Superparamagnetism and magnetic defects in Fe 2 VAl and Fe 2 VGa

Similar documents
Hyperfine field distributions in disordered Mn 2 CoSn and Mn 2 NiSn Heusler alloys

Magnetic properties of ball-milled FeAl nanograins

Non-Magnetic Stainless Steels Reinvestigated a Small Effective Field Component in External Magnetic Fields

X-ray and Neutron Analysis of Heusler Alloys

Structural and magnetic investigations of Sc(Fe 1 x Ni x ) 2 compounds by means of Mössbauer effect and neutron diffraction

Magnetism and phase stability of fcc Fe Co alloys precipitated in a Cu matrix

FREQUENCY, DC-FIELD AND TEMPERATURE DEPENDENCE OF THE AC-SUSCEPTIBILITY OF Nd 60 Fe 30 Al 10 ALLOY

Magnetic and Structural Properties of Fe Mn Al Alloys Produced by Mechanical Alloying

CEMS study on diluted magneto titanium oxide films prepared by pulsed laser deposition

PRECIS AND CONCLUSIONS

Magnetic resonance study of M 3 Fe 4 V 6 O 24 (M = Mg, Zn, Mn, Cu, Co) compounds

MAGNETIC PROPERTIES OF MAGNESIOFERRITE IN MAGNESIOWÜSTITE MATRIX

Preparation of NdFe 10.5 V 1.5 N x powders with potential as high-performance permanent magnets

Analysis of the Ferromagnetic Transition in Melt- Spun Gadolinium Nanocrystals

Magnetic Phase Competition in Off-Stoichiometric Heusler Alloys: The Case of Ni 50-x Co x Mn 25+y Sn 25-y

Size-dependent spin-reorientation transition in Nd 2 Fe 14 B. nanoparticles

A Study on the Formation of Magnetic Refrigerant La(Fe,Si) 13

Lattice instabilities during martensitic transformation in Cu-Zn-Al alloys by nuclear magnetic resonance

Magnetic and Magneto-Transport Properties of Mn-Doped Germanium Films

Pulsed NMR of Paramagnetic Terbium. Cheyenne Michael Yari

EFFECT OF THE ANNEALING TEMPERATURE ON THE ELECTRONIC AND ATOMIC STRUCTURES OF EXCHANGE-BIASED NiFe FeMn BILAYERS

The effect of holmium doping on the magnetic and transport properties of La 0.7 x Ho x Sr 0.3 MnO 3 (0 x 0.4)

Microstructure and Magnetic Properties of Iron Oxide Nanoparticles Prepared by Wet Chemical Method

Microstructure and magnetic properties of nanocrystalline Fe-based alloys

Magnetic properties of nickel and platinum quaternary borocarbides

Magnetic properties of (Eu,Gd)Te semiconductor layers

Dilute magnetic semiconductors. Iuliia Mikulska University of Nova Gorica Doctoral study, programme physics

Session 1A4a AC Transport, Impedance Spectra, Magnetoimpedance

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 23 Mar 2001

MICROMAGNETISM AND THE MICROSTRUCTURE OF FERROMAGNETIC SOLIDS

Ferromagnetic transition in Ge 1 x Mn x Te semiconductor layers

Journal of Nuclear and Radiochemical Sciences, Vol. 11, No.1, pp. 1-5, 2010

Mössbauer Measurements on Spinel-structure Iron Oxide Nanoparticles

Synthetic antiferromagnet with Heusler alloy Co 2 FeAl ferromagnetic layers

Magnetic Properties of Fe 65 (Ni 1-x Mn x ) 35 Ternary Alloys

Phase Transitions Module γ-2: VSM study of Curie Temperatures 1 Instructor: Silvija Gradečak

Investigation of different iron sites in -Fe y. N (2<y<3) nanoparticles using Mössbauer spectroscopy. Journal of Physics: Conference Series

Nuclear Magnetic Resonance of Amorphous Alloys

Mössbauer and magnetic studies for the coexistence of ε-fe 3-x Ni x N and γ'-fe 4-y Ni y N phases in Fe-Ni-N nanoparticles

Inducement of superconductivity in Fe(Te,S) by sulfuric acid treatment

First principles study on the electronic structure and magnetism of Fe 1 x Co x Si alloys

Magnetoresistance in glass-coated Fe Ni Cu microwires

AC susceptibility data on Dy 2 O 3 seeded randomly oriented Dy-123 mono domains melt-textured superconductor

ON THE HALL EFFECT AND MAGNETORESISTANCE OF Co Fe 4.5 Si B 15 Mo 2 AMORPHOUS AND CRYSTALLIZED RIBBONS

Magnetic and Mössbauer studies of Fe and Co co-doped SnO 2

Table 1 Chemical composition of the specimens. Wt.% Ni Cr Fe Mn Si C Alloy NiCrFe alloy (X = 9-12,16) 92-X X

Ab-initio Calculation of Structural and Magnetic Properties of Annealed Cu 2 MnAl Heusler Alloy

STRUCTURE AND MAGNETIC PROPERTIES OF THE Zr 30

National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310

Detection of Sensitization for 600 Alloy and Austenitic Stainless Steel by Magnetic Field Sensor

Supplementary Figure 1: Photograph of our FeSe single crystals and the rocking curve of the co-aligned crystals. (a) Photograph of representative

by K. H. J. BUSCHOW Philips Research Laboratories, 5600 JA Eindhoven, The Netherlands

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Aug 2002

Structural transitions, magnetic properties, and electronic structures of Co(Fe)-doped MnNiSi compounds

BULK AMORPHOUS MAGNETIC MATERIALS

Structure and Magnetic Properties of Mn and Al Doped Magnesium Ferrite

Study of electric quadrupole interactions at 111 Cd on Zn sites in RZn (R = Ce, Gd, Tb, Dy) compounds using the PAC spectroscopy

Soft Magnetic Properties of Nanocystalline Fe Si B Nb Cu Rod Alloys Obtained by Crystallization of Cast Amorphous Phase

Annealing of Amorphous Sm 5 Fe 17 Melt-Spun Ribbon

7. FERROMAGNETIC MATERIALS. aligned atomic dipoles

Taimur Ahmed. Chalmers University of Technology, Sweden

Kiyoshi Nomura, Alexandre Rykov, Zoltán Németh & Yoshitaka Yoda

A new magnetic NDE method in inconel 600 alloy

Magnetic and electrical properties of amorphous CoFeB films

MAGNETIC ANISOTROPY OF UFe 10-xNixSi2 INTERMETALLIC ALLOYS

Magneto-resistance and superparamagnetism in magnetite films on MgO and MgAl2O4 Eerenstein, W.; Kalev, L.; Niesen, L.; Palstra, Thomas; Hibma, T.

MAGNETIC PROPERTY IMPROVEMENT OF NIOBIUM DOPED WITH RARE EARTH ELEMENTS

Structural and magnetic properties of Nd 2 Co 17 x V x compounds

Characterization. of solid catalysts. 5. Mössbauer Spectroscopy. Prof dr J W (Hans) Niemantsverdriet.

Ferromagnetic Transitions

Phase monitoring during Nd(Fe,M) 12 (M = Mo and Ti) compounds nitrogenation by chemical reaction with sodium azide (NaN 3 )

Magnetic Properties of Electrodeposited Nanocrystalline Ni-Fe alloys

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

INTRODUCTION TO MAGNETIC MATERIALS

TEMPERATURE DEPENDENCE OF INTENSITIES on Pt-rich Pt-Mn ALLOYS BY NEUTRON DIFFRACTION

High temperature magnetic ordering in La 2 RuO 5

Charge and spin density on iron nuclei in the BCC Fe Ga alloys studied by Mössbauer spectroscopy

Observation of magnetization reversal and negative magnetization

Hf Doping Effect on Hard Magnetism of Nanocrystalline Zr18-x HfxCo82 Ribbons

Intrinsic Magnetism of Grain Boundaries in Two-Dimensional Metal Dichalcogenides

Low-temperature hysteresis and susceptibility of magnetite

Field-induced multiple metamagnetization in phase transition from paramagnetic austenite to ferromagnetic martensite in MnNi 1-x Fe x Ge

Synthesis and Magnetic Properties of Zn, Co and Ni Substituted Manganese Ferrite Powders by Sol-gel Method

VACANCY MOBILITY IN NICKEL ALUMINIDE VERSUS COMPOSITION

Author(s) Takata, K; Yamada, I; Azuma, M; Tak. Citation PHYSICAL REVIEW B (2007), 76(2)

The growth of a single crystal of Sr 3 CuIrO 6 and its magnetic behavior compared to polycrystals

Investigation of the magnetic hyperfine field at the Y site in the Heusler alloys (Y =

Magnetism in wide band gap semiconductors implanted with non-magnetic ions

AISI 304 steel: anomalous evolution of martensitic phase following heat treatments at 400 C

Hard magnetic property and δm(h) plot for sintered NdFeB magnet

SUPPLEMENTARY INFORMATION

HfCo7-Based Rare-Earth-Free Permanent-Magnet Alloys

Electronic materials and components-inductive components

Anisotropic Mechanical Properties of Pr(Co,In) 5 -type Compounds and Their Relation to Texture Formation in Die-upset Magnets

Preparation and characterization of Co BaTiO 3 nano-composite films by the pulsed laser deposition

Amorphous Materials Exam II 180 min Exam

Magnetic behaviour of nano-particles of Ni 0.5 Co 0.5 Fe 2 O 4 prepared using two different routes

Study of the Structural and Magnetic Properties of Li Substituted Cu-Mn Mixed Ferrites

Site preference and electronic structure of Mn 2 RhZ (Z = Al, Ga, In, Si, Ge, Sn, Sb): a theoretical study

University of Groningen

Transcription:

INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 13 (2001) 1585 1593 www.iop.org/journals/cm PII: S0953-8984(01)17968-3 Superparamagnetism and magnetic defects in Fe 2 VAl and Fe 2 VGa C S Lue 1,3, Joseph H Ross Jr 1,KDDRathnayaka 1, D G Naugle 1, SYWu 2 and W-H Li 2 1 Department of Physics, Texas A&M University, College Station, TX 77843-4242, USA 2 Department of Physics, National Central University, Chung-Li 32054, Taiwan E-mail: jhross@tamu.edu (J H Ross Jr) Received 12 October 2000 Abstract We have investigated the magnetic properties of Heusler-type Fe 2 VAl and Fe 2 VGa by means of susceptibility, magnetization, and nuclear magnetic resonance (NMR) measurements. As evidenced by the static and dynamic magnetic susceptibilities, both compounds exhibit the characteristic features of a superparamagnetic glass. The freezing temperatures of our samples are 23 K for Fe 2 VAl and 9 K for Fe 2 VGa. A detailed analysis indicates the coexistence of individual magnetic defects with large-moment superparamagnetic clusters. The temperature-dependent magnetization and NMR linewidth are dominated by isolated magnetic defects, identified as Fe antisite defects. The concentration of these defects, determined from NMR linewidths, is 4.5 10 3 in Fe 2 VAl, in good agreement with the value deduced from previous field-dependent specific heat measurements. 1. Introduction The Fe 2+x V 1 x Al and Fe 2+x V 1 x Ga intermetallics have been topics of recent interest due to their unusual magnetic and transport behaviour [1 6]. In both systems, a broad peak in electrical resistivity coincides with an apparent magnetic transition temperature, T c, with a negative temperature coefficient of resistivity above T c going over to a positive temperature coefficient below the transition [1 6]. However, NMR measurements indicate stoichiometric Fe 2 VAl and Fe 2 VGa to be nonmagnetic semimetals [7, 8], in agreement with theoretical work [9 11]. Therefore, the T c for these materials must be due to the presence of magnetic defects, such as those measured via field-dependent specific heat [12]. The behaviour of magnetic defects in Fe 2 VAl and Fe 2 VGa is particularly interesting because of the observation of negative giant magnetoresistance (GMR) for T T c [3, 5, 6]. In Fe 2 VGa the GMR effect is near 50%, the highest value reported for magnetically dilute or granular 3d transition metal alloys [5, 6]. It has been suggested that wrong-site Fe atoms 3 Present address: Department of Physics, National Sun-Yat-Sen University, Kaohsiung, Taiwan. 0953-8984/01/071585+09$30.00 2001 IOP Publishing Ltd Printed in the UK 1585

1586 C S Lue et al on V sites (antisite Fe) are magnetic and play a significant role in the magnetism of the two compounds [10,11]. These antisites have been associated with the 3.7 µ B defect identified by specific heat measurements in Fe 2 VAl [12], an observation in good agreement with a calculated value of 3.18 µ B for this material [11]. The corresponding defect in Fe 2 VGa was calculated to have a moment of 3.2 µ B [11]. However, Popiel et al [13] have found a nonlinear magnetization variation with external fields and an absence of Zeeman splitting in the Mössbauer spectra for Fe 3 x V x Al with 0.6 <x<1.1. These observations were associated with a distribution of cluster magnetic moments from 10 to 10 4 µ B. In this work, we report AC susceptibility (χ), DC magnetization (M), and nuclear magnetic resonance (NMR) measurements on stoichiometric Fe 2 VAl and Fe 2 VGa. These results indicate that in addition to magnetic antisite defects, a more dilute population of large-moment clusters is present in these materials. These clusters are found to dominate the low-field susceptibility. Furthermore, a superparamagnetic freezing transition is identified as being associated with these large clusters, explaining the appearance of the low-temperature magnetic transition in these materials. 2. Experiments The samples studied here were prepared by arc melting appropriate amounts of the elemental metals. The Fe 2 VAl ingot was annealed in a vacuum-sealed quartz tube at 1000 C for two days, then annealed at 400 C for more than 12 h; this was followed by furnace cooling. Fe 2 VGa was annealed at 600 C and then 400 C. These are the same ingots as were used for previous NMR [7, 8] and specific heat [12] measurements. In a powder x-ray analysis, all observed peaks for both substances could be indexed according to the expected L2 1 structure. Peak intensities were in good agreement with simulated spectra calculated by standard means. The lattice parameters determined, a = 5.76 Å for Fe 2 VAl and a = 5.77 Å for Fe 2 VGa, are equal to those reported in the literature [1 5, 14, 15]. Powdered samples from these ingots were used for both magnetic and NMR measurements. The grain size for these powders was 50 200 µm. Wavelength-dispersive spectroscopy (WDS) measurements showed these grains to be uniform in composition, with no signs of phase segregation observed. 2.1. NMR linewidths NMR linewidths can provide a measure of the concentration of magnetic defects in the vicinity of the NMR nucleus [16 18]. Here we show that NMR measurements of Fe 2 VAl indicate a concentration of magnetic defects in very good agreement with those found by specific heat measurements in the same sample. The NMR experiments were performed using a 9 T home-built pulse NMR spectrometer. 27 Al and 51 V NMR spectra were detected at approximately 99 and 101 MHz respectively, in constant field. Powder specimens, mixed with granular quartz to facilitate rf penetration, were placed in thin-walled plastic vials for 4 to 300 K measurements, and in Teflon tubes for high-temperature purposes. Both sample holders showed no observable 27 Al and 51 V NMR signals. The NMR powder patterns were measured by spin-echo integration versus frequency. For Fe 2 VAl, the central portions of the NMR lines exhibited Lorentzian shapes, for both 27 Al and 51 V spectra [7,19], as expected for broadening by dilute magnetic impurities [17,18]. We recorded the full width at half-maximum (FWHM) as a measure of the broadening of these lines. For both nuclei, the FWHM increases with decreasing temperature, as illustrated in figure 1(a). These curves can be fitted to a Curie-type term proportional to 1/T, added to

Superparamagnetism and magnetic defects in Fe 2 VAl and Fe 2 VGa 1587 a T -independent background. Walstedt and Walker have calculated NMR linewidths due to dilute magnetic impurities [18]; for the case where fluctuation of the impurity spins is rapid compared with the NMR splittings, the linewidth is proportional to the average spin moment, giving a Curie-type contribution as observed here. According to this theory, substitutional defects having spin S and concentration f will produce a FWHM, ν, which can be expressed as follows: ν = 2 9 3 γ n µ 0 fgµ B S z (T ) (1) V where S z (T ) is the average moment, and V the volume per formula unit. We fixed the defects as having g = 1.93 and S = 3/2, values obtained from specific heat measurements [12]. As described in the introduction, these defects are identified with the Fe antisite. The least-squares fit, shown as a dotted curve in figure 1(a), yields an impurity concentration f = 0.0045. This value is very close to the value, f = 0.0037, deduced from the specific heat [12]. The consistency of these results indicates that the same defect is responsible for both effects. The well-defined Schottky anomaly in the specific heat indicates a single defect to be responsible, rather than a collection of defects with a continuum of moments, and the NMR results indicate these Fe 2 VAl antisite defects to be more or less uniformly distributed within the sample. Linewidth (khz) 80 60 40 20 (a) Fe 2 VAl Al V Fit Linewidth (khz) 320 240 160 80 (b) Fe 2 VGa V Fit 0 0 100 200 300 0 0 100 200 300 400 500 Figure 1. The variation of the 27 Al and 51 V FWHM linewidths with temperature for (a) Fe 2 VAl and (b) Fe 2 VGa. Dotted lines: the fit to the broadening described in the text. 51 V linewidths observed in Fe 2 VGa show a temperature variation similar to those of Fe 2 VAl [8]. However, for the case of Fe 2 VGa, nearly Gaussian lineshapes were observed, as previously reported [8]. The Gaussian lineshape is indicative of a higher concentration of defects [18, 20], for which an analytic solution corresponding to equation (1) is not possible. As an approximate measure [8], we took the FWHM (plotted in figure 1(b)), and fitted the results using the dilute-case solution, equation (1). While specific heat results are not available as an independent measure of the defect distribution in this material, we assumed that the Fe antisites also dominate in Fe 2 VGa. Taking g = 1.93 and S = 3/2 for these defects, the result, drawn as a dotted curve in figure 1(b), gives an impurity concentration f 0.04 per formula unit.

1588 C S Lue et al 2.2. Magnetic measurements Susceptibility and magnetization measurements were carried out using a commercial LakeShore magnetometer/susceptometer and a Quantum Design SQUID magnetometer. AC susceptibilities are shown in figure 2 for Fe 2 VAl and Fe 2 VGa, obtained both in zero field and with the concurrent application of different DC fields as indicated. These data were obtained using an AC excitation field of amplitude 1 Oe and frequency 125 Hz. A prominent maximum in χ is observed for Fe 2 VAl at 23 K (for zero DC field), while the maximum occurs for Fe 2 VGa at 9 K. Both maxima are suppressed by DC fields as small as 10 Oe, as seen in the figure. The measured values of χ are significantly larger than expected given the concentrations of antisite defects obtained by means of NMR, quoted above. On the other hand, the susceptibility maxima cannot be associated with bulk ferromagnetic transitions because of the absence of corresponding NMR frequency shifts for either material down to 4 K [7, 8], in measurements previously reported. χ AC (emu/mol) 0.10 0.09 0.08 0.07 0.06 0.05 (a) Fe 2 VAl 0 Oe 10 Oe 20 Oe 0 20 40 60 χ AC (emu/mol) 2.0 1.5 1.0 0.5 (b) Fe 2 VGa 0 Oe 20 Oe 0.0 0 20 40 60 80 Figure 2. Field-dependent AC susceptibilities (real component) for (a) Fe 2 VAl and (b) Fe 2 VGa. The DC fields indicated were applied during the measurements.

Superparamagnetism and magnetic defects in Fe 2 VAl and Fe 2 VGa 1589 To achieve a further understanding of these results, we measured the frequency dependence of χ, with excitation frequencies in the range 1.25 Hz to 1250 Hz. As one can see from figure 3, the amplitude of χ has a strong frequency dependence, with the maximum reduced with increasing frequency for each material. This is the characteristic behaviour of spin glasses, for which the frequency dependence is associated with a distribution of energies for spin spin interactions [21]. However, the large reduction of χ with application of a relatively small DC field (figure 2) indicates that the individual moments responsible for the spin-glass-type behaviour are much larger than those of the antisite defects. Therefore, the behaviour observed here is of the superparamagnetic type rather than the spin-glass type. χ AC (emu/mol) 0.10 0.09 0.08 0.07 0.06 (a) Fe 2 VAl 7 Hz 625 Hz 0.05 0 20 40 60 χ AC (emu/mol) 2.1 1.8 1.5 1.2 0.9 0.6 1.25 Hz 1250 Hz (b) Fe 2 VGa 0 10 20 30 Figure 3. AC susceptibility curves for (a) Fe 2 VAl and (b) Fe 2 VGa obtained at the frequencies indicated. An approximate measure of the size of the superparamagnetic moments present can be obtained from the field dependence of χ (figure 2). Assuming superparamagnetic clusters of uniform size, a fit in a narrow temperature range above the maximum in χ for Fe 2 VAl yields a moment of 5000 µ B, with a concentration of 10 7 per formula unit. For Fe 2 VGa this fit yields moments of the same size, 5000 µ B, with a concentration of 10 6 per formula unit. The Fe 2 VAl result is consistent with Mössbauer results [13] indicating local moments ranging

1590 C S Lue et al up to 10 4 µ B. On the other hand, a well-defined Schottky anomaly corresponding to antisite defects of 3.7 µ B was the only peak apparent in specific heat measurements for Fe 2 VAl [12], in agreement with the NMR lineshape fits described above. So, there must be two populations of magnetic defects in Fe 2 VAl, rather than a continuous range from small to large moment. These populations include the isolated 3.7 µ B Fe antisites, and superparamagnetic moments of approximate average moment 5000 µ B. Since the susceptibility maximum is associated with the large moments, we identify it as a superparamagnetic freezing transition [21 24] due to the interactions of large-moment spins. The presence of large superparamagnetic moments, in addition to the antisite defects, will introduce an additional broadening mechanism for the NMR lineshapes. Superparamagnetic moments of approximate size 5000 µ B will be completely polarized in the 9 T NMR field used here, so such moments will give a temperature-independent contribution to the NMR linewidth. With these moments uniformly distributed in the sample, equation (1) can be applied, if S z (T ) is replaced by the temperature-independent saturated superparamagnetic moment. This yields an additional contribution of 3 khz to the NMR linewidth for Fe 2 VAl, and 30 khz for Fe 2 VGa, using the superparamagnetic moment concentrations estimated above. These additive contributions to the NMR linewidth are consistent with the measurements, and do not affect the antisite defect estimates given above, since the Curie-law contribution to the linewidths is unaffected. A measure of the total moment present in these materials is provided by the DC magnetization, M. Such results are shown in figure 4, for fields up to 7 T, at several temperatures. The dotted curves plotted along with these data were calculated for the lowest and highest measured temperatures for each material (5 K and 160 K for Fe 2 VAl, 5 K and 50 K for Fe 2 VGa). In calculating these curves, we made the simplifying assumption of uniform and independent 5000 µ B superparamagnetic moments, as well as the antisite defects having g = 1.93 and S = 3/2. The superparamagnetic moments become saturated below 1Tatall temperatures, giving the rapid rise seen in the data at low fields, while the antisite defects only become appreciably polarized in higher fields, giving the slower rise in M seen at the lowest temperature. For Fe 2 VAl, the defect concentrations obtained from NMR and χ give good agreement; the antisites dominate the saturated moment, and for 5 K the curve follows the data well. Departures apparent for the 160 K curve can be attributed to the superparamagnetic moments having a size distribution, rather than the fixed size assumed for the calculation. We have not attempted to fit these data to a specific distribution of superparamagnetic moments. For Fe 2 VGa, an antisite density of 0.02 (rather than 0.04) per formula unit provided better agreement with the M versus H data, reflecting the considerable approximation used in applying equation (1) to the NMR results for this material. We also increased the superparamagnetic moment density above the estimate obtained from χ, yet the poor fit of the calculated curves to the data indicates a broad distribution of moment sizes, as compared to Fe 2 VAl. The data show that the saturation moment of Fe 2 VGa is dominated by large moments, as opposed to the case for Fe 2 VAl, where the isolated antisite defects dominate. The larger moment in Fe 2 VGa, compared to Fe 2 VAl, has been noted previously [5]. For the Fe 2 VAl sample, we measured the low-field magnetization under field-cooling and zero-field-cooling conditions. This was done in a field of 20 Oe, but with no difference in the magnetization for the two cases, in contrast to the usual behaviour of spin glasses [21]. Superparamagnetic glasses typically also exhibit a divergence between the field-cooled and zerofield-cooled magnetization below the blocking temperature (T B ); however, the shapes of these curves depend upon whether magnetocrystalline anisotropy or mutual particle interactions dominate the magnetic behaviour [23, 24]. A peak in the field-cooled curve can occur when dipolar interactions dominate [23], and we attribute the observed behaviour to this situation.

Superparamagnetism and magnetic defects in Fe 2 VAl and Fe 2 VGa 1591 M (emu/mol) 100 80 60 40 20 (a) Fe 2 VAl 5 K 40 K 80 K 160 K 2000 0 0 1 2 3 4 5 6 7 M (emu/mol) 1600 1200 800 400 (b) Fe 2 VGa 5 K 25 K 50 K 0 0 1 2 3 4 5 6 7 H (Tesla) Figure 4. DC magnetization versus H for (a) Fe 2 VAl and (b) Fe 2 VGa measured at the temperatures indicated. Dotted curves: magnetization calculated according to the model described in the text. 3. Discussion Monte Carlo simulations have been reported for dipole-coupled superparamagnetic moments in the Cu Co system [22]. Scaling the distribution of local fields calculated in that work according to the superparamagnetic moment sizes and concentrations obtained here, we find a typical local dipole field for superparamagnetic moments in Fe 2 VAl equal to 50 Oe. Setting T B equal to the temperature at which the thermal energy equals µh in this local field, we obtain T B = 17 K, which corresponds very well to the observed maximum in χ (figure 2). Thus dipolar coupling provides a good explanation of the observed T B. The anisotropy may play some role, but surface averaging often serves to minimize the effective anisotropy for nmsized particles [24]. We noted above that the field-cooled magnetization in Fe 2 VAl, exhibiting a peak at the same temperature as the zero-field-cooled measurement, also points to dipolar interactions as dominant. Since the applied field for that measurement (20 Oe) was smaller than

1592 C S Lue et al the estimated local dipole field, it does follow that the field-cooled M would tend to zero at low temperatures. Note that these are semimetals, so the RKKY interaction will not be effective in coupling the moments. Dipolar coupling is typically most important for superparamagnetic glasses having an insulating matrix [24]. Given the wider distribution of superparamagnetic moments in Fe 2 VGa, an estimate of T B is more difficult to obtain, but we believe the mechanism for the maximum in χ to be essentially the same. Above 60 K, the field dependence of χ for Fe 2 VGa disappears, as can be seen in figure 2. We associate this temperature with the internal magnetic ordering temperature (T c ) within the superparamagnetic clusters. The corresponding transition is above the range of measurements for Fe 2 VAl. To model the origin of superparamagnetic clusters in these materials, we note that both Fe 2 VAl and Fe 2 VGa have a Fermi level falling inside a narrow pseudogap [7, 8]. With an increase in Fe concentration, Fe 2+x V 1 x Al and Fe 2+x V 1 x Ga both become ferromagnetic metals. Therefore, fluctuations in the local Fe concentration can lead to regions in which the pseudogap edge is pulled below the Fermi level, creating pockets of ferromagnetic material within the nominally nonmagnetic x = 0 materials. This model is distinct from usual model of superparamagnetic materials, but the pseudogap and nearness to the ferromagnetic composition is a distinctive feature of Fe 2 VAl and Fe 2 VGa. This model is consistent with the absence of phase segregation observed in these materials, and shows why the magnetic defects can be separated as small and large defects. Assuming a contribution of 2 µ B for each Fe in ferromagnetic regions of the sample, the saturation curves (figure 4) can be used to estimate the portion of the sample corresponding to these regions. This estimate yields 1% for Fe 2 VGa, and a value about 100 times smaller for Fe 2 VAl. Fluctuations in Fe concentration will be dependent upon sample preparation; indeed, Matsushita and Yamada have recently demonstrated that the effect of heat treatment on Fe 2 VAl alloys plays a significant role in their magnetic properties [25], in agreement with this assessment. It seems likely that the change from superparamagnetic to ferromagnetic behaviour in Fe 2+x V 1 x Al and Fe 2+x V 1 x Ga proceeds as a percolation process, as the ferromagnetic regions become larger and eventually encompass the entire sample. Therefore, the magnetic properties of Fe 2 VAl and Fe 2 VGa can be interpreted consistently in terms of the following picture: the stoichiometric materials are nonmagnetic, but contain antisite Fe atoms which exhibit local magnetic moments, and also ferromagnetic regions which give the observed superparamagnetic behaviour. The antisite defects produce a T -dependent contribution to the NMR linewidth, and are responsible for the reported GMR effect [5,6]. The Schottky anomaly in the specific heat of Fe 2 VAl has been associated with the same defects [12]. The superparamagnetic regions are associated with the observed magnetic transitions, shown to be magnetic freezing transitions in both Fe 2 VX compounds. The observed T -independent χ at high temperatures can be attributed to Van Vleck paramagnetism, consistent with NMR studies [7, 8], indicating the Pauli susceptibility to be small. 4. Conclusions A study of the magnetic properties of Fe 2 VAl and Fe 2 VGa by means of susceptibility, magnetization, and NMR shows that the magnetic defects in these materials are of two types: large ferromagnetic clusters, and Fe antisite defects. The presence of the antisite defects is indicated by the T -dependent NMR linewidth, and they are also responsible for the previously reported GMR behaviour. On the other hand, the bulk magnetic behaviour of these materials is dominated by large clusters which exhibit superparamagnetic behaviour, and a low-temperature freezing transition in both materials.

Superparamagnetism and magnetic defects in Fe 2 VAl and Fe 2 VGa 1593 Acknowledgment This work was supported in part by the Robert A Welch Foundation (A-0514). References [1] Nishino Y, Kato M, Asano S, Soda K, Hayasaki M and Mizutani U 1997 Phys. Rev. Lett. 79 1909 [2] Kato M, Nishino Y, Mizutani U and Asano S 2000 J. Phys.: Condens. Matter 12 1769 [3] Matsuda H, Endo K, Ooiwa K, Iijima M, Takano Y, Mitamura H, Goto T, Tokiyama M and Aria J 2000 J. Phys. Soc. Japan 69 10 [4] Kawamiya N, Nishino Y, Matsuo M and Asano S 1991 Phys. Rev. B 44 12 406 [5] Endo K, Matsuda H, Ooiwa K, Iijima M, Ito K, Goto T and Ono A 1997 J. Phys. Soc. Japan 66 1257 [6] Endo K, Matsuda H, Ooiwa K, Iijima M, Goto T, Sato K and Umehara I 1998 J. Magn. Magn. Mater. 177 181 1437 [7] Lue Chin-Shan and Ross JHJr1998 Phys. Rev. B 58 9763 [8] LueCSandRossJHJr2001 Phys. Rev. B 63 054420 [9] Weht R and Pickett W E 1998 Phys. Rev. B 58 6855 [10] Singh D J and Mazin I I 1998 Phys. Rev. B 57 14 352 [11] Bansil A, Kaprzyk S, Mijnarends P E and Toboła J 1999 Phys. Rev. B 60 15 132 [12] Lue C S, Ross JHJr,Chang C F and Yang H D 1999 Phys. Rev. B 60 R13 941 [13] Popiel E, Tuszynski M, Zarek W and Rendecki T 1989 J. Less-Common Met. 146 127 [14] Buschow KHJandvanEngen P G 1981 J. Magn. Magn. Mater. 25 90 [15] Webster P J and Ziebeck KRA1983 Phys. Lett. A 98 51 [16] Slichter C P 1990 Principles of Magnetic Resonance (New York: Springer) [17] Kittel C and Abrahams E 1953 Phys. Rev. 90 238 [18] Walstedt R E and Walker L R 1974 Phys. Rev. B 9 4857 [19] Lue CSandRossJHJr2000 Phys. Rev. B 61 9863 [20] Noakes D R 1991 Phys. Rev. B 44 5064 [21] Binder K and Young A P 1986 Rev. Mod. Phys. 58 801 [22] Bewley R I and Cywinski R 1998 Phys. Rev. B 58 11 544 [23] Chantrell R W, Walmsley N S, Gore J and Maylin M 1999 J. Appl. Phys. 85 4340 [24] Dormann J L, Fiorani D and Tronc E 1997 Adv. Chem. Phys. 98 283 [25] Matsushita A and Yamada Y 1999 J. Magn. Magn. Mater. 167 169 669