Missile Inspection Using High-Energy X-ray Non- Destructive Testing Systems

Similar documents
NONDESTRUCTIVE EVALUATION:

YXLON CT Compact. Fan-beam computed tomography (CT) inspection system for high-density medium and large-sized parts

VJ TECHNOLOGIES TECHNOLOGY FOR GLOBAL MARKETS

Analysis and development of inspection procedures based on X-Ray Computed Tomography and Digital Radiography on Aerospace Additive Manufactured Parts

GE Inspection Technologies. Rhythm. Unique Multi-Modality Software Platform

by Lennart Schulenburg

Nondestructive Testing

3D Computed Tomography (CT) A Powerful Tool for defects characterization in Aerospace Composite liners

Inspection of Friction Stir Welds using Triple Array Methods

Automated X-Ray Inspection: Industrial Applications and Case Studies

Non-Destructive Evaluation of Polyimide Pipelines Used For Cryogenic Applications

MODERN ULTRASONIC TECHNIQUES FOR DEFECT DETECTION IN CAST MATERIALS

Effect of Radiography Parameters over Columnar Structure in Nickel Base Super Alloy Castings

W.J. Murri, B.W. Sermon, R.N. Andersen L.A. Martinez, E.J. VanderHeiden, and C.A. Garner

Break down of traceability or Quality Chain in Non Destructive Testing to International Standards

ACMC/SAMPE Conference on Marine Composites Plymouth, September 2003 (ISBN )

ASTM Volume 03.03, October 2017 Nondestructive Testing (E94 E2373)

Betatron radiography and tomography of steel castings with large thickness

Technology with Passion. YXLON International a company of the COMET group

Austria. Material Matrix Matrix-density (g/cm 3 ) Fibre-diameter. Fibre-density

High Speed X-ray Solution For Process Control

Jeffrey McIsaac, General Manager AMIC Mohammadarmaan Bandi, AMIC Doug Whitely, CINDE

Development of an Ultrasonic System for C-Scan of Aircraft Components

LASER ULTRASONICS INSPECTIONS OF AERONAUTICAL COMPONENTS VALIDATED BY COMPUTED TOMOGRAPHY

CHAPTER 3: TYPES OF WELDING PROCESS, WELD DEFECTS AND RADIOGRAPHIC IMAGES. Welding is the process of coalescing more than one material part at

MILITARY STANDARD RADIOGRAPHIC REFERENCE STANDARDS AND RADIOGRAPHIC PROCEDURES FOR PARTIAL-PENETRATION ALUMINUM WELDS

IMPROVEMENT OF FRICTION SPOT WELDING PROCESS

Porosity The good, the Bad and the Ugly of Radiographic Testing

Module 8: Composite Testing Lecture 36: Quality Assessment and Physical Properties. Introduction. The Lecture Contains


ADVANCING ADDITIVE MANUFACTURING IN AEROSPACE AM-AERO14

Initial Reliability Requirements

A STUDY OF NDE-PERFORMANCE IN THE CONDITION ASSESSMENT OF REINFORCED CONCRETE STRUCTURES

NEXT-GENERATION QUALITY SYSTEMS TO ENSURE FIRST-TIME QUALITY NDE 17 QUAL TESTNG

Development and validation of an automated ultrasonic system for the non-destructive evaluation of welded joints in thermoplastic storage tanks

NDE Inspections of the NRU Calandria Vessel Part 1: NRU and ET Inspections

Seifert x cube series Versatile 2D and 3D X-ray system built for speed.

Development and Validation of an Automated Ultrasonic System for the Non- Destructive Evaluation of Welded Joints in Thermoplastic Storage Tanks

X-RAY COMPUTER TOMOGRAPHY INVESTIGATION FOR POLYMER COMPOSITE MATERIAL UNDER THE STATIC LOAD

A step ahead in CT Metrology

Fundamentals of Casting

State-of-the-art Nondestructive Inspection Technology for Composite Materials

The porosity test research of graphite material based on micron scale x-ray tomography

Synchrotron-radiation based microtomography of new materials for lightweight construction

MICROWAVE INSPECTION METHOD AND ITS APPLICATION TO FRP

Novel Approaches to Thermal Management for Power LED Packaging

Mobile Computed Tomography

YXLON Inspection Services

INTEGRATED NDT / INSPECTION, CONTRÔLE & CERTIFICATION

FATIGUE LIFE ASSESSMENT FOR COMPOSITE MATERIALS

Reduction of Backscattered Radiation in Enclosure X-ray Radiography

Automated ultrasonic tube-to-tube sheet weld scanning

Nondestructive material testing services

Nondestructive material testing services

Engineering Materials

OIL TECH SERVICES, INC.

Low frequency magnetic shielding: Nanocrystalline coating vs. ferromagnetic foils.

More Info at Open Access Database

YXLON Cougar EVO PLUS

Requirements for Evaluation and Authorization of Digital Radiography for Inspection of Aerospace Castings

Research and Development on NDE field

DEVELOPMENT OF ULTRASONIC REFERENCE STANDARDS FOR DEFECT CHARACTERIZATION IN CARBON FIBER COMPOSITES

WELDING TECHNOLOGY AND WELDING INSPECTION

Course: Quality Assurance Module 5 Welders/Welding personnel

LASIMM - AM production of large scale engineering structures

7. Design for Castability

Recent Advances in NDE Technologies for Turbines and Generators

COMBINED INVESTIGATION OF EDDY CURRENT AND ULTRASONIC

hüma PARKETTSYSTEM GmbH INSTALLATION GUIDE

NIIEFA Accelerators for Industry and Medicine

CHAPTER - 1 INTRODUCTION

EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF CONCRETE BEHAVIOUR AT MESO-LEVEL DURING QUASI-STATIC SPLITTING TENSION

Custom Linear Motor Stages for High Precision Applications

RADIOGRAPHIC EVALUATION OF CORROSION AND DEPOSITS: IAEA CO-ORDINATED RESEARCH PROJECT ON LARGE DIAMETER STEEL PIPES

LIQUID PENETRANTS USER S MANUAL in accordance to specifications: EN 571, ASTME 1417, AMS 2644, MIL, ASME, DIN, UNI, BS, AFNOR, etc..

BI-MATERIAL COMPONENTS USING POWDER INJECTION MOLDING: DENSIFICATION, SHAPE COMPLEXITY, AND PERFORMANCE ATTRIBUTES

A Modeling Platform for Ultrasonic Immersion Testing of Polycrystalline Materials with Flaws

Validation of an Ultrasonic-Phased-Array-Method for Testing of Circumferential Welds at Thin-walled Pipes

PROCESSING A SELECTION OF THE MOST REMARKABLE SOLUTIONS OF PRIMETALS TECHNOLOGIES FOR THE DIGITALIZATION OF

Innovating Solutions for Staff and Patient Protection. Radiation Shielding

Martin Marietta Energy Systems, Inc. Development Division Oak Ridge Y-12 Plant* P. 0. Box 2009, MS-8084 Oak Ridge, Tennessee

The Non-Destructive Test Method as A Simple Way to Evaluate The Quality of Metal Core PCBS for High Power Micro-Assemblies

Portable X-ray Betatron

NON-DESTRUCTIVE TESTING OF JOINTS OF ANTIFRICTION PARTS CRIMPED BY PULSED MAGNETICDEFORMATION

Recommendations for Cutting and Handling Melamine Boards

JRC IMPROVING CASTING INTEGRITY THROUGH THE USE OF SIMULATION SOFTWARE AND ADVANCED INSPECTION METHODS

Nondestructive Testing of Defects in Additive Manufacturing Titanium Alloy Components

Module - 4 Advanced Welding Processes Lecture - 1 Submerged Arc Welding (SAW)

DEPARTMENT OF DEFENSE STANDARD PRACTICE

MILITARY SPECIFICATION WELDING, ARC AND GAS; FOR FABRICATING GROUND EQUIPMENT FOR ROCKETS AND GUIDED MISSILES

CHARACTERIZATION OF DEFECTS IN AEROSPACE COMPONENTS USING INFRARED PULSE THERMOGRAPHY

NS 1.0 Nobles Specification Technical and Quality Requirements for Castings

1. Comparison of Inspection Methods

Process Monitoring of Additive Manufacturing by Using Optical Tomography

Element C6.2 Generic Hazards and Modes of Failure

TOHAMA Co. Profile البصرة-حي المهندسين-مجاور شركة المرابع الخضراء

Your Key To Quality & Savings. Your One-Stop Solution For High Performance Powder Metal Parts ISO 9001:2008 CERTIFIED

Fundamentals of X-ray diffraction and scattering

Mission Support Overhauls U.S. Air Force B-52s using Verisurf Reverse Engineering Software

K. Jayarajan Division of Remote Handling and Robotics Bhabha Atomic Research Centre

Transcription:

LINAC ORIATRON Missile Inspection Using High-Energy X-ray Non- Destructive Testing Systems Real-time non-destructive testing and analysis of industrial missiles to detect defects (cracks, porosities, inhomogeneities) and therefore to determine structural conformity of the test object, using X-ray radiography inspection. The Challenge As utterly important, complex assets, with high quality requirements, components and machines used in the aerospace and defense industries must undergo very thorough inspection to detect any type of defect, flaw or other potential inconsistencies. In these sensitive sectors, quality control is a significant process, requiring the most accurate and careful analysis. Computed Tomography (CT) scanning can reveal internal discontinuities in any type of component and is a completely non-destructive method: the test-object is placed between the radiation source and a flat-panel. The radiation produced by the high-energy linear accelerator will then penetrate the material and the test-object s density and thickness differences will attenuate that radiation, absorbing and/or scattering it. These differences are then recorded and displayed on computer through the CT technique, providing both cross-sectional and 3D volume images of the test-object, allowing its structure and internal components to be fully and thoroughly inspected in great detail. A missile can also be inspected with the classical radiography method, using film instead of a flat-panel. This technique: Can automatically isolate defects in complex structures and assembled components, Detects any changes in thickness and density, Provides a user-friendly software interface, Keeps a valuable record of the inspection Industry: Aerospace, Military, Defense Technology: High-Energy X-ray Imaging System / Digital X-ray Radiography Product & Services: High-Energy Electron Accelerators able to Produce X- Rays (standard ranges + customizable options) / Qualified Maintenance 1

CONTACT Our Solution PMB s expertise lies within our ability to design, develop and manufacture linear electron accelerators in-house, capable of generating high-energy X-rays. PMB is capable of providing an entire high-energy X-ray imaging and handling system, composed of the following: A high-energy LINAC completely designed and manufactured at PMB A flat-panel, its shielding and fixture bracket An object manipulator (the interface with the object to inspect being excluded) A software suite, to monitor the whole system and for 3D-reconstruction and volume visualization Standard NDT System (engine inspection) Test Inspection on a Propellant Tank Phantom using CT Inspection Using an Oriatron LINAC with an energy of 3.5MeV, an object of 320mm diameter, 200mm height and 3-5mm wall thickness, containing calcium oxide powder (used as a type of propellant), underwent CT inspection. Some elements which don t originally belong to the component s filler were added and those inhomogeneities were quickly picked up using CT inspection. Vertical cross sections Sample s picture Ear-plug: oval shape visible Calcium oxide filling the insertion hole is less dense than surrounding material Small foam cylinder Ear plug Ceramic cylinder Compressed air hoses Small polymer foam cylinder: shape is distinguishable 2.5/4 and 7/10 air hoses Horizontal cross-section of a propellant tank phantom sample About PMB: As part of the industrial group ALCEN, PMB s expertise is mainly focused on all technologies relating to particle acceleration (ultra high vacuum, electromagnetic simulation, particle matter interaction). We are capable of providing customized components and systems for a variety of industries, as well as preventive and corrective qualified maintenance of all machines. Standard + 33 (0)4 42 53 13 13 Sales + 33 (0)4 42 53 53 67 sales@pmb-alcen.com Route des Michels CD56 Lieu dit La Corneirelle 13790 Peynier, France 2

LINAC ORIATRON Non-destructive Inspection of Traditional and 3D- Printed Industrial Components Using high-energy X-ray non-destructive systems, inspection of industrial components to detect porosities, delamination, shrinkage, cracks, inclusions The Challenge In the competitive and challenging world of industrial parts, quality assurance is essential and it seems necessary for players to choose the most effective and accurate inspection method for their products. Moreover, industrials need to optimize and modernize their production methods, and to enhance the decision-making process on a global production level. The use of Computed Tomography inspection provides means of decision throughout many steps of the production process. It allows the removal of defective parts at an early production stage. Using an X-ray generator and a detector, an image is created and converted into a digital one, processed by a specific software capable of automatically recognizing defects. Computed Tomography of an Industrial Aluminum Casting This technique is efficient because: It detects a large diversity of casting anomalies (delamination, gas porosities, cracks, internal shrinkage) It can be used in high volume detection environments to reduce dependency on a human operator to make decisions and for materials such as iron, aluminum, magnesium, zinc It provides additional information (measurements, internal structure, wall thickness), necessary to qualify prototypes, or to modify conception if need be Additionally, three-dimensional printing technology allows the production of highly complex products and its role is becoming increasingly important in many industries. However, the additive manufacturing process has its drawbacks in terms of quality control: geometrical and dimensional inaccuracies can emerge, undermining the structural stability of the component. Moreover, unlike in traditional manufacturing, dimensions of 3D-printed products cannot be measured during fabrication. These issues are all addressed with CT scanning. Industry: Industry, Automobile, Aeronautics, Space, Military Technology: High-Energy X-ray Imaging System / Digital X-ray Radiography Product & Services: High-Energy Electron Accelerators able to Produce X- Rays (standard ranges + customizable options) / Qualified Maintenance 1

Our Solution PMB s expertise lies in our ability to design, develop and manufacture linear electron accelerators in-house, capable of generating high-energy X-rays. Most of the radiography imaging systems designed for this particular application require: A LINAC (linear accelerator), producing X-rays, with an energy of 1 to 7 MeV A digital detector Object manipulators A software suite able to store and analyze digital radiography imaging at high speed PMB can provide customizable high-energy LINACs for this specific need, with a reduced focal spot size down to 0,5 mm which greatly enhances the image resolution, allowing a more meticulous casting inspection. An increased dose rate can also be obtained by placing the object closer to the X-ray source. Standard X-ray LINAC integrated in a complete NDT System Your Needs, Our Priority After defining precisely your desired product & features, we provide recommendations, based on our experts advice, to maximize the use of the system and integrate it efficiently in your industrial production process. The LINAC is entirely tested in our bunker on site before it is integrated in the total NDT system and we provide warranties and service for years to come, to ensure the system s sustainability and reliability. This system can be used on 3D-printed objects as well, especially in the automotive and aerospace industries, for complex and large objects which require a high-energy X-ray radiography. A common misconception about 3D-printing is assuming the technology works perfectly every time, although both traditional and 3D manufacturing are subject to accurate quality control, especially in the case of large and costly products. About PMB: As part of the industrial company ALCEN, PMB s expertise is mainly focused on all technologies relating to particle acceleration (ultra high vacuum, electromagnetic simulation, particle matter interaction. We are capable of providing customized components and systems for a variety of industries, as well as preventive and corrective qualified maintenance of all machines. CONTACT Standard + 33 (0)4 42 53 13 13 Sales + 33 (0)4 42 53 53 67 sales@pmb-alcen.com Route des Michels CD56 Lieu dit La Corneirelle 13790 Peynier, France 2

LINAC ORIATRON Space Rocket Solid-Fuel Engines, Hull and Frame Control Non-Destructive X-ray Inspection Non-destructive testing of solid rocket motors, to detect defects such as cracks, voids, porosities, and to examine the integrity of propellant mass and bond-line integrity of propellant and insulation, using high-energy X-ray radiography The Challenge Solid-fuel rocket engines are particularly complex systems that require extreme precision and stringent quality control, as it is essential to the proper propulsion and acceleration of a rocket or a spacecraft. Good quality assurance in the case of space projects is crucial to the stakeholders satisfaction as well as the mission s success: errors have critical effects in terms of cost, risk and can even have consequences on human life. Using X-ray Radiography imaging systems, an aerospace or defense firm can control the quality of some of the rocket s components during manufacture. The large object we wish to inspect rotates between the high-energy X-ray source and the detector, typically a flat-panel or a linear diode array in the case of digital radiography. In a tangential configuration, the peripheral part of the booster is the inspected section, the technique allows us to detect delamination defects between the propellant and the external metal envelope The propellant radiography allows us to detect any flaws in the solid-fuel Industry: Aerospace, Government Technology: High-Energy X-ray Imaging System / Digital X-ray Radiography Product & Services: High-Energy Electron Accelerators able to Produce X- Rays (standard ranges + customizable options) / Qualified Maintenance 1

This technique is able to detect: Delamination of composite systems Voids: these defects can cause cracks, and whether there are single voids of a cluster of voids, porosity or moisture in the propellant can be observed Propellant entrapment: as rocket engines are insulated with rubber to prevent surfaces from burning, voids may appear between the loose flaps and the fixed insulation Separation between propellant and insulation: this defect is considered critical and is usually due to poor storage conditions Porosity: severe porosity observed at the propellant interface jeopardizes the proper functioning of the inhibition, which prevents abnormal burning of the propellant This method can analyze solid-fuel rocket engines as well as the very structural integrity of the system. Our Solution PMB s expertise lies within our ability to design, develop and manufacture linear electron accelerators in-house, capable of generating high-energy X-rays. Most of the radiography imaging systems designed for this particular application require: A LINAC (linear accelerator), producing X-rays, with an energy up to 7 MeV A detector, whether it is a 2D detector, a flat panel or a linear diode array A software able to store and analyze digital radiography imaging at high speed (in the case if digital imaging) Object manipulators (rocket, LINAC and imaging system) Example of a geometrical configuration for tangential control PMB can provide customizable high-energy systems for this specific need, including the Oriatron LINAC up to 7 MeV, with a reduced focal spot down to 0.6 mm which enhances greatly the image resolution, allowing a more meticulous analysis. About PMB: As part of the industrial group ALCEN, PMB s expertise is mainly focused on all technologies relating to particle acceleration (ultra high vacuum, electromagnetic simulation, particle matter interaction). We are capable of providing customized components and systems for a variety of industries, as well as preventive and corrective qualified maintenance of all machines. CONTACT Standard + 33 (0)4 42 53 13 13 Sales + 33 (0)4 42 53 53 67 sales@pmb-alcen.com Route des Michels CD56 Lieu dit La Corneirelle 13790 Peynier, France 2