Automated Sample Preparation for the Monitoring of Pharmaceutical and Illicit Drugs by LC-MS/MS

Similar documents
APPLICATION NOTE. Abstract. Introduction

Urinary Drug Confirmation of Selected Analytes

Single-Injection Screening of 664 Forensic Toxicology Compounds on a SCIEX X500R QTOF System

Ultra-Sensitive Quantification of Trastuzumab Emtansine in Mouse Plasma using Trap-Elute MicroLC MS Method

Universal Solution for Monoclonal Antibody Quantification in Biological Fluids Using Trap-Elute MicroLC-MS Method

AppNote 4/2014. Prep-and-Shoot : The Completely Automated Workfl ow for the Hydrolysis and Analysis of Urine Samples by LC/MS/MS.

Quantitative LC-MS Analysis of 14 Benzodiazepines in Urine Using TraceFinder 1.1 Software and High Resolution Accurate Mass

Fully automated platform for determination of Benzodiazepines in serum

Analysis of the Massachusetts Cannabis Pesticides List Using the SCIEX QTRAP System

Improving Sensitivity in Bioanalysis using Trap-and-Elute MicroLC-MS

Improving Sensitivity for an Immunocapture LC-MS Assay of Infliximab in Rat Plasma Using Trap-and-Elute MicroLC-MS

Improving the Detection Limits for Highly Basic Neuropeptides Using CESI-MS

CLEAN SCREEN XCEL EXCELLENCE JUST GOT BETTER UCT FORENSICS INNOVATION THROUGH CHEMISTRY

Pharmacokinetic Analysis of the mab Adalimumab by ELISA and Hybrid LBA/LC/MS: A Comparison Study

On-line SPE-LC/MS/MS to Detect Organonitrogen and Triazine Pesticides at 10ng/L in Drinking Water

MultiQuant Software 2.0 with the SignalFinder Algorithm

Applications of GC-MS-MS and LC-Ion Trap MS-MS in Postmortem Forensic Toxicology

A Sub-picogram Quantification Method for Desmopressin in Plasma using the SCIEX Triple Quad 6500 System

Choosing LC Columns and Sample Prep Options for Biological Matrices

A Sub-picogram Quantification Method for Desmopressin in Plasma using the AB SCIEX Triple Quad 6500 System

Multiplexing Two Different Food Residue Methods using HILIC and Reversed Phase Chromatography in the Same LC-MS/MS Run

OptiFlow Quant Solution for High-Sensitivity Quantitation

MultiQuant Software Version 3.0

Q40. This automated platform will streamline the two part QuEChERS method from the liquid extraction through the cleanup.

EPA Method 543: Selected Organic Contaminants by Online SPE LC/MS/MS Using the Agilent Flexible Cube

High Levels of Sensitivity and Robustness for Complex and Demanding Matrices SCIEX TRIPLE QUAD 5500 SYSTEM

Tyler Trent, Applications Sales Specialist; Teledyne Tekmar Page 1

EPA Method 540: Selected Organic Contaminants Using Agilent Plexa Cartridges and the Agilent 6460 Triple Quadrupole LC/MS

Clinical IVD LC-MS/MS Systems Class l Medical Devices and CE-marked LC-MS/MS In Vitro Diagnostic Systems

Rapid Soft Spot Analysis using the SCIEX Routine Biotransform Solution

ACCURACY THE FIRST TIME. Reliable testing with performance, productivity and value combined AB SCIEX 3200MD SERIES MASS SPECTROMETERS

Automating the C100ht Biologics Analyzer Sample Preparation on a Biomek i5 Liquid Handler Platform

Quantification of genotoxic "Impurity D" in Atenolol by LC/ESI/MS/MS with Agilent 1200 Series RRLC and 6410B Triple Quadrupole LC/MS

CLEAN SCREEN FASt FILTER AND SHOOT UCT FORENSICS. CLEAN SCREEN FASt SPE COLUMNS

Increased Throughput in the Determination of PPCPs in Water Using Optimized MS Cycle Times in a High Sensitivity UHPLC-Triple Quadrupole System

LC Application Note.

Quick Reference Instructions

Application Note. Authors. Abstract

Thermo Scientific PAiNACEA Suite of Solutions

Biotherapeutic Peptide Mapping Information Dependent Acquisition (IDA) Method

10. Validated Normal Phase HPLC Method for the Determination. Fulvestrant is primarily used in the treatment of hormone receptor

Updating Solid Phase Extraction Methods: Tips and Tricks for Improving Existing and New SPE Methods using Method Development

ACCURACY THE FIRST TIME. Bring Your Esoteric Assays In-House Routinely SCIEX DIAGNOSTICS MASS SPECTROMETERS

Benefits of 2D-LC/MS/MS in Pharmaceutical Bioanalytics

Tabisam Khan 1, David R. Little 1, Liyu Yang 2, Jiwen Chen 2, Parya Nouri 2, Samy Tadros 2, Patrick J. Rudewicz 2

Quantitatitive Analysis of Phosphorothioate Oligonucleotide in Human Plasma Using LC-MS/MS with On-Line Extraction

ProteinPilot Report for ProteinPilot Software

Quantitation of Microcystins and Nodularins in Water Samples Using LC-MS/MS

Biotherapeutic Non-Reduced Peptide Mapping

Agilent 6400 Series Triple Quadrupole LC/MS Systems SUPERIOR SENSITIVITY WITH EASY UPGRADEABILITY

Application Note. Abstract. Introduction. Experimental Instrument Conditions. Evaluation of Prohibited Dyes in Food : By An Automated Extraction

Application Note. Abstract. Authors. Food Safety

Accelerating Throughput for Targeted Quantitation of Proteins/Peptides in Biological Samples

Robustness of the Agilent Ultivo Triple Quadrupole LC/MS for Routine Analysis in Food Safety

The LC-MS/MS Workhorse. SCIEX 4500 Series Mass Spectrometers

Interpath Laboratory, Inc. Test File Update

Illicit Drug Analysis in Urine Using 2D LC-MS/MS for Forensic Toxicology

See More, Much More Clearly

BioBA High Capacity Enrichment Sample Preparation Kit:

Development and evaluation of Nano-ESI coupled to a triple quadrupole mass spectrometer for quantitative proteomics research

Introduction. Benefits of the SWATH Acquisition Workflow for Metabolomics Applications

The Agilent Metabolomics Dynamic MRM Database and Method

SCIEX OS Software One Touch Productivity

Rapid Peptide Catabolite ID using the SCIEX Routine Biotransform Solution

Isotopic Resolution of Chromatographically Separated IdeS Subunits Using the X500B QTOF System

Featuring Analyst software under Windows NT for enhanced performance and ease of use. API 150EX. LC/MS System

Analysis of Trace Organic Contaminants in Water by Direct Injection Using Agilent 6490 LC/MS/MS with Pos/Neg Switching

AB SCIEX 4500 SERIES MASS SPECTROMETERS. The new workhorse for LC/MS/MS AB SCIEX 4500 SERIES MASS SPECTROMETERS

Professional Panel Screen by LC/MS/MS. Andrew J. Fischinger Ph.D., MT(ASCP) & Lesli Joseph B.S. Norchem Drug Testing, Flagstaff, AZ

The Agilent StreamSelect LC/MS Solution: Increasing the Throughput of a Triple Quadrupole Mass Spectrometer

Converting a Liquid-Liquid Extraction Method for Vitamin D to a 96-Well Plate Supported Liquid Extraction Format

Enabling Systems Biology Driven Proteome Wide Quantitation of Mycobacterium Tuberculosis

Repeatability of C100ht Biologics Analyzer, for High Throughput Glycan Screening

MRMPilot Software: Accelerating MRM Assay Development for Targeted Quantitative Proteomics

Analysis of Illegal Dyes in Food Matrices Using Automated Online Sample Preparation with Liquid Chromatography-Mass Spectrometry

World-leading LC/MS/MS technology for quantitation and identification API LC/MS/MS System

A Novel Dried Matrix Microsampling. Eliminates the Volume Based Hematocrit Bias Associated with DBS Sub-punch Workflows

«Tit» «Name» «Fam_Nam» «Organization» «Address1» «Address_2» «PO_Box» «City». «Country» Sevilla, November, 2011

Fully Automated C100HT Biologics Analyzer Sample Preparation on a Biomek i5 Multichannel Workstation

Quantitation of cyanotoxins in drinking water according to EPA 544 guidelines

Agilent Technologies. Technological Innovation and Growth of Liquid Chromatography Mass Spectrometry for Research in the Clinical Laboratory

Made for Routine Food, Environment, and Forensic Testing. The X500R QTOF System

A Rapid and Reproducible Immuno-MS Platform from Sample Collection to Quantitation of IgG

Liquid Chromatograph Liquid Chromatograph Mass Spectrometer. CL Series. for In Vitro Diagnostic Use

Attachment A, Scope of Work

The system has an optimized porosity distribution and acts as a depth filter, retaining the precipitated protein without well blockage.

Exploring Extra Sensitivity Using ionkey/ms with the Xevo G2-XS Q-Tof HRMS for Small Molecule Pharmaceutical Analysis in Human Plasma

Investigating Biological Variation of Liver Enzymes in Human Hepatocytes

Above and beyond the extraordinary

Application Note. Abstract. Authors. Environmental

Quantification of Host Cell Protein Impurities Using the Agilent 1290 Infinity II LC Coupled with the 6495B Triple Quadrupole LC/MS System

CLSI C60: Assay Validation & Post-Validation Monitoring

[ WHITE PAPER ] High Throughput Microflow LC-MS: Sensitivity Gains on a Practical Timescale ABSTRACT INTRODUCTION

Pesticide Residues in Produce Analyzed by Targeted MRM HR Full- Scan Acquisition and Processing

A Rapid imethod TM Test for Analysis of Four Immunosuppressants

Increasing Throughput and Efficiency with Exactive LC/MS and Triple Quadrupole LC/MS/MS

Jonathan R. Beck and Charles T. Yang; Thermo Fisher Scientific, San Jose, CA

Simplifying ImmunoAffinity Capture Workflow

A Highly Accurate Mass Profiling Approach to Protein Biomarker Discovery Using HPLC-Chip/ MS-Enabled ESI-TOF MS

ENVIRONMENTAL ANALYSIS. Solutions for Your Analytical Business Markets and Applications Programs. Solution Note

Transcription:

Automated Sample Preparation for the Monitoring of Pharmaceutical and Illicit Drugs by LC-MS/MS SCIEX Triple Quad 4500 LC/MS/MS system and Beckman Coulter Biomek 4000 Workstation Lekh Sharma 1, Michael Kowalski 2, Michael Jarvis 3, Amy Gibson 2 and Navaline Quach 2 1 Vision Laboratories, LLC, Chattanooga, TN, USA; 2 Beckman Coulter Life Sciences, Indianapolis, IN, USA; 3 SCIEX, Concord, ON, Canada Abstract Automated sample preparation enables highly reproducible quantitative analyses while meeting the increased efficiency needs often required for sample processing in laboratories. This application note describes results obtained using a liquid handling-based automation system for the sample preparation of compounds to be analyzed by LC-MS/MS and applied to the monitoring of multiple classes of pharmaceutical and illicit drugs. This screen panel contains 56 compounds that could be identified and quantified over a wide range of concentrations from 0.5X to 10X the cut-off value. In addition, the large majority of the compounds could be analyzed with accuracy over 80% and CV under 15%. This method provides automated capabilities for analytical laboratories that currently routinely process samples manually for the monitoring of these drugs in biological fluids. Introduction Liquid chromatography-tandem mass spectrometry provides laboratories with a powerful tool for accurate, multiplexed analysis of large panels of compounds. As a consequence, this technology is being increasingly applied to the forensic screening of urine samples, to monitor for the potential diversion of prescription pharmaceutical drugs. As the number of samples to be analyzed increases, the bench time required to process these samples, as well as the opportunity for errors in processing also increases. Automating the sample preparation prior to analysis by LC-MS/MS can increase the possible throughput, reduce the active bench time required to prepare even small numbers of samples, and minimize the number of human intervention points, thereby minimizing opportunities for error and maintaining the integrity of sample information. Automation can also eliminate the variability that is introduced by multiple technologists processing samples in slightly different fashions. In this work, we have utilized a Biomek 4000 Workstation (Figure 1) to automate the sample processing for the forensic screening of pharmaceutical drugs in human urine on an SCIEX Triple Quad 4500 LC/MS/MS system. This method enabled the analysis of 56 compounds across multiple drug classes, including the opiates, opioids, benzodiazepines, amphetamines, tricyclic antidepressants, barbiturates, and illicit drugs cannabis (THC-COOH), synthetic cannabinoids and bath salts. Standard curves were generated across 6 concentration levels, ranging from 0.5x 10x the cut-off levels (Table 3), and excellent accuracy, precision, and curve linearity was observed. Figure 1. Beckman Coulter Biomek 4000 Workstation (left) and SCIEX Triple Quad 4500 LC/MS/MS system (right). p 1

Materials and Methods Automated Sample Preparation The automated sample preparation protocol is described in Table 1. Briefly, pre-cleared urine controls and samples were combined with acetate buffer and beta-glucuronidase. Following automated mixing, the plate was removed from the deck, capped, and heated to 55 C for 2 hours. Following incubation, curve diluent was added to each well and the plate was centrifuged to clear any precipitate in the samples. 200 µl of the supernatant was transferred to a new plate and analyzed by LC- MS/MS. This workflow was automated on a Biomek 4000 Workstation that utilizes single and 8-channel pipetting tools. In the software, users highlight the plate wells that contain samples or controls to initiate sample processing. To accelerate the sample preparation, reagents were added to full plate columns using the multichannel tools while partial columns (if any) were transferred using the single channel tool. The volumes of reagents and standards were also set as variables to enable easy alterations during initial optimization studies. The Biomek 4000 deck layouts for pre- and post-incubation steps are illustrated in Figure 2. Upon completion of the methods text files are generated to ensure data such as sample barcodes are maintained throughout the workflow, and these barcodes can be pasted into an Analyst batch for LC-MS/MS analysis. Analyses by LC/MS/MS HPLC separation was performed using a Shimadzu Prominence LC-20XR system and mass spectrometric detection was performed using the SCIEX Triple Quad 4500 LC/MS/MS system (Figure 1), equipped with Turbo V ionization source (Temperature = 600 C; Gas1 = 60; Gas2 = 50; Curtain Gas = 25). The temperature of the autosampler was set at 15 C. The prepared (hydrolyzed and cleaned) samples were injected onto the system, and the chromatographic separation was achieved using a Phenomenex Kinetex Biphenyl (50x3.0mm, 2.6µm) column, at 40 C. The separation employed a binary gradient of mobile phases A (HPLC-grade water with 0.1% Table 1. Automated sample preparation protocol for LC-MS/MS analysis of human urine samples Step 1 Barcoded urine samples are added to a deepwell plate ( Samples ) and precleared by centrifugation at 4500 rpm in an Allegra X-30R (Beckman Coulter). Manual Step 2 100 µl of samples, calibrators, and QC controls are transferred to a deepwell plate ( Assay ). Automated Step 3 50 µl of 0.1 M ph 4 acetate buffer is added to each well. Automated Step 4 25 µl of β-glucuronidase (100,000 U/mL) is added to each well and the plate is shaken to mix. Automated Step 5 Plate is sealed and incubated in a water bath at 55 C for 2 hours. Offline Step 6 50 µl of internal standard is added to each well except for the double blank urine control, which receives 50 µl water. Automated Step 7 750 µl of curve diluent is added to each well and the plate is shaken to mix. Automated Step 8 Samples are centrifuged at 4500 rpm in an Allegra X-30R, for 15 minutes. Offline Step 8 200 µl of supernatant are transferred to a flat-bottomed plate ( LCMS ) for analysis. Automated Step 10 Analysis by LC-MS/MS system. p 2

Figure 2. Software representation of the Biomek 4000 deck demonstrating the labware utilized for preincubation (top) and postincubation (bottom) automated methods. Figure 3. HPLC gradient (% Mobile Phase B) for the analysis of 53 target compounds on the AB SCIEX Triple Quad 4500 LC/MS/MS system, using positive electrospray ionization (ESI), with a run-time of 7 minutes. Overlaid is a representative chromatogram displaying all analytes at their respective cut-off concentration levels. 100 80 4.5 5.5 %B 60 40 20 2.0 0.66 0.5 7.0 Time (minutes) Figure 4. HPLC gradient (% Mobile Phase B) for the analysis of 3 target compounds on the AB SCIEX Triple Quad 4500 LC/MS/MS system, using negative electrospray ionization (ESI), with a run-time of 5 minutes. Overlaid is a representative chromatogram displaying all analytes at their respective cut-off concentration levels. 2.13 100 3.0 80 1.5 formic acid) and B (methanol with 0.1% formic acid). The LC- MS/MS data acquisition was done using the Analyst 1.6.2 software. Multiquant 3.0.1 software was used for data processing, and reporting. Two MRM transitions were used to monitor each analyte, and a single MRM transition was used to monitor each internal standard. The Scheduled MRM algorithm was employed, to maximize the acquisition dwell time for each analyte and thereby improve data quality. %B 60 40 20 1.91 1.95 2.26 2.37 Time (minutes) 5.0 Each sample was injected twice: the first injection utilized an LC- MS/MS method that was optimized for the analysis of those analytes that ionize preferentially in positive electrospray ionization (ESI) mode (including the opiates, opioids, benzodiazepines, amphetamines, tricyclic antidepressants, and other illicit drugs); the second injection utilized an LC-MS/MS method that was optimized for the analysis of those analytes that ionize preferentially in negative mode (Butalbital,Phenobarbital, and THC-COOH). For the positive ESI analytes (Ion Spray voltage = 2500), 10µl of sample were injected and run at a flow rate of 0.6mL/min for a 7 min run time with the following time profile for mobile phase B: 0-0.5 minute hold at 10% B; 0.5-2.0 minute ramp from 10-25% B; 2.0-4.5 minute ramp from 25-80% B; 4.5-5.5 minute hold at 85% B; 5.5-7.0 minute hold (reequilibrate) at 10% B (Figure 3). Each analyte was monitored during a 50-second detection window centered on the expected Retention Time. For the negative ESI analytes (Ion Spray voltage = -4500), 20µL of sample were injected and run at a flow rate of 0.5 ml/min for a 5 min run time with the following profile for mobile phase B: 0-1.5 minute ramp from 25-85% B; 1.5-3.0 minute ramp from 85-95% B; 3.1-5.0 minute hold (re-equilibrate) at 25% B (Figure 4). Each analyte was monitored during a 30- second detection window centered on the expected Retention Time. Results A full plate of 96 samples and controls can be processed in just over three hours, including the two hour incubation step and offline centrifugation. The reproducibility of the automated sample preparation protocol was assessed by preparing and analyzing replicates (n=6) of each calibration standard for the 56 target analytes. A total of 6 concentration levels were prepared and analyzed, across a concentration range from 0.5x 10x the cut-off levels. The method displayed good sensitivity, accuracy, precision, and linearity for all analytes. Representative calibration curves are shown in Figure 5 for (a) Hydrocodone, (b) Butalbital, (c) Methadone, and (d) Amphetamine. Representative chromatograms at the cut-off level are displayed in Figure 6, for each of these four analytes, demonstrating the excellent sensitivity of this method. Table 2 shows the average accuracy p 3

Table 2. Average accuracy and CV values for each of the 56 analytes across all points on the calibration curve (0.5X-10X the cut-off level). Compound Name Cutoff Value Average (ng/ml) Accuracy Average CV (%) Compound Name Cutoff Value Average (ng/ml) Accuracy Average CV (%) 6 MAM 1 95.2 8.1 MDMA 10 98.4 4.8 7 Amino clonazepam 25.0 96.5 6.3 MDPV 2 96.0 6.8 α hydroxyalprazolam 5 93.7 8.1 Meperidine 5 97.9 3.7 Alprazolam 5 93.9 7.2 Mephedrone 2 99.8 4.8 Amitriptyline 10 95.7 4.9 Meprobamate 10 97.9 17.8 Amphetamine 10 96.4 2.7 Methadone 5 96.2 5.6 Benzoylecgonine 5 96.1 4.2 Methamphetamine 10 98.2 6.6 Buprenorphine 2 99.8 11.6 Methylphenidate 10 97.1 6.9 Butylone 2 96.9 6.3 Midazolam 5 98.7 7.8 Clonazepam 5 94.2 7.6 Morphine 5 96.7 4.1 Codeine 5 96.1 7.5 Naloxone 5 93.4 6.9 Cotinine 5 97.5 2.2 Norbuprenorphine 2 98.7 17.8 Cyclobenzaprine 10 96.6 5.1 Nordiazepam 5 96.9 8.0 Desipramine 10 98.6 6.0 Norfentanyl 2.0 95.5 5.2 Diazepam 5 108.8 15.9 Norhydrocodone 10 97.1 6.7 EDDP 5 99.5 5.3 Normeperidine 5 98.1 4.3 Fentanyl 2.0 94.3 7.2 Noroxycodone 10 98.3 6.2 Flunitrazepam 5 105.4 12.9 Oxazepam 5 94.0 8.6 Fluoxetine 10 93.4 11.4 Oxycodone 5 97.2 1 Flurazepam 5 89.0 9.9 Oxymorphone 5 98.3 5.0 Gabapentin 50 96.5 3.1 Pregabalin 50 97.6 3.3 Hydrocodone 5 97.8 3.7 Tapentadol 25.0 94.8 4.5 Hydromorphone 5 97.0 3.3 Temazepam 5 100.2 7.1 Imipramine 10 95.7 7.7 Tramadol 5 97.7 4.6 JWH018 4 hydoxypentyl 2 97.2 5.0 Zolpidem 10 95.7 6.9 JWH018 5 hydoxypentyl 2 96.7 6.4 Butalbital 10 10 7.6 Lorazepam 5 95.5 9.3 Phenobarbital 10 98.9 3.5 MDA 10 96.2 9.5 THC COOH 1 99.8 10.1 and coefficient of variation (CV) across the six detection levels for the 56 analytes. The average accuracies ranged from 89% to 109%. The average CVs were below 18% for all analytes, with 49 out of 56 analytes having average CVs below 10%. The average accuracy at each calibration level across all 56 analytes ranged from 92% to 102%, as shown in Table 3, with CVs below 11% at the lowest calibrator level (0.5X cut-off). From the 336 data points that were analyzed (56 compounds, at 6 different concentrations), 98% displayed accuracy over 80% and 92% displayed CVs under 15% (data not shown). p 4

4.0e4 3.8e4 3.6e4 3.4e4 3.2e4 3.0e4 2.8e4 2.6e4 2.4e4 2.2e4 1.8e4 1.6e4 1.4e4 1.2e4 1.0e4 800 600 400 200 7.9e4 7.5e4 7.0e4 6.5e4 6.0e4 5.5e4 5.0e4 4.5e4 4.0e4 3.5e4 3.0e4 2.5e4 1.5e4 1.0e4 500 5.17 3.49 5.02 5.04 5.06 5.08 5.10 5.12 5.14 5.16 5.18 5.20 5.22 5.24 5.26 5.28 5.30 5.32 5.34 5.36 5.38 3600 3400 3200 3000 2800 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 600 400 200 0 2.8e5 2.6e5 2.4e5 2.2e5 2.0e5 1.8e5 1.6e5 1.4e5 1.2e5 1.0e5 8.0e4 6.0e4 4.0e4 2.19 2.02 2.04 2.06 2.08 2.10 2.12 2.14 2.16 2.18 2.20 2.22 2.24 2.26 2.28 2.30 2.32 2.34 2.36 2.38 2.47 2.28 2.30 2.32 2.34 2.36 2.38 2.40 2.42 2.44 2.46 2.48 2.50 2.52 2.54 2.56 2.58 2.60 2.62 2.64 2.66 2.68 Table 3. Average CVs and accuracies at each level of the calibration curve, across 56 analytes. Fold Cutoff Value Average Accuracy Average CV (%) Figure 5. Representative calibration curves plotting Area Ratio (Y-axis) vs. Concentration Ratio (X-axis) for (a) Hydrocodone, (b) Butalbital, (c) Methadone, and (d) Amphetamine. The curves demonstrate the precision and linearity of the analysis. 0.5 101.4 10.7 0.75 92.7 8.4 1 93.6 6.6 3 101.9 5.3 5 92.6 6.3 10 100.6 4.9 Conclusion In this study, a successful application of an automated sample preparation protocol for the analyses of 56 drug compounds in urine by LC-MS/MS has been presented. The Beckman Coulter Biomek 4000 Workstation was used to prepare the calibration curves and urine samples for analysis. The SCIEX Triple Quad 4500 LC/MS/MS system was used for the identification and quantification of analytes in the samples. Figure 6. Representative chromatograms at the cut-off level for (a) Hydrocodone, (b) Butalbital, (c) Methadone, and (d) Amphetamine, demonstrating the excellent sensitivity of this analysis. (a) Hydrocodone 50 ng/ml (S:N = 270) (b) Butalbital 100 ng/ml (S:N = 160) Overall, this automated method offers a simple, rapid, accurate and reproducible solution for the quantitative analysis of pharmaceutical and illicit drug compounds that are still routinely processed manually in analytical laboratories 3.34 3.36 3.38 3.40 3.42 3.44 3.46 3.48 3.50 3.52 3.54 3.56 3.58 3.60 3.62 3.64 3.66 (c) Methadone 50 ng/ml (S:N = 2000) (d) Amphetamine 100 ng/ml (S:N = 300) AB Sciex is doing business as SCIEX 2015 AB Sciex. For Research Use Only. Not for use in diagnostic procedures. The trademarks mentioned herein are the property of AB Sciex Pte. Ltd. or their respective owners. AB SCIEX is being used under license. Document number: RUO-MKT-02-2138-A p 5