urine on weeds; Hand weeding twice at 20 and 30 DAP; Unweeded check. Seedlings were raised in nursery bed of size 7.5 m long, 1.2 m width and 10 cm height prepared one month before transplanting of the crop. Nursery bed was prepared and the FYM was mixed with soil. Seeds @ 5kg ha -1 were sown uniformly and light irrigation was given periodically. Neem cake was applied equivalent to 50 kg N/ha at the time of transplanting. Cattle urine was top dressed in three splits at 15, 30 and 40 DAP to meet remaining 50 kg N/ha. Stale seedbed treatment was initiated 15 days before transplanting of the crop. One irrigation was given to stale seedbed plots and weeds were allowed to germinate. The germinated weeds were removed by passing cultivator cris-cross one day before transplanting of the crop. Organic mulching was done with crop residues (paddy straw) and dried grasses @ 10 t/ha one week after transplanting. Seed mixture of cowpea and horse gram was sown in between two rows of finger millet. These cover crops were mulched between rows at 55 DAP. RESULTS AND DISCUSSION Weed flora: Major weed flora observed in the experimental plot were Cyperus rotundus L. (among sedge); Echinochloa colona (L.), Cynodon dactylon (L.) Pers, Dactyloctenium aegyptium (L.) Beauv., Digitaria marginata (Retz.), Eragrostis pilosa (from initial stage) Eleusine indica (L.) Gaertn, (at later stages) (among grasses); among broad leaved weeds Parthenium hysterophorus, Alternanthera sessilis, Sida acuta, Spillanthus acmella, Commelina benghalensis L., Ageratum conyzoides Linn, Ocimum canum, Cinebra didema L. similar findings have been reported in the earlier studies at Hebbal, Bangalore [6,7,9]. Weed density and weed dry weight: At 60 DAP the total weed density and weed dry weight was significantly lower in hand weeding twice at 20 and 30 DAP (26.32 and 6.4 g/m 2 ) treatment and was on par with stale seed bed technique + inter cultivation twice at 20 and 35 DAP (29.67 and 8.0 g/m 2 ) and T 1 + one hand weeding (41.26 and 10.7 g/m 2 ). Whereas, stale seedbed alone and spray of cattle urine on weeds were not significantly control the total weed density, which were on par with unweeded control (279.68 and 95.1 g/m 2 ). At harvest, total weed density and weed dry weight was significantly lower in hand weeding twice at 20 and 30 DAP (22.60 and 9.4 g/m 2 ) and was on par with stale seed bed technique + inter cultivation twice at 20 and 35 DAP (23.90 and 10.3 g/m 2 ). All the weed management treatments recorded significantly lower total weed density at harvest except stale seedbed technique alone and spray of cattle urine on weeds which were on par with unweeded control (245.90 and 105.1 g/m 2 ). Table 1:- Total weed density and weed dry weight at different stages in finger millet as influenced by weed management practices. Treatments Weed density (number/m 2 ) Weed dry weight (g/m 2 ) 60 DAP At harvest 60 DAP At harvest T 1 1.72 (50.22) 1.68 (46.40) 1.62 (39.7) 1.67 (44.7) T 2 1.92 (80.95) 1.79 (59.00) 1.76 (55.8) 1.76 (55.7) T 3 2.25 (177.51) 2.23 (166.80) 1.91 (80.0) 1.96 (89.9) T 4 1.64 (41.26) 1.64 (41.80) 1.10 (10.7) 1.55 (33.3) T 5 1.69 (47.34) 1.68 (45.50) 1.65 (42.9) 1.63 (40.6) T 6 1.50 (29.67) 1.41 (23.90) 1.00 (8.0) 1.09 (10.3) T 7 2.10 (124.02) 2.04 (108.50) 1.74 (52.4) 1.78 (58.4) T 8 1.89 (76.08) 1.83 (65.10) 1.74 (53.5) 1.67 (44.3) T 9 2.22 (165.56) 2.18 (149.53) 1.92 (81.3) 1.94 (86.0) T 10 2.27 (185.82) 2.21 (160.00) 1.84 (67.7) 1.93 (82.2) T 11 1.45 (26.32) 1.39 (22.60) 0.92 (6.4) 1.06 (9.4) T 12 2.45 (279.68) 2.39 (245.90) 1.99 (95.1) 2.03 (105.1) CD(P=0.05) 0.20 0.19 0.06 0.11 Figures in parenthesis are original values; data analyzed using transformation =log(x+2) Available Online: http://saspjournals.com/sjavs 212

Weed control efficiency (WCE): with inter cultivation twice (91.3, 91.6 and 90.1 % at The WCE was higher with hand weeding twice 30, 60 DAP and at harvest respectively) and passing at different growth stage of the crop (92.8, 93.2 and wheel hoe at 20, 30 and 45 DAP with one hand weeding 91.0 % at 30, 60 DAP and at harvest respectively) (68.5, 88.7 and 68.3 % at 30, 60 DAP and at harvest owing to the fact that it produced lesser weed dry respectively,). The results of this study are in concurs weight. Similar findings were observed [5] in finger with earlier findings in finger millet [2,8]. Similar millet and in groundnut-finger millet cropping system findings were also obtained in sesame [13] found that [6], who observed hand weeding twice to be the best stale seedbed by cultivation significantly reduced the treatment having the lowest WI, highest WCE and grasses, sedges and broad leaved weeds compared to higher yield. WCE of stale seedbed technique combined conventional seedbed preparation. Table 2:- Weed control efficiency at different growth stages and grain yield of finger millet as influenced by weed management practices. Treatments WCE % WCE % WCE % Grain yield (kg/ha) at 30 DAP at 60 DAP at harvest T 1 33.0 58.2 57.5 4095 T 2 18.6 41.3 47.0 3937 T 3 26.6 15.8 14.4 3397 T 4 68.5 88.7 68.3 5143 T 5 31.5 54.9 61.3 4222 T 6 91.3 91.6 90.1 5365 T 7 84.4 45.2 44.4 3778 T 8 8.5 43.7 57.8 3206 T 9 12.5 14.5 18.1 2921 T 10 18.5 28.8 21.8 3302 T 11 92.8 93.2 91.0 5460 T 12 0.0 0.0 0.0 2730 CD(P=0.05) NA NA NA 945.6 NA Not analyzed statistically Growth parameters : Hand weeding twice at 20 and 30 DAP produced significantly higher growth parameters viz., taller plants (110.13 cm), higher LAI (3.3), number of tillers/hill (6.00) and dry matter accumulation (36.4 g/plant) than other treatments. However, it was on par with stale seedbed technique + inter cultivation twice and also with passing wheel hoe at 20, 30 and 45 DAP + one hand weeding. Significantly lowest plant height (86.2 cm), LAI (1.3), number of tillers/hill (3.47) and dry matter (22 g/plant) were obtained in unweeded control. The enhancement of crop growth components could be due to less competition by the weeds for crop these factors throughout the crop growth period due to control of early emerged weeds before transplanting through stale seedbed technique and late emerged weeds through inter cultivation. Our observation concurs with several earlier studies that have reported in maize, sunflower, dry seeded rice, and in maize [3,11,12]. Table 3: Growth parameters of finger millet as influenced by weed management practices at harvest. Treatments Plant height (cm) No. of tillers LAI Total dry matter production (g/plant) T 1 97.13 4.27 3.17 32.2 T 2 99.10 4.53 2.93 31.6 T 3 94.80 4.13 2.46 25.4 T 4 104.13 5.00 3.20 34.6 T 5 98.43 4.27 3.07 31.1 T 6 106.40 5.73 3.29 37.8 T 7 93.60 4.07 2.67 30.7 T 8 91.53 3.87 2.35 29.8 T 9 92.30 4.20 2.61 25.4 T 10 91.60 4.67 2.26 27.1 T 11 110.10 6.00 3.30 36.4 T 12 86.20 3.47 1.30 22.0 CD(P=0.05) 9.79 0.81 0.54 4.74 Available Online: http://saspjournals.com/sjavs 213

Leaf Area Duration (LAD) and Crop Growth Rate (CGR): Significantly higher LAD was recorded in hand weeding twice at 20 and 30 DAP (123.3 days). Stale seedbed technique + Inter cultivation twice at 20 and 35 DAP (T6), T1 + one hand weeding (T4) accounted for 111.3 and 109.5 days respectively which were found to be on par with hand weeding twice at 20 and 30 DAP. While, unweeded control recorded lowest LAD (61.65). At 60 days to harvest significantly higher LAD was recorded in hand weeding twice at 20 and 30 DAP (125.25 days). However hand weeding twice at 20 and 30 DAP was on par with Stale seedbed technique + Inter cultivation twice at 20 and 35 DAP (T6) (114.3 days), T1 + one hand weeding (T4) (112.35 days) at 60 to harvest of crop growth stage. While unweeded control has recorded lowest LAD (58.5 days). Significantly higher CGR was recorded in hand weeding twice at 20 and 30 DAP (18 g/m 2 / day). Stale seedbed technique + Inter cultivation twice at 20 and 35 DAP, T1 + one hand weeding, Organic mulching @10 t ha -1 after transplanting, Growing cover crops (Horse gram/cowpea) and passing blade hoe and passing wheel hoe at 20, 30 and 40 DAP were recorded 18.9, 15.4, 16.0, 15.6 and 15.3 g/m 2 / day CGR respectively which were statistically found to be on par with hand weeding twice at 20 and 30 DAP. Whereas stale seedbed alone, inter cultivation twice and spraying of eucalyptus leaf extract and cattle urine on weeds have not influenced the CGR significantly. While, lowest CGR was recorded in unweeded control (12 g/m 2 / day). At 60 to harvest of crop growth stage CGR did not differ significantly among the different weed management practices. However, highest CGR was observed in T1 + one hand weeding (9.67 g/m 2 / day) and lowest CGR was observed in unweeded control (5.0 g/m 2 / day 1 ). Table 4:- Influence of weed management practices on LAD and CGR of finger millet at different growth stages LAD (Days) CGR(g/m 2 / day) At 30 to 60 At 60 to At 30 to 60 DAP At 60 to harvest Treatments DAP harvest T 1 98.25 106.65 15.3 8.89 T 2 97.95 103.35 15 7.67 T3 87.15 86.25 13.2 4.33 T4 109.05 112.35 15.4 9.67 T5 103.2 107.55 14.1 8.55 T6 111.3 114.3 18.9 8.55 T7 88.65 94.35 16.0 7.55 T8 69.15 80.25 15.6 8.67 T9 83.7 89.25 15.1 3.0 T10 82.8 82.8 12.1 7.11 T11 123.3 125.25 18.0 7.44 T12 61.65 58.5 12.0 5 CD(P=0.05) 15.51 13.74 3.4 NS Grain yield: Grain yield of finger millet was significantly higher in hand weeding twice at 20 and 30 DAP (5460 kg/ha) as compared to unweeded control. However, it was on par with stale seedbed technique + inter cultivation twice and also with passing wheel hoe at 20, 30 and 45 DAP + one hand weeding (5365 kg/ha). This higher yield might be due to better control of weeds at tillering stage of the crop resulted in higher yield of the crop [6,8,9]. Whereas, lower grain yield (2730 kg/ha) was obtained in unweeded control. This reduction in yield might be due to highest competition with the finger millet throughout the crop growth period. Economics : Highest gross return (Rs. 92,700/ha) was obtained in hand weeding twice followed by stale seedbed technique with inter cultivation twice (Rs. 91,775/ha). While, Highest net return (Rs. 56,645/ha) was obtained in Hand weeding twice at 20 and 30 DAP followed by stale seedbed technique combined with inter cultivation twice (Rs. 56319/ha). Whereas, the B:C ratio was higher in stale seedbed technique combined with inter cultivation twice (2.59) due to its lower cost of cultivation than hand weeding twice treatment. Hand weeding twice at 20 and 30 DAP did produced the highest gross and net return but B:C ratio was lower as compared to above treatment (2.57). However, lowest B:C ratio of 1.53 was found in unweeded control. Available Online: http://saspjournals.com/sjavs 214

Table 5: Economics of finger millet as influence of different weed management practices Treatments Cost of cultivation Gross return Net return B:C T 1 35755 71275 35520 1.99 T 2 33715 68505 34790 2.03 T 3 32755 58305 25550 1.78 T 4 36955 87795 50840 2.38 T 5 36355 72630 36275 2.00 T 6 35455 91775 56319 2.59 T 7 33655 66120 32465 1.96 T 8 32340 57390 25050 1.77 T 9 31795 51715 19920 1.63 T 10 31675 57930 26255 1.83 T 11 36055 92700 56645 2.57 T 12 31255 47700 16443 1.53 CD(P=0.05) NA NA NA NA NA Not analyzed statistically CONCLUSION Hand weeding twice at 20 and 30 DAP is the best efficient method for the weed control which produces significantly highest yield and weed control efficiency. Since, the labour availability is a problem besides high cost involved in the hand weeding, stale seedbed technique in combination with inter cultivation twice at 20 and 35 DAP or passing wheel hoe at 20, 30 and 40 DAP with one hand weeding would be a viable alternative for weed management in organic finger millet production. Further there is need to carry out research on development and evaluation of power operated weeders for their efficacy in organic cultivation and evaluation of different mulching materials and cover crops need to be carried out for better weed control in organic condition. REFERENCES 1. Anonymous; Annual Progress Report, All India Coordinated small Millet Improvement Project, ICAR, 2011, University of Agricultural Sciences, Bangalore. 2. Ashok EG; Weed control measures for sole and mixed cropping system in drilled finger millet (Eleusine coracana (L.) Gaertn). M.Sc.(Agri.) Thesis, 1997.University of Agricultural Sciences, Bangalore. Pp- 1-90. 3. Bhuvaneshwari J, Chinnusamy C, Sangeetha, SP; Evaluation of non-chemical methods of weed management in organically grown Maize- Sunflower cropping system. Madras Agricultural Journal, 2010: 97 (7-9): 242-244. 4. Bond W, Grundy AC; Non-chemical weed management in organic farming systems. Weed Research, 2001; 41(5): 383-405. 5. Jena BK, Tripathy SK; Effect of weed control in finger millet (Eleusine coracana). Indian Journal of Agronomy, 1997; 42(4); 641-644. 6. Kumar O; Weed management in transplanted finger millet- groundnut cropping system. Ph.D. thesis, University of Agricultural Sciences, Bangalore. 2004; 80. 7. Mahabaleshwara MS; Chemical weed control in drilled finger millet (Eleusine coracana Gaertn.) intercropped with row crops, M.Sc.(Agri.) Thesis, University of Agricultural Sciences,Bangalore. 1983; 121 347. 8. Ramamoorthy K, Radhamani S and Subbain P; Integrated weed management for the control of Trianthema portulacastrum L. in rainfed finger millet (Eleusine coracana (L.) Gaertn). Green Farming, 2009; 2(4): 221-223. 9. Ramachandra Prasad TV, Narasimha N, Dwarakanath MK, Mune Gowda MK, Krishnamurthy K; Integrated weed management in drilled finger millet (Eleusine coracana (L.) Gaertn). Mysore Journal of Agricultural Sciences, 1991; 25: 13 19. 10. Ramesh P, Panwar NR, Singh AB, Ramana S, Sushilkumar Y, Rahul S and Subba Rao A; Status of organic farming in India. Current Science, 2010; 98(9): 1190-1194. 11. Rana RS; Comparative studies on different mechanical weeding methods in kharif maize (Zea mays L.). Crop Research, 2011; 41(1, 2 and 3): 21-23. 12. Sindhu PV, George Thomas C, Abraham CT; Stale seedbed and green manuring as an effective weed management strategy in dry-seeded rice (Oryza sativa), Indian Journal of Agronomy, 2011; 56(2): 109-115 13. Venkatakrishnan AS; Studies on integrated pest management practices in irrigated sesame (Sesame indicum L.) Ph.D. Thesis, 1997; Tamil Nadu Agricultural University, Coimbatore. 14. Willer H; Organic agriculture worldwide; current statistics. In; The world of organic agriculture statistics and emerging trends. 2008; IFOAM, Bonn and FiBL, frick. Available Online: http://saspjournals.com/sjavs 215