Cantilever or Restrained Retaining Wall Design Calculations

Similar documents
Cantilever or Restrained Retaining Wall Design Calculations

Cantilever or Restrained Retaining Wall Calculations

MASONRY WALL DATA: Wall Height = ft. Nominal Wall Thickness = 8.00 in. Depth to c.g. Steel, Wall = 3.81 in.

SCOPE OF WORK: for new structure for exterior elevator according to manufacturer requirement, with a 36ft tower to install new elevator for 2 floors

Client Project Job # Wall Loc. SBWall Report deg 120 pcf 950 psf deg 0.0 ft. 6.0 ft 6.0 ft 2.0 ft. W16x50.

Design of Semi gravity Retaining Walls

Sheetpile Wall Report

Foundation Design. π = pi ( radians or 180 ) ρ = reinforcement ratio in concrete beam design = A s /bd µ = coefficient of static friction

STRUCTURAL ENGINEERING CALCULATIONS NEW WINDOW OPENING IN EXISTING PERIMETER LOAD BEARING WOOD FRAMED WALL Project Address: Job #: 80167

Chapter 13: Retaining Walls

STRUCTURAL CALCULATION PACKAGE

BACKGROUND: SUBSURFACE CONDITIONS:

Cantilever diaphragm wall (English units)

Daystar RetainWall. User Manual

Diaphragm wall with tieback supports (English units)

Lecture Retaining Wall Week 12

Advance Design of RC Structure Retaining Wall

Geotechnical Analysis of Stepped Gravity Walls

RetainPro 10. Retaining Wall Design ENERCALC, INC RetainPro Software, div. ENERCALC, INC.

Software Verification

Structural Calculations Site Features. Casey s General Store W. Cottage Grove Rd. & Sandpiper Trail Cottage Grove, WI 53527

Dead man sheet pile wall (SI units)

Analysis and Design of One-way Slab System (Part-I)

Stability Analysis of A L-Shaped Building with Mat Foundation Under Soil-Structure Interaction Approach NAW THAW THI OO 1, DR.

Reinforced Concrete Spread Footing (Isolated Footing) Analysis and Design. Design Footing

System Assemblies & Load Tracing

DESIGN OF RETAINING WALLS

Design of Reinforced Concrete Slabs

DESIGN AND DETAILING OF RETAINING WALLS

System Assemblies & Load Tracing

NCMA TEK. TEK 14-5A Structural (2006) LOADBEARING CONCRETE MASONRY WALL DESIGN

One-Way Wide Module Joist Concrete Floor Design

ALLOWABLE STRESS DESIGN OF CONCRETE MASONRY LINTELS. TEK 17-1C Structural (2009) Related TEK: Uniform load. Triangular load. Concentrated loads

DESIGN CALCULATIONS INSTA-FOOTING LOAD BEARING CAPACITIES ON CONCRETE SLAB. January 14, 2017 Rev -

DESIGNING AND CONSTRUCTION OF T-WALL RETAINING WALL SYSTEM

Agricultural Hall and Annex East Lansing, MI. Structural Design. Gravity Loads. 1- Based on US Standards

UNIT-1 RETAINING WALLS

Third Avenue New York, NY. Structural Concepts/ Structural Existing Conditions Report September 30, Michelle L.

RetainingWalls. Professor of Geotechnical Engineering and Foundations. Faculty of Engineering - Cairo University. By Dr. Ashraf Kamal Hussein

Precast Concrete Bearing Wall Panel Design (Alternative Analysis Method) (Using ACI )

16. Design of Pipeline Structures.

BUILDING CODE MANUAL COUNTY OF LOS ANGELES DEPARTMENT OF PUBLIC WORKS BUILDING AND SAFETY DIVISION Based on the 2017 LACBC

VOL I: Bridge Design & Load Rating

Multi-Story Solid Tilt-Up Wall Panel Analysis and Design (ACI 551)

(b) Calculate the required nominal axial compression strength, Pn of the column.

Cantilever Sheet Pile Wall (English units)

Appendix J: Structural Engineering

Substructure systems, specifically retaining walls

S T R U C T U R. Technology. magazine. Software for the Structural Design of Masonry. The Design Basis. Copyright

An Introduction to Retaining Walls and Excavation Support Systems

HILLCREST MANOR Palo Verde, California

Seismic Considerations and Design Methodology for Lightweight Cellular Concrete Embankments and Backfill

Keywords: Static analysis, Response spectrum method, Irregular reinforced concrete building, Earthquake.

Alexis Pacella Structural Option Dr. Schneider Lexington II, Washington D.C. Technical Report #3 November 21,

REINFORCED ENGINEERING HANDBOOK CLAY AND CONCRETE MASONRY SEVENTH EDITION. John M. Hochwalt, PE, SE KPFF Consulting Engineers

TECHNICAL CORRECTION December Process Industry Practices Structural. PIP STE03350 Vertical Vessel Foundation Design Guide

ASD OF CONCRETE MASONRY LINTELS BASED ON THE 2012 IBC/2011 MSJC. TEK 17-1D Structural (2011) Related TEK: 14-7C, 14-13B, 17-1C, 17-2A

Upon speaking with the representatives with Technical Foundations as well as Walder Foundations, it was determined that:

Continuous Beam Design with Moment Redistribution (ACI )

Ce 479 Reinforced Masonry Fall 2005

ISSN Vol.03,Issue.18 August-2014, Pages:

ACI Code Revisions Impact on StructurePoint Software

The Bearing Capacity of Soils. Dr Omar Al Hattamleh

Earthquake Design of Flexible Soil Retaining Structures

Retaining Wall Design

International Journal of Advance Engineering and Research Development. Design of Retaining Wall

Design Example 2 Reinforced Concrete Wall with Coupling Beams

Footings GENERAL CONSIDERATIONS 15.2 LOADS AND REACTIONS 15.4 MOMENT IN FOOTINGS

DIVISION: METALS SECTION: STEEL DECKING REPORT HOLDER: EPIC METALS CORPORATION 11 TALBOT AVENUE RANKIN, PENNSYLVANIA 15104

VARIOUS TYPES OF SLABS

Structural Option April 7 th, 2010

Notes for Using RetWall An Excel Template for the Analysis of Retaining-Walls by Dr Shaiq U.R. Khan

Reinforced Concrete Tilt-Up Wall Panel with Opening Analysis and Design (ACI 551)

W. Mark McGinley March 3, 2016 ISEA MEETINGS 1

Page 1 of 46 Exam 1. Exam 1 Past Exam Problems without Solutions NAME: Given Formulae: Law of Cosines: C. Law of Sines:

geopier Lateral resistance

DESIGN INFORMATION WAFFLE-CRETE. FOR MORE INFORMATION, WRITE OR CALL International, Inc.

48.5% Throughput. 6 Connector 51.5% Plastic. 45.7% Throughput. 4 Connector 54.3% Plastic. 51.0% Throughput. 2 Connector 49.

REVIEW OF STS ASARCO CHIMNEY STRUCTURAL INVESTIGATION 818 FT. TALL REINFORCED CONCRETE CHIMNEY ASARCO SMELTING PLANT EL PASO, TEXAS

Downloaded from Downloaded from /1

This document downloaded from vulcanhammer.net vulcanhammer.info Chet Aero Marine

Structural Technical Report 1 Structural Concepts / Existing Conditions

MAHALAKSHMI ENGINEERING COLLEGE TIRUCHIRAPALLI

CE2401-DESIGN OF REINFORCED CONCRETE AND BRICK MASONRY QUESTION BANK

Parapet/railing terminal walls shall be located on the superstructure.

TEK 14-17: CONCRETE MASONRY CANTILEVER HIGHWAY NOISE BARRIER WALLS (1986)

Optimization of Reinforced Concrete Retaining Walls of Varying Heights using Relieving Platforms

The problems in this guide are from past exams, 2011 to 2016.

APPLICATION FOR A BUILDING PERMIT (Retaining Wall/Garden Wall Construction Details)

David A. Walenga Technical Assignment #1

ETTAMAR, INC. Engineers and Consultants TBPE # Joe DiMaggio Blvd. Suite 28, Bldg. 300 Round Rock, TX (512) (512) FAX

Pump Station Excavation

Structural Calculations Amphitheater Middle School Building 400 AC Replacement 315 E. Prince Rd., Tucson, Arizona

CHAPTER 9 STAIR CASES 9.1 GENERAL FEATURES 9.2 TYPES OF STAIR CASES

Top down excavation between diaphragm (slurry) walls with slabs (SI units)

IF SECOND-ORDER EFFECTS NEED TO BE CONSIDERED ON THIS EXAM, ASSUME A B1 MOMENT-MAGNIFIER OF 1.05.

Comparative Study of Irregular-shaped RC Building with Different Lateral Load Resisting Systems

Transcription:

Cantilever or Restrained Retaining Wall Design Calculations Organization: F.E.C. Project Name: Ex 3 Driveway Short Wall Design by: LAA Job #: Date: 7/5/2016 Codes used: 2012 + 2015 IBC, ACI 318-14, ACI 530-11 NOTES: 1. Refer to Table 19.2.1.1, ACI 318-14, for compressive strength requirements. 2. Refer to Table 19.3.1.1, ACI 318-14, for exposure categories and classes. 3. Refer to Table 19.3.2.1, ACI 318-14, for mixture requirements. 1

Input Parameters General Data Number of stem sections 1 Top Restrained No Concrete Unit Weight 150 pcf Bar Strength (Fy) 60.00 ksi Parapet Height 1.00 ft Wind Pressure 0.00 psf Groundwater (from top) 4.00 ft Full Ht. Distr. Loading 0.000 kips/ft From Un. Vert. Surch. 0.000 kips/ft Backfill Soils Rankine Method Soil Friction Angle 25.0 degrees Soil-Wall Friction Angle 0.0 degrees Backfill Slope Angle 0.0 degrees Backwall Inclination Ang. 90.0 degrees Soil Cohesion 150.00 psf Soil/Rock Unit Weight 112.0 pcf Allow Bear. Capacity 1800 psf Uniform Vert. Surcharge 0.0 psf Wall Height (Stem+Foot.) 5.17 ft Inverted Triangle Seismic Kh 0.22 g Overconsol. Ratio (OCR) 1.00 Passive Soils Sliding Friction Coefficient 0.33 Passive Slope Angle -18.40 degrees Soil Cohesion 200.00 psf Soil/Rock Unit Weight 108.00 pcf Ignore Passive Ht. 0.50 ft Passive F.S. 1.33 F.S. on Sliding Fri. Coeff. 1.33 Global Stability of a Vertical Cut Backfill Properties Backwall Inclin. Angle Soil Cohesion Friction Angle Soil/Rock Unit Weight Stem + Footing Height 90.00 degrees 150.00 psf 25.00 degrees 112.0 pcf 5.17 ft Stem Section Design Stem Type Masonry Masonry Strength (f'm) 2.20 ksi Wall Height 4.00 ft Section Size 12 in Axial Live Load 0 lb/ft Axial Dead Load 0 lb/ft Reinforcement - Vertical Vert. Bar Size Heel Side #4 Vert. Spacing Heel Side 8 in Bar Cover 3.00 in Reinforcement - Horizontal Horiz. Bar Size Heel Side #4 Horiz. Spacing Heel Side 8 in Footing Dimensions Heel Width Stem Width Bottom Toe Width Footing Thickness Tot. Footing Width Footing Soil Cover Concrete Strength (f'c) Sliding Restraint at the Toe Surcharge Loads Stem + Footing Height Strip Load (qs) Dist. to Load Begin (x1) Dist. to Load End (x2) Footing Depth Surcharge Influence (Is) 1.00 ft 0.97 ft 2.20 ft 1.17 ft 4.17 ft 0.33 ft 3.50 ksi No 5.17 ft 0.15 ksf 2.00 ft 10.00 ft 1.00 ft 6.25 ft Additional Loads and Moments Lateral Loads Dist.from Force, top, ft kips Car impact load 0.50 2.00 Base Shear Keyway - Not Used Heel Reinforcement Bar Size #4 Bar Spacing 8.0 in Bar Cover 2.00 in Toe Reinforcement Bar Size #4 Bar Spacing 8.0 in Bar Cover 3.00 in Shrinkage and Temperature Reinforcement S & T Bar Size #4 Nr of Bars Bottom 3 Nr of Bars Top 3 Footing Settlement Poisson's ratio 0.35 Elastic Soil Modulus 700000 psf Vert. Subgrade Modulus 100 ton/ft^3 2

Analysis and Design Results Earth Pressures Active Earth Pressure Coeff. 0.406 Passive Resistance Coeff. 1.211 Earth Press. - Horiz. Comp. 395.22 lb Earth Press. - Vert. Comp. 0.00 lb Uniform Surcharge Comp. 0.00 lb Passive Resist. Comp. 422.07 lb Opposing Keyway Press. (1807.2.1) 0.00 lb Equiv. Fluid Pressure Active 45.5 psf/ft Equiv. Fluid Resistance Passive 102.0 psf/ft Seismic Pressure Component 160.67 lb Sliding Friction Coefficient 0.30 Retaining Wall Stability Overturning F.S. Results Overturning Moment 894.57 lb-ft Resisting Moment 4168.42 lb-ft F.S. against Overturning 4.66 Sliding F.S. Results Sliding Force 845.85 lb Resisting Force 1304.89 lb F.S. against Sliding 1.54 Footing Pressures Resultant Loc. from Toe Toe Bearing Pressure Heel Bearing Pressure Surcharge Loads Strip Load Thrust Strip Resultant Line Load Does Not Apply Point Load Does Not Apply Total Lateral Thrust Total Resultant from Stem Top 1.86 ft Resultant in middle third 558 psf 231 psf 289.96 lb/ft 3.36 ft 289.96 lb/ft 3.36 ft Footing Settlement Average Bearing Pressure 371 psf Distortion Settlement 0.05 in Consolidation Settlement 0.12 in Total Settlement 0.17 in Settlement OK Stronger soil over weaker layer or vice-versa are not considered Stem Section Flexure Moment Demand (Mu) 8190 lb-ft 10731 lb-ft Moment Capacity (PhiMn) Reinforcement - Vertical Rho Min. Vertical 0.0015 Rho Max. Vertical 0.0100 Actual Rho Vertical 0.0022 Vert. Heel Side Steel Bar Used #4 @ 8.0 Area of Steel - Vertical Reinforcement - Horizontal Rho Min. Horizontal 0.0015 Rho Max. Horizontal 0.0100 Actual Rho Horizontal 0.0022 Horiz. Heel Side Steel Bar Used #4 @ 8.0 Area of Steel - Horizontal Shear Shear Demand (Vu) Shear Capacity (PhiVc) Heel Design Flexure Moment Demand (Mu) 0.30 in^2 0.30 in^2 2874 lb 11917 lb 225 lb-ft 15626 lb-ft Moment Capacity (PhiMn) Rho Min. Heel 0.0018 Rho Max. Heel 0.0181 Actual Rho Used 0.0021 Heel Steel Used #4 @ 8.0 Heel Area of Steel Shear Shear Demand (Vu) Shear Capacity (PhiVn) Toe Design Flexure Moment Demand (Mu) 0.30 in^2 831 lb 12555 lb 1079 lb-ft 14276 lb-ft Moment Capacity (PhiMn) Rho Min. Toe 0.0018 Rho Max. Toe 0.0181 Actual Rho Used 0.0023 Toe Steel Used #4 @ 8.0 Toe Area of Steel Shear Shear Demand (Vu) Shear Capacity (PhiVn) 0.30 in^2 748 lb 11490 lb Base Shear Keyway - Not Used Bar Development Heel into toe Toe into heel Stem into footing Stem - Top of Footing Shear Key Bearing Stress (10% f'c) Pure Shear Stress 15.8 in 12.2 in 8.9 in 350 psi 101 psi Shrinkage and Temperature Bar Spacing Bottom Bar Spacing Top Max. spacing is 18.0 in 14.8 in 10.9 in 3

Global Stability Req. Cohesion for Toe Circle Req. Cohesion for Base Circle 134.4 psf 98.2 psf Only valid for Cohesive Soils, not a comprehensive Slope Stability Analysis Vertical Cut Lambda 1.80 Ncf 5.32 F.S. against Toe Circle Failure 1.38 Actual Excavation Height 5.17 ft F.S. Circular through Heel 1.38 Allowable Excavation Height 6.73 ft F.S. Planar through Heel 1.25 Stem Wall Deflection Deflection Req. for Active State Approx. top of Stem Deflection 0.062 in 0.016 in Deflection OK (< 0.20) Design for K between Active and At Rest values 4

Table of Test Results - Stem Forces Node # Stem Ht, Soil Press, Vu, phivn, Mu, phimn, Slope/Rot, Deflection, inch psf lb lb lb-ft lb-ft deg in 1 0.0 0.0 0.0-11917.1 0.0-10731.0 0.026-0.016 2 1.0 0.0 0.0-11917.1 0.0-10731.0 0.026-0.015 3 1.9 0.0 0.0-11917.1 0.0-10731.0 0.026-0.015 4 2.9 0.0 0.0-11917.1 0.0-10731.0 0.026-0.014 5 3.8 0.0 0.0-11917.1 0.0-10731.0 0.026-0.014 6 4.8 0.0 0.0-11917.1 0.0-10731.0 0.026-0.014 7 5.8 0.0 0.0-11917.1 0.0-10731.0 0.026-0.013 8 6.7 0.0-2000.0-11917.1-120.0-10731.0 0.026-0.013 9 7.7 0.0-2000.0-11917.1-280.0-10731.0 0.026-0.012 10 8.6 0.0-2000.0-11917.1-440.0-10731.0 0.026-0.012 11 9.6 0.0-2000.0-11917.1-600.0-10731.0 0.026-0.011 12 10.6 0.0-2000.0-11917.1-760.0-10731.0 0.026-0.011 13 11.5 0.0-2000.0-11917.1-920.0-10731.0 0.026-0.011 14 12.5-76.1-2008.4-11917.1-1080.2-10731.0 0.026-0.010 15 13.4-80.4-2025.6-11917.1-1241.5-10731.0 0.026-0.010 16 14.4-84.8-2043.1-11917.1-1404.3-10731.0 0.025-0.009 17 15.4-89.1-2061.0-11917.1-1568.4-10731.0 0.025-0.009 18 16.3-93.4-2079.1-11917.1-1734.0-10731.0 0.025-0.008 19 17.3-97.8-2097.7-11917.1-1901.1-10731.0 0.025-0.008 20 18.2-102.1-2116.6-11917.1-2069.7-10731.0 0.024-0.008 21 19.2-106.5-2135.8-11917.1-2239.8-10731.0 0.024-0.007 22 20.2-110.8-2155.4-11917.1-2411.4-10731.0 0.024-0.007 23 21.1-115.1-2175.3-11917.1-2584.6-10731.0 0.023-0.006 24 22.1-119.5-2195.6-11917.1-2759.5-10731.0 0.023-0.006 25 23.0-123.8-2216.2-11917.1-2935.9-10731.0 0.022-0.006 26 24.0-128.2-2237.2-11917.1-3114.1-10731.0 0.022-0.005 27 25.0-132.5-2258.5-11917.1-3293.9-10731.0 0.021-0.005 28 25.9-136.8-2280.2-11917.1-3475.5-10731.0 0.021-0.005 29 26.9-141.2-2302.2-11917.1-3658.8-10731.0 0.020-0.004 30 27.8-145.5-2324.6-11917.1-3843.8-10731.0 0.020-0.004 31 28.8-149.9-2347.3-11917.1-4030.7-10731.0 0.019-0.004 32 29.8-154.2-2370.3-11917.1-4219.4-10731.0 0.018-0.003 33 30.7-158.5-2393.7-11917.1-4410.0-10731.0 0.018-0.003 34 31.7-162.9-2417.5-11917.1-4602.4-10731.0 0.017-0.003 35 32.6-167.2-2441.6-11917.1-4796.8-10731.0 0.016-0.002 36 33.6-171.6-2466.0-11917.1-4993.1-10731.0 0.015-0.002 37 34.6-175.9-2490.8-11917.1-5191.3-10731.0 0.015-0.002 38 35.5-180.2-2516.0-11917.1-5391.6-10731.0 0.014-0.002 39 36.5-184.6-2541.5-11917.1-5593.9-10731.0 0.013-0.001 40 37.4-188.9-2567.3-11917.1-5798.3-10731.0 0.012-0.001 41 38.4-193.3-2593.5-11917.1-6004.7-10731.0 0.011-0.001 42 39.4-661.5-2620.0-11917.1-6213.2-10731.0 0.010-0.001 43 40.3-201.9-2646.9-11917.1-6423.9-10731.0 0.009-0.001 44 41.3-206.3-2674.1-11917.1-6636.7-10731.0 0.008 0.000 45 42.2-210.6-2701.7-11917.1-6851.8-10731.0 0.007 0.000 46 43.2-215.0-2729.6-11917.1-7069.0-10731.0 0.006 0.000 47 44.2-219.3-2757.8-11917.1-7288.5-10731.0 0.005 0.000 48 45.1-223.6-2786.5-11917.1-7510.3-10731.0 0.004 0.000 49 46.1-228.0-2815.4-11917.1-7734.3-10731.0 0.003 0.000 50 47.0-232.3-2844.7-11917.1-7960.7-10731.0 0.001 0.000 51 48.0-236.7-2874.4-11917.1-8189.5-10731.0 0.000 0.000 5

Table of Test Results - Backfill Surcharge Output Node # Vert. Height, Strip Load Pr, ft ksf 0 1.000 0.000 1 1.139 0.011 2 1.278 0.021 3 1.417 0.031 4 1.556 0.040 5 1.695 0.048 6 1.834 0.056 7 1.973 0.062 8 2.112 0.068 9 2.251 0.073 10 2.390 0.077 11 2.529 0.080 12 2.668 0.082 13 2.807 0.084 14 2.946 0.085 15 3.085 0.086 16 3.224 0.086 17 3.363 0.086 18 3.502 0.086 19 3.641 0.086 20 3.780 0.085 21 3.919 0.084 22 4.058 0.083 23 4.197 0.082 24 4.336 0.081 25 4.475 0.080 26 4.614 0.079 27 4.753 0.077 28 4.892 0.076 29 5.031 0.074 30 5.170 0.073 6

Surcharges Line Load Does Not Apply Point Load Does Not Apply (Vertical Distribution) Point Load Does Not Apply (Horizontal Distribution) 7

Stem Forces 8

P-M Diagrams References: 1. ACI 318-14: Building Code and Commentary 2. 2012 + 2015 IBC: International Building Code 3. Reinforced Concrete Fundamentals, 5th ed. Ferguson, Breen, & Jirsa, 1988, Wiley 4. Soil Mechanics : Principles and Applications Perloff and Baron, 1976, Ronald Press 5. The Design and Construction of Engineering Foundations, 2nd ed, F.D.C. Henry, 1986, Chapman and Hall 6. Geotechnical Engineering: Foundation Design John Cernica, 1995, Wiley 7. Foundation Analysis & Design, 1988, 4th Ed. J.E. Bowles, McGraw-Hill 8. Retaining Walls, EM 1110-2-2502, Corps. of Engineers, 1961 9. Active and Passive Earth Pressure Coeficient Tables, A.R. Jumikis, 1962, Rutgers State University 10. Engineering Design in Geotechnics, 2nd ed, F. Azizi, 2013 11. "BEAMANAL" Spreadsheet v2.5, Alex Tomanovich, P.E. 12. Modern Formulas for Statics and Dynamics: A Stress and Strain Approach, Pilkey & Chuang, 1978 13. Geotechnical Engineering & Soil Testing, Al-Khafaji & Andersland, 1992, Saunders 14. The Reinforced Concrete Design Handbook, SP-17(14), Vol. 2, ACI 15. SoilStructure Software : Retaining Wall v3.0 9