Investigation on the Performance of an Organic Solar Cell by the Modification of Cathode with Lanthanum Fluoride Thin Layer

Similar documents
Organic Solar Cells. Green River Project

Improvement in Efficiency of Organic Solar Cells by Using TiO 2 Layer

Towards scalable fabrication of high efficiency polymer solar cells

Watching a Solar Cell Die morphological degradation in organic photovoltaics

EFFECT OF MIXING ZNO:TIO2 NANOPARTICLES IN P3HT:PCBM SOLAR CELLS

THE PERFORMANCE OF INDIUM TIN OXIDE FILMS DEPOSITED ON PLASTIC SUBSTRATE APPLIED FOR SOLAR-CELL BUOY

Low Cost Plastic Solar Cells

SOLAR ENERGY. Approximately 120,000 TW of solar energy strikes the earth s surface, capturing only a fraction could supply all of our energy needs.

Study of MEH PPV/PCBM active layer morphology and its application for hybrid solar cell performance

[Ragab, 5(8): August 2018] ISSN DOI /zenodo Impact Factor

The Effects of the Adding V2O5 on the Oxide Semiconductor Layer of a Dye-sensitized Solar Cell

Solar Cells. Mike McGehee Materials Science and Engineering

Supporting Information

Potential Fabrication Processes for Inverted Organic Solar Cells

New Applications of Old Materials From Paint to Solar Cells

Transparent Ti-doped In 2 O 3 Films Grown by Linear Facing Target Sputtering for Organic Solar Cells

The next thin-film PV technology we will discuss today is based on CIGS.

Polymer Solar Cells. Kim, JunYoung. November, 3 th, 2010

Ternary organic solar cells offer 14% power conversion efficiency

Sensing and Other Functionalities in Smart Coatings

Investigation into the Thermal Annealing Eect on the Photovoltaic Properties of Organic Solar Cells based on CuPc/C 60 Heterojunctions

Organic Light-Emitting Diodes. By: Sanjay Tiwari

Development of Dye-Sensitized Solar Cell (DSSC) Using Patterned Indium Tin Oxide (ITO) Glass

Preparation and Characterization of Hybrid Polymer-Inorganic Solar Cells Sub-Module

Bi-layer GaOHPc:PCBM/P3HT:PCBM organic solar cell

Efficiency Enhancement of Bulk-Heterojunction

REAL-WORLD DEGRADATION OF ORGANIC PHOTOVOLTAIC DEVICES IN THE SHEFFIELD SOLAR FARM

Low-temperature fabrication of dye-sensitized solar cells by transfer. of composite porous layers supplementary material

Advanced Analytical Chemistry Lecture 9. Chem 4631

Characterization of P3HT:PCBM:CdSe hybrid solar cells

Polymer Solar Cells: Effects of Annealing Treatment and Polymer Blends on I-V Characteristics

INVESTIGATION OF RECOMBINATION PROCESS OF P3HT:PCBM ORGANIC SOLAR CELL. Malaysia,43600 UKM Bangi,Selangor,Malaysia

An advantage of thin-film silicon solar cells is that they can be deposited on glass substrates and flexible substrates.

Characterization of P3HT:PCBM:CdSe hybrid solar cells

FABRICATION AND CHARACTERIZATION OF CuPc BASED ORGANIC SOLAR CELLS

Crystalline Silicon Solar Cells With Two Different Metals. Toshiyuki Sameshima*, Kazuya Kogure, and Masahiko Hasumi

T. S. Shafai and O. Oklobia. Thin Films Laboratory, Faculty of Computing, Engineering, and Science, Staffordshire

Supporting Information

G.Pucker, Y.Jestin Advanced Photonics and Photovoltaics Group, Bruno Kessler Foundation, Via Sommarive 18, Povo (Trento) Italy

ET3034TUx High efficiency concepts of c- Si wafer based solar cells

Organic Photovoltaics: A Technology Overview. Matthew Wright

Mini-project report Real world degradation of organic photovoltaic devices in the Sheffield Solar Farm. Dawn Scott

Enhancing the Photovoltaic Efficiency of a Bulk Heterojunction Organic Solar Cell

Properties of Plasma Enhanced Chemical Vapor Deposition Barrier Coatings and Encapsulated Polymer Solar Cells

Supporting Information

Amorphous silicon / crystalline silicon heterojunction solar cell

M. Hasumi, J. Takenezawa, Y. Kanda, T. Nagao and T. Sameshima

Organic-based light harvesting electronic devices

AMORPHOUS SILICON DIOXIDE LAYER FOR HIGH EFFICIENCY CRYSTALLINE SOLAR CELLS

INVESTIGATION OF PHOTOVOLTAIC PROPERTIES of p-inse/n-cds HETEROJUNCTION SOLAR CELLS

Efficient Organic Solar Cells based on Small Molecules

The Effect of Interfacial Roughness on the Electrical Properties of Organic Thin Film Transistors with Anisotropic Dielectric Layer

Efficiency Dependency of MDMO-PPV Based Polymer Solar Cells on Surface Morphology and Molecular Weight

Overview of Photovoltaic Energy Conversion

Author: Marcello Pompa - Industrial Engineering - University "Campus Bio-Medico" of Rome.

PHYSICSOF SOLARCELLS. Jenny Nelson. Imperial College, UK. Imperial College Press ICP

Organic Solar Cells Characterisation

Dissertation/Thesis by. Yisong Su. In Partial Fulfillment of the Requirements. For the Degree of. Master of Science

Supporting Information

LIFETIME CHARACTERIZATION AT IMEC

Citation for published version (APA): Popescu, L. M. (2008). Fullerene based organic solar cells. [Groningen]: s.n.

Schottky Tunnel Contacts for Efficient Coupling of Photovoltaics and Catalysts

Angeles. California , USA. Bldg 420 Westwood Plaza, Los Angeles, California , USA

Preparation and structural characterization of thin-film CdTe/CdS heterojunctions

Passivation of SiO 2 /Si Interfaces Using High-Pressure-H 2 O-Vapor Heating

Summary and Scope for further study

Dye sensitized solar cells

light to electricity in p-n junctions

Characteristics of Heat-Annealed Silicon Homojunction Infrared Photodetector Fabricated by Plasma-Assisted Technique

MATERIALS FOR SOLAR ENERGY: SOLAR CELLS

Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells

Ruthenium Oxide Films Prepared by Reactive Biased Target Sputtering

Influence of High Mobility Polymer Semiconductors in Organic Photovoltaics

New generation of solar cell technologies

REAR SURFACE PASSIVATION OF INTERDIGITATED BACK CONTACT SILICON HETEROJUNCTION SOLAR CELL AND 2D SIMULATION STUDY

Thin film solar cells

High Transmittance Ti doped ITO Transparent Conducting Layer Applying to UV-LED. Y. H. Lin and C. Y. Liu

Thin Film Solar Cells Fabrication, Characterization and Applications

Electronic Supplementary Information

Introduction to Polymer-Dispersed Liquid Crystals

ME 432 Fundamentals of Modern Photovoltaics. Discussion 30: Contacts 7 November 2018

CHAPTER 4. SYNTHESIS OF ALUMINIUM SELENIDE (Al 2 Se 3 ) NANO PARTICLES, DEPOSITION AND CHARACTERIZATION

Silver Diffusion Bonding and Layer Transfer of Lithium Niobate to Silicon

ZnO-based Transparent Conductive Oxide Thin Films

Exploring the Photovoltaic Performance of All-

DEVELOPMENT OF HIGH EFFICIENCY FLEXIBLE CdTe SOLAR CELLS

Photoelectrochemical Cells for a Sustainable Energy

Semi transparent, organic tandem solar cells for window applications

The 33rd Progress In Electromagnetics Research Symposium (PIERS 2013), Taipei, Taiwan, March 2013.

In the beginning God created the heaven and the earth. Genesis 1:1

Nanostructured metal oxides for printed electrochromic displays

In-Situ Thin Film Diffraction at SSRL

Small Molecule Organic Solar Cells for Improved Stability and Lifetime

High Performance Optical Coatings Deposited Using Closed Field Magnetron Sputtering

Characteristics of P3HT Modified with Lithium Aluminum Hydride

Electricity from the Sun (photovoltaics)

EE 5344 Introduction to MEMS. CHAPTER 3 Conventional Si Processing

THIN NICKEL OXIDE LAYERS PREPARED BY ION BEAM SPUTTERING: FABRICATION AND THE STUDY OF ELECTROPHYSICAL PARAMETERS

Roll to Roll Processing, Demonstration and Advanced Materials for Polymer Solar Cells

Department of Applied Chemistry, School of Engineering, The University of Tokyo,

Transcription:

American Journal of Modern Physics 2015; 4(6): 274-280 Published online December 14, 2015 (http://www.sciencepublishinggroup.com/j/ajmp) doi: 10.11648/j.ajmp.20150406.13 ISSN: 2326-8867 (Print); ISSN: 2326-8891 (Online) Investigation on the Performance of an Organic Solar Cell by the Modification of Cathode with Lanthanum Fluoride Thin Layer Md. Shahinul Islam 1, Golam Saklayen 1, Hartmut Baerwolff 2, Abu Bakar Md. Ismail 1 1 Department of Applied Physics & Electronic Engineering, Rajshahi University, Rajshahi, Bangladesh 2 Department of Analog & Optoelectronics, Cologne University of Applied Sciences, Germany Email address: shahinulislamrony@gmail.com (Md. Shahinul Islam) To cite this article: Md. Shahinul Islam, Golam Saklayen, Hartmut Baerwolff, Abu Bakar Md. Ismail. Investigation on the Performance of an Organic Solar Cell by the Modification of Cathode with Lanthanum Fluoride Thin Layer. American Journal of Modern Physics. Vol. 4, No. 6, 2015, pp. 274-280. doi: 10.11648/j.ajmp.20150406.13 Abstract: Performance of organic solar cell (OSC) using the modification of cathode has been investigated in this research. OSC has been fabricated using the blend of P3HT (poly (3-hexylthiophene)) and PCBM (Phenyl C61 butyric acid methylester) at 1:1 ratio. E-beam evaporated indium tin oxide (ITO) has been used as the anode. A novel bi-layer of e-beam-evaporated LaF 3 and Al (LaF 3 /Al) has been used as the cathode. The morphology of the ITO, P3HT: PCBM and LaF 3 layer has been investigated by Atomic Force Microscope (AFM). LaF 3 layer between P3HT: PCBM and Al layer was found to influence the reverse current, open-circuit voltage and efficiency of OSC. Various thicknesses of LaF 3 layer have been investigated, and 3nm thick LaF 3 layer was found to be the optimum thickness for the enhancement of the various solar-cell parameters of our fabricated OSC. The effect of annealing on the performance of the cell has been also investigated. The post-fabrication annealed devices, with or without the LaF 3 layer, exhibited higher values of short-circuit current, open-circuit voltage than those of similar devices annealed before depositing the Al metal. It was found that annealing at 150 C for 20 minutes provided the best result. The overall power conversion efficiency was found to enhance several times than that of the conventional structure of OSC having only Al as the cathode. Altogether the experimental results show that bi-layer of LaF 3 /Al cathode could enhance the overall performance of OSC. Keywords: Organic Solar Cell, P3HT: PCBM Polymer Photoactive Layer, Annealing, Bi-layer Cathode E-Beam Deposition, Thin Films, Surface Morphology, Surface Roughness, Open Circuit Voltage, Short Circuit Current 1. Introduction Organic Solar Cells (OSCs) has attracted much interest of the researchers because of their high throughput, low-cost solution phase processing [1-5]. But, before OSCs can be commercialized practical limitations of OSCs such as low power conversion efficiency (PCE) that results from the low open-circuit voltage (V OC ), short-circuit current (J SC ) and fill factor (FF) and limited operational lifetime must be overcome. The cathode of OSCs plays a crucial role of collecting electron. The efficiency of solar cell is a big factor. Historically, conventional solar cells were built from inorganic materials such as silicon. Although the efficiency of such conventional solar cells is high, very expensive materials and energy intensive processing techniques are required. New ways of manufacturing solar cells that can scale up to large volumes and low cost are required. A broad range of solar cell technologies are currently being developed including organic solar cell, dye-sensitized nanocrystalline photo electrochemical solar cells, polymer/fullerene bulk heterojunctions, small molecule thin films and organic inorganic hybrid devices. Organic solar cells have been the cheap alternatives for conventional silicon solar cells. An Organic solar cell consists of organic materials. Organic materials are inexpensive easily processable and their functionality can be tailored by molecular design and chemical synthesis. Theoretically the efficiency of an organic solar cell can be increased by several ways. One such approach is to use buffer layer. The present study rationalizes the information spread in the literature concerning the use and role of buffer layers in organic solar cells. Usual device structures include buffer layers, both at the anode and at the cathode interface, mainly to favour charge collection and extraction, but also to improve the

American Journal of Modern Physics 2015; 4(6): 274-280 275 device s overall performance. Buffer layers are actually essential for achieving highly efficient organic solar cells. Optical properties of LaF 3 structures attract a lot of interest currently due to their application perspectives of Lanthanum Fluoride (LaF 3 ) is a highly refractive layer material and high transparency. LaF 3 is also used as the diffusion barrier for Al into the photoactive polymer. In this background e-beam evaporate a very thin layer of LaF 3 as a buffer layer to enhance the performance of the cell has been investigated. By varying the thickness of LaF 3 the band gap can be tuned therefore the absorption range can be tailored. We observed that absorption decreased with the increased of LaF 3 film thickness. The optimum layer thickness of LaF 3 may be up to 3 nm. LaF 3 /Al cathode has been increased cell performance compare to the normal structure. LaF 3 /Al cathode annealed at 150 C for 20 minutes and showed better result than without annealing samples. Two types of OSCs were fabricated & investigated 1. ITO+PEDOT+P3HT-PCBM+Al 2. ITO+PEDOT+P3HT-PCBM+ LaF 3 (various layer thickness) + Al photoactive polymer blend was heated at 45 C for 20 minutes prior to application in order to become more homogeneous [12]. The thickness of film strongly depends on spin speed of the spin coater. Generally thickness of film decreases with increasing spin speed and vice-versa. After each steps the morphology of the deposited layers were investigated by Atomic Force Microscope. Atomic force microscope (AFM) of model (XE 70) park system was used to study the surface of the film. After deposition of P3HT: PCBM, the samples were annealed in a thermal annealing furnace in air at 130 C for 2 minutes. After annealing they were left to be cooled naturally to the room temperature before deposition cathode. LaF 3 thin films have been deposited on photoactive film by electron beam evaporation technique using an Edwards E-306 evaporator. Commercially available LaF 3 powder (99.99% pure) obtained from Chameleon Reagent and was used as the evaporation source material. For LaF 3 the deposition rate was 0.33 nm/s at a beam current of 30 ma and chamber pressure of 2.5*10-5 mbar. Finally, Al was evaporated on LaF 3 by E-beam evaporator at a beam current of 20 ma and chamber pressure of 2.5*10-5 mbar. 2. Experimental Thin films are thin material layers ranging from fractions of nanometer to several micrometers in thickness. There are various techniques for depositing thin film depending on the type of materials and thickness of layer to be deposited. In this thesis work Electron beam evaporation technique was used to deposit ITO (Anode), LaF 3 and Al (Cathode). In this research, Edwards E-306 vacuum coating unit was used for depositing ITO, LaF 3 and Al. In this research VTC-100 spin coater was used to deposit hole transport layer and photo active layer. OSCs were fabricated with a configuration of common sandwiched structure of ITO/PEDOT/P3HT: PCBM/LaF3-Al as shown in figure1. Readymade blend of P3HT and PCBM at 1:1 ratio and PDOT were bought from Sigma-Aldrich Chemie GmbH Steinheim, Germany. The OSC fabrication began with the deposition of ITO on a properly cleaned glass substrate. ITO thin films were deposited on a glass substrate at room temperature by electron beam evaporation technique using an Edwards E 306, UK. The deposition rate was 1.094 nm/s at a beam current of 30 ma and chamber pressure of 2.5*10-5 mbar. Commercially available ITO powder (99.99% pure) obtained from Inframat Advanced Materials, USA, was used as the evaporation source material. First the PEDOT:PSS (Hole transport material) polymer blend was coated on ITO by spin coating. The principle of spin coating is to apply a solution on the substrate, which is tightly held by vacuum pump. Then the substrate begins to spin in an accelerated manner, so the extra amount of solvent is spinned off and a thin layer remains. After we have programmed VTC 100, it starts to spin with the specified parameters. On PDOT:PSS, P3HT:PCBM (Photoactive material) film was deposited again using spin coater. After deposition of PEDOT:PSS (hole transport layer), the samples were annealed in a thermal annealing furnace (carbolite CWF 12/13) in air at 130 C for 2 minutes. The Figure 1. Schematic structure of an OSC with LaF 3 modified Al cathode. Figure 2. Energy diagram with LaF 3 buffer layer [13]. The expected energy diagram is shown in Figure 2. Previously reported values were used for the energy levels of the Figure by adjusting to the present work. The energy diagram has been shown in flat-band conditions, i.e., without any band bending due to transfer of charge carriers between materials upon contact. As can be seen from Figure 2, energy barrier exist near the semiconductor-metal interface. Electrons are transported to Al, and holes are transported to an ITO- coated substrate. Due to increased electrical field the electrons can tunnel through very thin LaF 3 layer efficiently. Again, LaF 3 film is an electrical

276 Md. Shahinul Islam et al.: Investigation on the Performance of an Organic Solar Cell by the Modification of Cathode with Lanthanum Fluoride Thin Layer insulator and due to its exceptionally large surface polarization thin LaF 3 layer is expected to decrease the surface potential of the Al cathode and thus the effective work function, resulting in favorable electron extraction. These are all in good consistence with the obtained enhancement in J SC and V OC. LaF 3 layer can be also expected to block holes because of its ionization potential of 12.4eV, which is much larger than that of PCBM (6.3eV). LaF 3 has a high electron affinity that is also expected to enhance electron extraction from PCBM and blocks holes as a result probability of radiative recombination is greatly improved. Moreover, recombination at the metal/polymer interface can be avoided as the LaF 3 layer separates the recombination zone from the metal electrode. Due to the formation of an interface dipole at the surface of metal electrode generated by the thin layer of LaF 3 and pointing toward the Al surface, the work function of metal electrode would be lowered. 3. Results & Discussion The surface morphology for different annealed temperature of ITO films was studied by AFM. Figure 3 shows the 3D-AFM image of the ITO/glass sample. The roughness of these films has been investigated by AFM. Roughness of these films increased with the increment of annealing time. The roughness has been found rms roughness = 1.639 nm and average roughness=1.334 for as deposited film. The surface morphology for hole transport layer was studied by AFM. Figure 4 shows the 3D-AFM image of the hole transport layer on ITO coated glass sample. The average roughness was found 0.842nm and rms roughness found 1.139nm. The poly (3-hexylthiophene) (P3HT) and [6, 6]-phenyl C61-butyric acid methylester (PCBM) blends is one of the promising organic solar cell materials. The surface morphology of photoactive layer was studied by AFM. The roughness of photoactive layer has been found average roughness 0.235nm and rms roughness 0.402nm. The roughness of intermediate layer (in our case LaF 3 ) of bilayer cathode is very important as the P3HT:PCBM layer will be deposited on intermediate layer (LaF 3 layer). Very rough surface may lead to a bad electrical interface between the P3HT:PCBM blend. Figure 6 shows the surface morphology of the LaF 3 layer as observed by an Atomic force Microscope (AFM). (a) (b)

American Journal of Modern Physics 2015; 4(6): 274-280 277 (c) Figure 3. (a) Surface morphology of as deposited ITO film (b) line profile of ITO film (c) grain phase. (a)

278 Md. Shahinul Islam et al.: Investigation on the Performance of an Organic Solar Cell by the Modification of Cathode with Lanthanum Fluoride Thin Layer (b) Figure 4. Surface morphology of hole transport layer (a) Amplitude (b) Topography. (a) (b) Figure 5. Surface morphology of photoactive layer (a) amplitude (b) topography.

American Journal of Modern Physics 2015; 4(6): 274-280 279 1.2 1 Without -annealing with Annealing 0.8 0.6 0.4 0.2 0 2 3 4 5 6 7 LaF 3 thickness [nm] Figure 6. Grain size of three different layers: PDOT:PSS layer (3, 4, 5, 7, 9) and P3HT:PCBM layer (1, 11, 6, 8, 10). Figure 9. Effect of annealing on open circuit voltage. The average roughness of LaF 3 layer has been found to be 0.0147 nm. As can be seen from the figure 6 an amorphous LaF 3 was obtained by e-beam deposition. The LaF 3 layer was found to be like a single grain (grain#2) having no grain boundary features. The roughness and grain-boundary less layer will certainly provide a very good electrical interface. Figure 10. Effect of annealing on short circuit current density. Figure 7. J-V characteristics of fabricated OSC. Figure 7 shows the J-V characteristics of the fabricated OSC. Figure 8 shows the open circuit voltage (V O ) and short circuit current density (J SC ) as a function of LaF 3 layer thickness. V oc and J SC increases for the LaF 3 thickness of 3nm. However, reduction of V oc and J SC is observed for the higher (>3nm) LaF 3 layer thickness. These results indicates that the optimum thickness of LaF 3 is 3nm. It is important to investigate the physical mechanism of the reduction of V oc and J SC for the higher thickness of LaF 3. Figure 8. Voc and Jsc as a function of LaF 3 thickness. Figure 11. Effect of annealing on efficiency. The J-V characteristics of the designed organic solar cells were studied under forward and reverse bias conditions in the dark and under 1.5 AM light. J-V characteristics were measured by KEITHLEY 2400 source meter. From figure 7 we see that reverse current density decreases with the increased thickness of LaF 3. The maximum was for 2 nm and the minimum was for 6 nm. The open circuit voltage for 2 nm LaF 3 /Al cathode was very poor. An open circuit voltage of 0.68 V and a short circuit current density of 4.3 µa/cm 2 were found for 3 nm LaF 3 /Al bi-layer cathode. As the I-V characteristics showed, the poor performance (reverse photocurrent) was due to the high series resistance of OSC, that might be due to our electrical connection from electrodes (ITO and Al) using silver paste. The effect of annealing on the performance of the cell has been also investigated. The

280 Md. Shahinul Islam et al.: Investigation on the Performance of an Organic Solar Cell by the Modification of Cathode with Lanthanum Fluoride Thin Layer post-fabrication annealed devices, with or without the LaF 3 layer, exhibited higher values of short-circuit current, open-circuit voltage and efficiency than those of similar devices annealed before depositing the Al metal. It was found that annealing at 150 C for 20 minutes provided the best result. The efficiency of OSC are shown as a function of LaF 3 thickness in Figure 11. The overall power conversion efficiency was found to enhance several order than that of the conventional structure of OSC having only Al as the cathode. The efficiency of OSC decreased with the increase thickness of LaF 3 layer thickness. The efficiency has been obtained too much poor that might be due to the series resistance of OSC increased when we made wire connection by using copper tape. From figure 11, it is clear that the efficiency of OSC has been increased by using LaF 3 /Al electrode than that of normal structure. 4. Conclusion LaF 3 /Al bi-layer cathode has been fabricated and tested for P3HT: PCBM-based organic solar cells. The influence of LaF 3 thickness on solar cell performance was studied. This research investigated a novel approach of inserting very thin buffer layer of LaF 3 between the Al cathode and photoactive polymer to enhance the performance of conventional organic solar cell (OSC). The experimental results without any doubt indicated substantial increase in the short-circuit current density and open circuit voltage of the conventional OSC. The effect of annealing on the performance of the cell has been also investigated. The post-fabrication annealed devices, with or without the LaF 3 layer, exhibited higher values of short-circuit current, open-circuit voltage than those of similar devices annealed before depositing the Al metal. It was found that annealing at 150 C for 20 minutes provided the best result. The overall power conversion efficiency was found to enhance several order than that of the conventional structure of OSC having only Al as the cathode. Although the conversion efficiency was very poor probably due to very high series resistance of the whole structure, it can be concluded that the approach of inserting a buffer layer of LaF 3 would enhance the performance of conventional organic solar cell. The experimental results indicate that LaF 3 /Al bi-layer cathode can be used to enhance the performance of organic solar cells. References [1] C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. Jia and S. P. Williams, Polymer-fullerene bulk-heterojunction solar cells, Adv. Mater, 22 (2010) 3839-3856. [2] M. Helgesen, R. Sondergaard and F. C. Krebs, Advanced materials and processes for polymer solar cell devices, J. Mater. Chem., 20 (2010) 36-60. [3] J. Peet, M. L. Senatore, A. J. Heeger and G. C. Bazan, The Role of Processing in the Fabrication and Optimization of Plastic Solar Cells, Adv. Mater, 21 (2009) 1521-1527. [4] H. B. Yang, Q. L. Song, C. M. Li and Z. S. Lu, New architecture for accurate characterization of the behavior of individual sub-cells within a tandem organic solar cell, Energy Environ. Sci., 1 (2008) 389-394. [5] T. Ameri, G. Dennler, C. Lungenschmied and C. J. Brabec, Organic tandem solar cells: A review, Energy Environ. Sci., 2 (2009) 347-363. [6] Ching-Chun Chang, et al "Effects of cathode buffer layers on the efficiency of bulk-heterojunction solar cells", Appl. Phys. Lett, 96 (2010) 263506-263508. [7] Tang, CW.; Albrecht, AC. Photovoltaic effects of metalchlorophyll-a-metal sandwich cells J.Chem.Phys.62.6 (1975). 2139-2149. [8] O'Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (1991) 737-740. [9] C. J. Brabec, J. A. Hauch, P Schilinsky, and C. Waldauf, MRS Bull. 30, 50 (2005). [10] R. A. J. Janssen, J. C. Hummelen, and N. S. Sariciftci, MRS Bull. 30, 33(2005). [11] P. Peumans, A. Yakimov, and S. Forrest, J. Appl. Phys. 93, 3693 (2003). [12] H. Spangaard and F. Krebs, "A brief history of the development of organic and polymeric photovoltaics," SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 83, pp.125-146, (2004). [13] Frederik et al. Polymeric Solar Cells: Materials, Design, Manufacture. DEStech Publications, Inc., Lancaster, Pennsylvania, (2010).