METHOD DEVELOPMENT AND VALIDATION OF KETOROLAC TROMETHAMINE IN TABLET FORMULATION BY RP-HPLC METHOD

Similar documents
A Simple Rapid and Sensitive Method Development for Quantification of Quetiapine Fumarate in Bulk and Dosage Forms Using RP-HPLC

10. Validated Normal Phase HPLC Method for the Determination. Fulvestrant is primarily used in the treatment of hormone receptor

INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

Development and Validation of Isoniazid in Bulk and Pharmaceutical Dosage Forms by UFLC Method

DEVELOPMENT AND VALIDATION OF ANALYTICAL METHOD FOR ASSAY DETERMINATION OF ISOSULFAN BLUE BY LIQUID CHROMATOGRAPHY

Lakshmana Rao et.al Indian Journal of Research in Pharmacy and Biotechnology ISSN: (Print) ISSN: (Online)

Usharani Gundala* 1, Chandrashekar Bonagiri 2, Devanna Nayakanti 3

ISSN India; g,secunderabad. Abstractt. a flow rate. of 1ml/min. di hydrogen. which acts. and chronic. including minimize (5) Figure

Validated Stability-indicating assay method for determination of Ilaprazole in bulk drug and tablets by high performance liquid chromatography

Journal of Pharmaceutical and Bioanalytical Science

RP-HPLC Method for the Simultaneous Estimation of Lamivudine and Abacavir Sulphate in Tablet Dosage Form

P. Wadhwani College of Pharmacy, Yavatmal , India. *Corres.author: Cell No

International Journal of Pharma Research and Health Sciences. Available online at

Available Online through (or) IJPBS Volume 2 Issue 3 JULY-SEPT Research Article Pharmaceutical Sciences

International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: , ISSN(Online): Vol.10 No.6, pp , 2017

Development and validation of stability indicating RP-HPLC method for the estimation of Daclatasvir in bulk and formulation

RESEARCH ARTICLE STABILITY INDICATING ANALYTICAL METHOD DEVELOPMENT AND VALIDATION FOR THE ESTIMATION OF AVANAFIL IN PHARMACEUTICAL DOSAGE FORM

Validation of Analytical Methods used for the Characterization, Physicochemical and Functional Analysis and of Biopharmaceuticals.

STUDYING THE ACCELERATED PHOTOSTABILITY OF CIPROFLOXACIN AND LOMEFLOXACIN IN TABLETS AND EYE DROPS

Analytical Method Development and Validation for the Estimation of Abiraterone and its Impurity in Pharmaceutical Formulation By RP-HPLC

Saudi Journal of Medical and Pharmaceutical Sciences

Research Paper Development of Stability Indicating Reverse Phase HPLC Method for Aripiprazole from Solid Dosage form

Application Note. Author. Abstract. Pharmaceuticals. Detlef Wilhelm ANATOX GmbH & Co. KG. Fuerstenwalde, Germany mau

Development and Validation of RP-HPLC-PDA Method for Simultaneous Estimation of Baclofen and Tizanidine in Bulk and Dosage Forms

Validated Stability Indicating RP-hplc Method for the Assay of Dienogest in Bulk and Tablet Dosage Form

THESIS SUBMITTED TO THE ANDHRA UNIVERSITY IN PARTIAL FULFILMENT FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHARMACEUTICAL SCIENCES

CHAPTER 7 DETERMINATION OF RELATED SUBSTANCES OF NICORANDIL IN TABLET DOSAGE FORM BY USING REVERSE PHASE HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

Intercontinental journal of pharmaceutical Investigations and Research

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

*Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy, Damascus University, Mazzeh Street, Damascus, Syrian Arab Republic.

DACLATASVIR TABLETS (DACLATASVIRI COMPRESSI) Proposal for The International Pharmacopoeia. (May 2018)

International Journal of Applied Pharmaceutical Sciences and Research

Simultaneous Estimation of Finasteride and Tamsulosin Hydrochloride in Combined Dosage Forms by RP-HPLC-PDA Method

Received: 10 May 2017 Revised and Accepted: 02 Nov 2017

Short Communication Stability Indicating Assay Method Development and Validation of Tolteridone Tartrate in Bulk Drug and Capsules

RP-HPLC METHOD FOR QUANTITATIVE ESTIMATION OF GLATIRAMER ACETATE FOR INJECTION IN PHARMACEUTICAL DOSAGE FORMS

ISSN: X CODEN: IJPTFI Available Online through Research Article

Quantitative determination of residual 2-(2-chloroethoxy) ethanol (CEE) in quetiapine fumarate by gas chromatogaraphy

Research Article PATEL PARESH U., PATEL BHAGIRATH M. *

DIDANOSINE ORAL POWDER Final text for addition to The International Pharmacopoeia

Development of Quality Control Method for Dissolution Analysis of Tapentadol and paracetamolin tablet

International Journal of Research and Reviews in Pharmacy and Applied science.

QUANTIFICATION OF INTERMEDIATE, UNKNOWN IMPURITIES AND Z ISOMER IN ENTACAPONE API BY HPLC

INTERNATIONAL PHARMACOPOEIA MONOGRAPH ON ARTEMETHER AND LUMEFANTRINE CAPSULES REVISED DRAFT FOR DISCUSSION

Development and validation of RP-HPLC method for simultaneous estimation of aspirin and omeprazole in dosage

STRESS DEGRADATION STUDIES AND DEVELOPMENT OF A VALIDATED UV SPECTROPHOTOMETRIC METHOD FOR MUPIROCIN IN BULK AND PHARMACEUTICAL FORMULATION

IAJPS 2017, 4 (07), P. Hari Sravanth Reddy et al ISSN

Journal of Pharmaceutical and Biomedical Analysis Letters. Analysis Letters

Jigar Mehta, Yauvan Pancholi, Vipul Patel, Nayan Kshatri, Niranjan Vyas*

Development of Difference Spectroscopic Method for the Estimation of Tapentadol Hydrochloride in Bulk and in Formulation

Research Article Validation of a Statistically Optimized Stability Indicating Method for the Estimation of Febuxostat in a Solid Dosage Form

Asian Journal of Research in Chemistry and Pharmaceutical Sciences Journal home page:

CHAPTER-3. Zolmitriptan

Journal of Chemical and Pharmaceutical Research, 2017, 9(7): Research Article

International Journal of Pharma Research & Review, Feb 2014; 3(2):11-16 ISSN:

STABILITY STUDIES OF RIBAVIRIN SYRUP

Kumar et al, IJPSR, 2014; Vol. 5(9): E-ISSN: ; P-ISSN:

Impurity Control in the European Pharmacopoeia

International Journal of Institutional Pharmacy and Life Sciences 6(5): September-October 2016

Analytical Method of Limit Test for Hexachlorobenzene. in Picloram TC and Method Validation Data*

Stability-Indicating RP-HPLC Method for the Simultaneous Determination of Escitalopram Oxalate and Clonazepam

Development and Validation of HPTLC Method for Estimation of Tapentadol Hydrochloride

9/2/2014. USP Monograph Modernization. Todays topics. USP basic. Todays topics. - USP basic. - USP publications. - USP monograph modernization

A validated stability indicating HPTLC method for determination of nitazoxanide

Research Article. Development and validation of RP-HPLC method for the estimation of ropinirole hydrochloride in tablet dosage forms

CHAPTERS 1, 2 and 3 CHAPTER-4 CHAPTER-5,

Kalyani G. et al.; International Journal of Pharmamedix India, 2013, 1(2),

A Validated Stability Indicating HPTLC Method for Determination of Cephalexin in Bulk and Pharmaceutical Formulation

A NEW TECHNICAL METHOD FOR GLECAPREVIR AND PIBRENTASVIR IN COMBINED DOSAGE FORMS USING NON POLAR HPLC

Forced degradation studies and validated stability indicating HPTLC method for determination of miconazole nitrate in soft lozenges

Stability Indicating RP-HPLC Method For The Determination Of Tapentadol In Bulk And In Pharmaceutical Dosage Form

IJSER. (2E)-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl)-N,N-diethylprop-2-enamide [Entacapone] 7

CHAPTER III STABILITY INDICATING ASSAY AND IMPURITIES METHODS FOR FIXED DOSE COMBINATION PRODUCT OF OMEPRAZOLE AND DOMPERIDONE

Validation of a Dual Wavelength Size Exclusion HPLC Method with Improved Sensitivity to Detect Aggregates of a Monoclonal Antibody Biotherapeutic

VALIDATION OF ANALYTICAL PROCEDURES: METHODOLOGY *)

N. Tamilselvi *, Dona Sara Kurian. Department of Pharmaceutical Analysis. KMCH college of pharmacy Coimbatore

Size Exclusion Chromatography of Biosimilar and Innovator Insulin Using the Agilent AdvanceBio SEC column

GUIDANCE NOTES ON ANALYTICAL METHOD VALIDATION

Development and validation of HPTLC stability indicating method for estimation of Azilsartan Medoxomil using Fluorescence mode

CHAPTER 2 A New stability Indicating RP-HPLC method for related substances in Zolmitriptan

HPLC METHODOLOGY MANUAL

Approaches to Development of Analytical Method for Combination Products Containing Fluconazole

Determination of Iron Content in Different Hemoglobin Samples from Some Patients by UV-Visible Spectrophotometer

Anantapuramu , Andhra Pradesh, India. Anantapur , Andhra Pradesh, India.

Sci Pharm

Development of Stability-Indicating UHPLC Method for the Quantitative Determination of Silodosin and Its Related Substances

Development & Validation of RP-HPLC Method for Estimation of Dabigatran Etexilate Mesylate from Capsule Dosage Form

A NEW GRADIENT RP- LC METHOD FOR QUANTITATIVE ANALYSIS OF DARIFENACIN HYDROBROMIDE AND ITS RELATED SUBSTANCES IN API

DEVELOPMENT AND VALIDATION OF STABILITY INDICATING HPTLC METHOD FOR DETERMINATION OF ANDOGRAPHOLIDE

DEVELOPMENT AND VALIDATION OF A STABILITY- INDICATING RP-HPLC METHOD FOR THE ESTIMATION OF ERLOTINIB IMPURITIES BY QbD APPROACH

TEMPLATE FOR AN EXAMPLE METHODS VALIDATION STANDARD OPERATING PROCEDURE (SOP)

Quantification of genotoxic "Impurity D" in Atenolol by LC/ESI/MS/MS with Agilent 1200 Series RRLC and 6410B Triple Quadrupole LC/MS

PHARMA SCIENCE MONITOR ANALYTICAL METHOD DEVELOPMENT OF NUTRACEUTICAL: UMBELLIFERONE

VICH Topic GL2 (Validation: Methodology) GUIDELINE ON VALIDATION OF ANALYTICAL PROCEDURES: METHODOLOGY

Pharmaceutical Methods

International Journal of Pharmacy

MANOHAR C. SONANIS 1,2, A.P RAJPUT 1 *

Optimizing the Purification of a Standard Chiral Compound Utilizing a Benchtop, Multi-Purpose, Semi-Preparative to Preparative HPLC System

International Journal of Research in Pharmacy and Life Sciences. International Journal of Research in Pharmacy and Life Sciences

Transcription:

Khairnar et al, IJPSR, 2014; Vol. 5(9): 3696-3703. E-ISSN: 0975-8232; P-ISSN: 2320-5148 IJPSR (2014), Vol. 5, Issue 9 (Research Article) Received on 28 February, 2014; received in revised form, 15 April, 2014; accepted, 30 May, 2014; published 01 September, 2014 METHOD DEVELOPMENT AND VALIDATION OF KETOROLAC TROMETHAMINE IN TABLET FORMULATION BY RP-HPLC METHOD Dhiraj A. Khairnar *, Chetan S. Chaudhari and Sanjay P. Anantwar Department of Pharmaceutics, M.V.P. Samaj s College of Pharmacy, Near K.T.H.M. Campus, Gangapur road, Nasik- 422002, Maharashtra, India Keywords: Ketorolac Tromethamine, RP-HPLC method, Method development, Method validation, UV detector Correspondence to Author: Dhiraj Arvind Khairnar Department of Pharmaceutics, M.V.P. Samaj s College of Pharmacy, Near K.T.H.M. Campus, Gangapur road, Nasik- 422002, Maharashtra, India. E-mail:bdhirukhairnar2011@gmail.com ABSTRACT: In present study a simple, precise and accurate method was developed and validated for analysis of Ketorolac Tromethamine in Tablet formulation. A gradient HPLC analysis was performed on Grace C18 column (250 cm 4.6 mm 5µ). The compound was separated with a solvent mixture of Methanol and water in ratio of 65:35 v/v with 0.1% O-phosphoric acid as the mobile phase at flow rate of 1ml/min. UV detection was performed at the ʎ max 245 nm. The retention time was found to be 7.70 min. The system suitability parameters such as theoretical plate count, tailing factor and percentage relative standard deviation (RSD) between six standard injections was within the limit. The method was validated according to International conference of harmonization (ICH) guidelines. The linearity was found to be in the concentration range of 5-25 µgm/ml as indicated by correlation coefficient (r 2 ) of 0.999. The robustness of the method was evaluated by deliberately altering the chromatographic condition. The developed method can be applicable for routine quantitative analysis. INTRODUCTION: Ketorolac tromethamine is a non-steroidal anti-inflammatory drug (NSAID). Chemically 2-Amino-2-(hydroxymethyl) propane- 1, 3-diol (1RS) -5- benzoyl-2, 3-dihydro-1Hpyrrolizine-1-carboxylate (API) (European Pharmacopoeia 2008) as shown in Fig 1. It is a member of the heterocyclic acetic acid derivative family and is used as an analgesic with an efficacy close to that of the opioid family. It is also a potent antipyretic and antiinflammatory. It is mainly used for the short term treatment of post-operative pain as it is highly selective for the COX-1 enzyme. 5 This Analgesic is approved by the USA Food and Drug Administration and it is non-norcotic, fast acting and non-addictive. It can be administered orally or by injection. 12 QUICK RESPONSE CODE DOI: 10.13040/IJPSR.0975-8232.5(9).3696-03 Article can be accessed online on: www.ijpsr.com DOI link: http://dx.doi.org/10.13040/ijpsr.0975-8232.5(9).3696-03 FIG 1: STRUCTURE OF KETOROLAC TROMETHAMINE (MW=376.4) International Journal of Pharmaceutical Sciences and Research 3696

Khairnar et al, IJPSR, 2014; Vol. 5(9): 3696-3703. E-ISSN: 0975-8232; P-ISSN: 2320-5148 Several studies for the estimation of the Ketorolac Tromethamine drug using various techniques have been carried out, some of them being; Development and Validation of Ketorolac Tromethamine in Eye Drop Formulation by RP-HPLC Method 1. RP- HPLC Method Development and Validation of Acuvail Drug 2. New Simultaneous UV-Visible Spectrophotometric Methods for Estimation of Ofloxacin and Ketorolac Tromethamine in Ophthalmic Dosage Form 3. Analytical Method Development and Validation for the Simultaneous Estimation of Febuxostat and Ketorolac in Tablet Dosage Forms by RP-HPLC 4. Development and validation of a rapid liquid chromatographic method for the analysis of Ketorolac Tromethamine and its related production Impurities 5. Simultaneous RP-HPLC Estimation of Moxifloxacin Hydrochloride and Ketorolac Tromethamine in Ophthalmic Dosage Forms 8. New Spectrophotometric Determination of Ketorolac Tromethamine Bulk and Pharmaceutical Dosage Form 9. Two dimensional liquid chromatography-ion trap mass spectrometry for the simultaneous determination of ketorolac enantiomers and paracetamol in human plasma application to a pharmacokinetic study 11. Reversed-phase high performance liquid chromatography of ketorolac and its application to bioequivalence studies in human serum 12. Simple and sensitive method for the analysis of ketorolac in human plasma using high-performance liquid chromatography 13. An indirect (derivatization) and a direct HPLC method for the determination of the enantiomers of ketorolac in plasma 14. EXPERIMENTAL PROCEDURES: Instrument Younglin (S.K 9000) gradient System with UV Detector (Autochro -3000 software), Sartorius Electronic Analytical balance, Crest sonicator and Grace C 18 column (4.6 mm x 250 cm 5µm) was used. Chemical and Reagents Free gift sample of Ketorolac Tromethamine was obtained from FDC limited, Mumbai. A Pharmaceutical product (Ketrol- DT) containing the same amount of drug formulation was used in the experiment HPLC grade methanol was procured from Modern lab, Nasik. HPLC grade deionized water was used throughout the experiment. Mobile Phase Methanol and Water with 0.1% O- Phosphoric acid in ratio of 65:35 v/v used as mobile phase. It was used as diluents for the preparation of sample and standard. METHOD DEVELOPMENT: Wavelength detection Accurately weighed Ketorolac Tromethamine equivalent to 0.1 gm in 100 ml volumetric flask, 100ml methanol was added, sonicate for 5min and filtered through 0.45 nylon membrane filter. Pipette out 1 ml of the above solution and dilute to 10 ml with methanol in 10 mi volumetric flask and scanned between 200-400 nm by UV spectroscopy. The λ max found was 245 nm. Chromatographic conditions Chromatographic separation was achieved at ambient temperature, the detection was carried at 245 nm at a flow rate of 1 ml/min and run time was kept 16 min. Prior to the injection of drug solution column was equilibrated for 60 min with the mobile phase flowing through the system. The injection volume was 20 µl throughout the experiment. Blank containing mobile phase was injected to check the solvent interference. Standard preparation The 10mg of Ketorolac Tromethamine was weighed and transferred into a 10ml volumetric flask and make up to the volume with methanol. From this take 0.05, 0.10, 0.15, 0.20 and 0.25ml and dilute with mobile phase up to 10ml for preparation of 5,10,15,20 and 25 µgm/ml respectively. A representative chromatogram of the standard was shown in Fig 2. FIG 2: STANDARD CHROMATOGRAM International Journal of Pharmaceutical Sciences and Research 3697

Khairnar et al, IJPSR, 2014; Vol. 5(9): 3696-3703. E-ISSN: 0975-8232; P-ISSN: 2320-5148 Sample preparation The 220mg powder of Ketrol - DT contain 10mg Ketorolac tromethamine take in 10 ml volumetric flask and make up the volume with methanol. Sonicated for 15 min and filtered through 0.45 µm nylon membrane filter. A representative chromatogram of the sample was shown in the Fig 3 and Table 1. Evaluation of System Suitability Evaluation of System Suitability The 20 µl of standard solution was injected in six duplicate before and after the analysis and the chromatogram were recorded. System suitability parameter like column efficiency, plate count and tailing factor were also recorded. The column efficiency was determined was found to be more than 2000 USP plate count, USP Tailing for the same peak is not more than 2.0 and % RSD of six injection of the standard solution is not more than 2.0% the chromatogram was shown in Fig.4 and Table 2. FIG 3: SAMPLE CHROMATOGRAM TABLE 1: ANALYSIS OF MARKETED FORMULATION Commercial Ingredients Labeled Formulation amount Ketrol DT Ketrol DT Ketorolac Tromethamine Ketorolac Tromethamine Area Amount found % found (mg) (mg) 10 mg 365.8 10.14 100.70 10 mg 368.75 10.32 101.60 FIG.4: SYSTEM SUITABILITY CHROMATOGRAM TABLE 2: SYSTEM SUITABILITY STUDY Injections USP Plate count USP Tailing Factor RT Peak Area (min) 1 8219 1.22 7.700 450.25 2 8362 1.35 7.766 453.17 3 8398 1.22 7.783 462.70 4 8219 1.22 7.700 460.36 5 6943 1.22 7.666 457.58 6 8324 1.25 7.712 452.77 Mean 7.721 456.13 SD 0.0444 4.8535 %RSD 0.5750 1.064 International Journal of Pharmaceutical Sciences and Research 3698

ANALYTICAL METHOD VALIDATION: Linearity The linearity of Ketorolac Tromethamine was determined by preparing and injecting solution with concentration of about 5-25 µgm/ml. the calibration curve indicates the response is linear over the concentration range studied for Ketorolac Tromethamine with correlation coefficient (r) of 0.999. Calibration curve for linearity shown in Fig. 5 and their values in Table 3. TABLE 3: LINEARITY Sr. No. Conc. Area Area Mean SD % RSD (µgm/ml) I II 1 5 103.12 106.00 104.56 2.04 1.95 2 10 195.70 192.72 194.21 2.11 1.08 3 15 285.38 283.32 284.35 1.46 0.81 4 20 357.56 362.75 360.16 3.67 1.02 5 25 450.39 444.36 447.38 4.26 0.85 FIG. 5: CALIBRATION CURVE FOR KETOROLAC TROMETHAMINE Precision Precision was measured in terms of repeatability of application and measurement. Repeatability of standard application ( system precision) was carried out using six replicate of the sample injection (25µgm/ml).repeatability of sample measurement ( method precision ) was carried out in six replicate of sample preparation from the same homogenous blend of the marketed sample (25 µgm/ml). The percentage RSD for repeatability of standard preparation was 1.18% where as the % RSD for repeatability of the sample 0.79%. This shows that the precision of the method is satisfactory as percentage RSD is not more than 2% the chromatogram was shown in Table 4 and 5. TABLE 4: PRECISION STUDY OF THE SYSTEM Sr. Sample % Assay Amount No. Area Present(µgm) 1 450.25 100.40 25.10 2 453.17 101.08 25.27 3 462.70 103.32 25.83 4 460.36 102.80 25.70 5 457.58 102.12 25.53 6 450.25 102.70 25.60 Mean 101.94 25.49 SD 1.20 0.30 % RSD 1.18 1.18 TABLE 5: PRECISION STUDY OF THE METHOD Sr. Sample Amount % Assay No. Area Present(µgm) 1 451.37 100.48 25.12 2 456.21 101.36 25.34 3 463.67 101.80 25.45 4 459.36 102.60 25.65 5 456.48 101.72 25.43 6 454.23 100.56 25.14 Mean 101.42 25.35 SD 0.8066 0.2016 % RSD 0.795 0.795 The inter-day precision also carry out using 10, 15 and 25 µgm/ml standard solution % RSD found is not more than 2% shown in Figure 6 and Table 6. FIG 6: PRECISION CHROMATOGRAM International Journal of Pharmaceutical Sciences and Research 3699

TABLE 6: PRECISION (INTERDAY) Accuracy The percentage recovery experiments were performed by adding known quantity of pure standard drug into the pre-analysed sample. The solution equivalent to 100mg of Ketorolac tromethamine was accurately weight into a 100ml volumetric flask. The sample was then spiked with standard at level 80 %, 100 % and 120 % of test TABLE 7: ACCURACY STUDY Sr. No. Conc. Area I Area II Mean SD RSD 1 10 194.16 192.93 193.55 0.87 0.45 2 15 277.23 283.71 280.47 4.58 1.63 3 20 441.46 445.94 443.70 3.17 0.71 Spiked Amount added Peak Amount Percent level µgm/ml area found recovery 80% 341.98 18.75 104.1 concentration. The resulting spiked sample solutions were assayed in triplicate and the results were compared and express as percentage. The mean percentage recovery of Ketorolac Tromethamine was found to be in range between 101.7 and 103.6 which are within the acceptance limit was shown in the Table 7 and Fig 7. 80% 8 344.55 18.90 105.0 103.6 80% 343.25 18.35 101.9 100% 372.86 20.56 102.8 100% 10 365.37 20.12 100.6 101.7 100% 368.42 20.39 101.9 120% 409.56 22.71 103.2 120% 12 405.88 22.50 102.2 102.8 120% 407.29 22.67 103.0 Percent mean recovery FIG 7: ACCURACY CHROMATOGRAM TABLE 8: ROBUSTNESS STUDIES System suitability parameter ( variation) % RSD of peak area response (n=3) Robustness Robustness of the method was determine by analyzing standard solution at normal operating condition by changing some operating analytical conditions such as flow rate, mobile phase and detection wavelength. The condition with variation and there result were shown in Table 8. The tailing factor is around indicative of peak symmetry and theoretical plate count also above 2000. Hence robustness of the extend of variations applied to analytical condition was shown in Fig 8. Mean tailing factor (n=3) Mean retention time (n=3) Flow change 0.9 ml/min 1.61 1.27 8.23 1.1 ml/min 1.29 1.25 6.68 Mobile phase volume 64:36 1.81 1.18 7.73 66:34 1.56 1.15 7.15 Wavelength change 244 nm 1.18 1.20 7.67 246 nm 1.87 1.18 7.33 Limit of detection (LOD) and Limit of quantification (LOQ) The limit of detection (LOD) is a lowest amount of analyte in a sample that can be detected, but not International Journal of Pharmaceutical Sciences and Research 3700

necessarily quantified, under the stated experimental conditions. LOD and LOQ was calculated by using standard deviation and slope value obtained from calibration curve by using formula LOD=3.3(SD/S) and LOQ=10(SD/D). The LOD and LOQ value for Ketorolac Tromethamine was found to be 0.825 µgm/ml and 2.501 µgm/ml respectively. Force Degradation study Thermal Degradation Heat about 1000 mg of tablet powder at 105 0 c for 24 hr. weigh accurately this powder equivalent to 100 mg of Ketorolac Tromethamine into a 100ml volumetric flask added 60 ml of diluent and sonicate 15 min with intermittent shaking and make up to the mark with diluent. Thermal degradation study was carried out after 1day, 3day and 6day shown in Fig 9. Acid degradation Weight accurately tablets powder equivalent to 100 mg of Ketorolac tromethamine into 100 ml volumetric flask add 10 ml of 5 N Hydrochloric acid heat it on water bath at 80 0 c for 8 hr, cool it add 10 ml of 5N Sodium Hydroxide and add 60 ml of diluent and sonicate, dissolved the substances, make up to the mark with diluent and mix well. Filter the solution through 0.45 µ nylon filter. The Chromatogram is shown in Fig 11. FIG 9: THERMAL STRESS CONDITION Photo stability Expose about 1000mg of tablet powder in photo stability for 1.2 million Lux hr. weigh accurately this powder equivalent to 100 mg of Ketorolac tromethamine into a 100 ml volumetric flask add 60 ml of diluent and sonicate for 15 min with intermittent shaking and make up to the mark with diluent. Filter the solution through 0.45µ nylon filter. Photo stability was carried out after 1 day, 3day and 6 day shown in Fig 10. FIG 11: ACID STRESS CONDITION Base degradation Weight accurately tablets powder equivalent to 100 mg of Ketorolac tromethamine into 100 ml volumetric flask add 10 ml of 5 N Sodium Hydroxide heat it on water bath at 80 0 c for 8 hr, cool it add 10 ml of 5N Hydrochloric acid and add 60 ml of diluent and sonicate, dissolved the substances, make up to the mark with diluent and mix well. Filter the solution through 0.45 µ nylon filter. Chromatogram shown in Fig 12. FIG 10: PHOTO DEGRADATION STUDY CHROMATOGRAM FIG 12: BASE STRESS CONDITION CHROMATOGRAM Peroxide Degradation Weight accurately tablets powder equivalent to 100 mg of Ketorolac tromethamine into 100 ml volumetric flask add 10 ml 30% hydrogen peroxide heat it on water bath at 80 0 c for 8 hr, add 60 ml of diluent and sonicate, dissolved the substances, make up to the mark with diluent and mix well. International Journal of Pharmaceutical Sciences and Research 3701

Filter the solution through 0.45 µ nylon filter. Chromatogram and force degradation data as has shown in Fig 13 and Table 9 respectively. FIG 13: PEROXIDE STRESS CONDITION TABLE 9: FORCE DEGRADATION DATA Treated Parameter RT Theoretical plate As such Ketorolac 7.88 8615.4 1.27 Thermal treatment After 1day 7.41 6497.6 1.12 3 day 7.40 6468.4 1.16 6 day 7.33 6352.4 1.12 Photo Stability After 1day 3 day 6 day 7.40 7.43 7.36 6468.4 6526.8 6410.4 Tailing factor 1.12 1.12 1.05 Acid heat 7.50 6644.4 1.12 treatment Base after heating 7.45 7694.3 1.12 Oxidation treatment after heat 7.71 6064.9 1.11 RESULTS AND DISCUSSION: A different combination of mobile phases and chromatographic conditions were tried and a mobile phase containing methanol and water with 0.1% O- phosphoric acid (65:35 V/V), Grace C18 (250 cm x 4.6 mm x 5 μ) column, 1.0 mlmin-1 flow rate, 20 μl injection volume, 30 0 C column oven temperature, 245 nm wavelength and 16 min run time was found to be suitable for all combinations. These chromatographic conditions gave retention time of 7.70 min. The force degradation study of the sample solution was evaluated by preparing a sample solution as per the proposed method and analyzed after 1 day,3day and 6 day for thermal and photo stability study retention time found same as per standard chromatogram. System precision and method precision results showed the % RSD of 1.18 and 0.79, respectively. A good linearity relationship indicated by correlation coefficient (r) value 0.999 was observed between the concentrations of 5μgmL-1 to 25 μgml-1 of Ketorolac Tromethamine. Inter-day Precision was done by changing the analyst, column, with the same chromatographic conditions and the obtained results were within the limits. The Robustness method was evaluated by deliberately varying the chromatographic conditions of the method such as mobile phase methanol content, flow rate and wavelength. The parameter like tailing factor and retention time showed adherence to the limits. The accuracy of the method was determined and the percentage recovery was calculated. The data indicates an average of 103.6 % recovery of the standard sample. CONCLUSION: The method developed for Ketorolac Tromethamine was found to be simple process and the procedure does not involve any experimental conditions. The validation results indicated that the method was specific, accurate, linear, precise, rugged and robust. The runtime was relatively 20 min which enabled rapid quantification of many samples in routine and quality control analysis of tablet formulation. ACKNOWLEDGEMENT: We are thankful to Prof. D.V. Derle Principal of M.V.P. Samaj s College of Pharmacy, Nashik for providing the facility to carry out the research work. REFERENCES: 1. Sunil G, Jambulingam M, Thangadurai AS, Kamalakannan D, Sundaraganapathy R, Jothimanivannan C: Development and Validation of Ketorolac Tromethamine in Eye Drop Formulation by RP-HPLC Method. Arabian Journal of Chemistry 2012; 1-21. 2. Babu NB, Rao SP, Raju RR: RP HPLC Method Development and Validation of Acuvail Drug. International Journal of Research in Pharmaceutical and Biomedical Sciences 2011; 2(1): 128-129. 3. Vijaya V, Vrushali T, Joshi SV, Dhole SN: New Simultaneous UV-Visible Spectrophotometric Methods for Estimation of Ofloxacin and Ketorolac Tromethamine in Ophthalmic Dosage Form. Asian J. Pharm. Ana 2013; 3 (2): 53-57. 4. Raja B, Rao AL: Analytical method development and validation for the simultaneous estimation of Febuxostat and Ketorolac in tablet dosage forms by RP-HPLC. International Journal of Pharmaceutical, Chemical and Biological Sciences 2013; 3(3): 571-576. 5. Connor ON, Geary M, Wharton M, Curtin L: Development and validation of a rapid liquid chromatographic method for the analysis of Ketorolac Tromethamine and its related production impurities. Journal of Applied Pharmaceutical Science 2012; 2(5): 15-21. 6. Vaibhav S, Mohit M, Sadhana R: Validation of RP- HPLC method for simultaneous estimation of febuxostat and Diclofenac potassium in bulk drug and in bilayer tablet International Journal of Pharmaceutical Sciences and Research 3702

formulation. International Research Journal of Pharmacy 2013; 4(9):103-106. 7. Shraddha P, Manan R, Umang S: Development and Validation of Spectrofluorimetric Method for the Estimation of 8. Dharti P, Mehul P, Ketan P: Simultaneous RP-HPLC Estimation of Moxifloxacin Hydrochloride and Ketorolac Tromethamine in Ophthalmic Dosage Forms. Asian J. Research Chem. 2012; 5(5): 698-700. 9. Pratapareddy AJ, Chakravarthi IE: New Spectrophotometric Determination of Ketorolac Tromethamine Bulk and Pharmaceutical Dosage Form. International Journal of Pharmaceutical Sciences and Research 2012; 3(12): 4848-4850. 10. Kunagu VS, Janardhan M: Development and Validation Of Stability-Indicating RP-HPLC method for estimation of Moxifloxacin in Moxifloxacin HCl Tablets 400mg. International Journal of Pharmaceutical Invention 2012; 2(7): 24-33. 11. Ing-Lorenzini KR, Desmeuels JA, Besson M et al: Two dimensional liquid chromatography-ions trap mass spectrometry for the simultaneous determination of Ketorolac enantiomers and paracetamol in human plasma Application to Moxifloxacin in Pharmaceutical Dosage Form. International Journal of Pharmacy and Pharmaceutical Sciences 2013; 5(4): 252-254. a pharmacokinetics study. Journal of Chromatography A 2009; 1216: 3851-3856. 12. Chaudhary RS, Gangwal SS, Jidal KC, Khanna S: Reversedphase high-performance liquid chromatography of Ketorolac and its application to bioequivalence studies in human serum. Journal of Chromatography 1993; 614: 180-184. 13. Muralidharan S, Kumar KJ, Parasuraman S: Simple and sensitive method for the analysis of ketorolac in human plasma using high-performance liquid chromatography. Journal of Young Pharmacists 2013; (5): 98-101. 14. Tsina I, Tam LT, Boyd A, Rocha C, Massey I, Tarnowski T: An indirect (derivatization) and a direct HPLC method for the determination of the enaniomeres of Ketorolac in plasma. Journal of Pharmaceutical and Biomedical Analysis 1996; (15): 403-417. 15. ICH, 2005. International Conference on Harmonisation (ICH) Q2 (R1): Validation of analytical procedures: Test and methodology, Geneva, Switzerland How to cite this article Khairnar DA, Chaudhari CS and Anantwar SP: Method development and validation of Ketorolac Tromethamine in tablet formulation by RP-HPLC method. Int J Pharm Sci Res 2014; 5(9): 3696-03.doi: 10.13040/IJPSR.0975-8232.5 (9).3696-03. All 2014 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore) International Journal of Pharmaceutical Sciences and Research 3703