Flow cytometry analysis of transcription factor expression during differentiation of hpsc-derived cardiomyocytes

Similar documents
High-throughput automation with the Attune NxT Autosampler: consistent results across all wells and across plates

Modeling Cardiomyocyte Differentiation:

Cancer inflammation research applications and products

Human Dopaminergic Neuron Immunocytochemistry Kit

PSC 4-Marker Immunocytochemistry Kit PSC (OCT4, SSEA4) Immunocytochemistry Kit PSC (SOX2, TRA-1-60) Immunocytochemistry Kit

Assay Name: HPC proliferation measurement using Ki-67 cellular marker

Flow Cytometry - The Essentials

StemXVivo. Mesoderm Kit. Catalog Number SC030B. Reagents for the differentiation of human pluripotent stem cells into mesoderm.

Stem cell transfection guide

Detecting human circulating endothelial cells using the Attune Acoustic Focusing Cytometer

BD Human Pluripotent Stem Cell Transcription Factor Analysis Kit

Boundary-breaking acoustic focusing cytometry

High content imaging and applications

BD Mouse Pluripotent Stem Cell Transcription Factor Analysis Kit

Protocols for Neural Progenitor Cell Expansion and Dopaminergic Neuron Differentiation

Multicolor flow cytometry analysis of human pluripotent stem cell cultures

No-wash, no-lyse detection of phagocytic cells via a phrodo BioParticles functional assay in human whole blood on the

Transfection of neural stem cells with Lipofectamine Stem Transfection Reagent in StemPro medium

B-27 Plus Neuronal Culture System

STEMdiff Mesenchymal Progenitor Kit

Modeling Cardiac Hypertrophy: Endothelin-1 Induction with qrt-pcr Analysis

Formation of Embryonic Bodies to Produce Neural Stem Cells from ipscs Using the Corning Spheroid Microplate

Transfection of pluripotent stem cells with Lipofectamine Stem reagent in mtesr1 Medium on Geltrex matrix

Phagocytosis Assay Kit (IgG PE)

HUMAN IPSC CULTURE PROTOCOLS

Human Pluripotent Stem Cell Functional Identification Kit

Using the Attune NxT Flow Cytometer for rapid and accurate analysis of nuclear DNA content in plants

StemXVivo. Cardiomyocyte Differentiation Kit. Catalog # SC032B

A legacy of innovation and discovery

In-Cell Western Kits I and II

Protocol Reprogramming Human Fibriblasts using the Dox Inducible Reprogramming Polycistronic Lentivirus Set: Human 4F2A LoxP

Best practices in panel design to optimize the isolation of cells of interest

ab CFSE Fluorescent Cell Labeling Kit

Corning PureCoat rlaminin-521 (Human) for Expansion and Differentiation of Human Neural Stem Cells

APO-BrdU TUNEL Assay Kit

BD Stemflow Human and Mouse Pluripotent Stem Cell Analysis Kit

Protocol Reprogramming MEFs using the Dox Inducible Reprogramming Lentivirus Set: Mouse OKSM

ab Propidium Iodide Flow Cytometry Kit for Cell Cycle Analysis

ab Propidium Iodide Flow Cytometry Kit for Cell Cycle Analysis

SANTA CRUZ BIOTECHNOLOGY, INC.

ab CFSE Fluorescent Cell Labeling Kit

Neural Stem Cell Characterization Kit

ab Hypoxic Response Human Flow Cytometry Kit

Supplementary Data. Supplementary Methods Three-step protocol for spontaneous differentiation of mouse induced pluripotent stem (embryonic stem) cells

Protocol Using a Dox-Inducible Polycistronic m4f2a Lentivirus to Reprogram MEFs into ips Cells

High-dimensional flow-cytometric analysis of human B-cell populations

hpsc Growth Medium DXF Dr. Lorna Whyte

Zenon Goat IgG Labeling Kits

This Document Contains:

Cat. # MK600. For Research Use. ApopLadder Ex. Product Manual. v201608da

QUICK GUIDE TO STED SAMPLE PREPARATION

Each question may have MULTIPLE correct answers. Select all that are correct.

Induction of Neural Stem Cells from Human Pluripotent Stem Cells Using PSC Neural Induction Medium

Attune NxT Acoustic Focusing Cytometer The next generation in acoustic cytometry

Minimum Information about a Flow Cytometry Experiment (MIFlowCyt) Annotation

Technical Bulletin. Multiple Methods for Detecting Apoptosis on the BD Accuri C6 Flow Cytometer. Introduction

USER GUIDE. Introduction. Catalog No. C10423, C10723

CytoGLOW. IKK-α/β. Colorimetric Cell-Based ELISA Kit. Catalog #: CB5358

StemXVivo TM. Endoderm Kit. Catalog Number SC019. Reagents for the differentiation of human pluripotent stem cells into definitive endoderm.

INOS. Colorimetric Cell-Based ELISA Kit. Catalog #: OKAG00807

EGFR (Phospho-Ser695)

mcherry Rat Monoclonal Antibody

Gene expression profiling of a single cell using laser capture microdissection and OpenArray technology

mirrorball accelerating antibody discovery

Five steps for publication-quality cell imaging the first time

ThiolTracker Violet (Glutathione Detection Reagent)

USER GUIDE. Introduction. Catalog No. C10730, C10731

Application Note. Assay Portability on the BD FACSVerse System. Summary. Maria Jaimes, Yibing Wang, Catherine McIntyre, and Dev Mittar

ReproRNA -OKSGM is a non-integrating, self-replicating RNA-based reprogramming vector for generating induced pluripotent stem (ips)

Live and Dead Cell Assay

ApoTrack Cytochrome c Apoptosis ICC Antibody Kit: 2 color immunocytochemistry of cytochrome c and mitochondria.

Flowcytometry Dirk Pacholsky

Application Note. Introduction. Kerry Thompson, Jeff Partridge, Paula Flaherty, Susan Qian, and Deepa Saxena

Androgen Receptor (Phospho-Tyr363) Colorimetric Cell-Based ELISA Kit. Catalog #: OKAG02138

STEMdiff Hematopoietic Kit

Immunofluorescence Confocal Microscopy of 3D Cultures Grown on Alvetex

Establishing sirna assays in primary human peripheral blood lymphocytes

A simple choice. Essential 8 Media

First xeno-free serum replacement for pluripotent stem cells

Supplemental Materials and Methods

All quality control test results are reported on a lot specific Certificate of Analysis which is available at or upon request.

Identification of red and white blood cells from whole blood samples using the Agilent 2100 bioanalyzer. Application Note

Page 1 of 2. Product Information Contents: ebioscience BrdU Staining Kit for Flow Cytometry efluor 450

A Comparison of PerkinElmer s LANCE camp Assay Performance to that of State of the Art Competitive Technologies

11/19/2013. Janine Zankl FACS Core Facility 13. November Cellular Parameters. Cellular Parameters. Monocytes. Granulocytes.

Adaptation of hpscs from Different Culture Systems to Essential 8 Medium or Essential 8 Flex Medium

PROTOCOL. Generating Cardiomyocytes from Human Pluripotent Stem Cells using Stemgent MesoFate Differentiation Medium. Overview. Required Materials

For labelling sub-cellular organelles in tissue sections, cell cultures and cell free experiments using our proprietary Red fluorescence probe

Cell Processing Workstation. In Situ Laser-Mediated Cell Purification and Processing

Assay Name: Antibody-Dependent Drug Uptake Assay

BD Multicolor CompBeads

Cell Cycle Phase Determination Kit

Application Note. Laminin/Entactin Complex: A Feeder-Free Surface for Culture of Human Embryonic Stem Cells. Introduction

Transfection of Mouse ES Cells and Mouse ips cells using the Stemfect 2.0 -mesc Transfection Reagent

Matrices sourcebook. Your guide to Gibco extracellular matrices products

Transcription:

APPLICATION NOTE Attune NxT Flow Cytometer Flow cytometry analysis of transcription factor expression during differentiation of hpsc-derived cardiomyocytes Introduction The ability to direct human pluripotent stem cells (hpscs) towards differentiated cell phenotypes offers tremendous potential for personalized and regenerative medicine [1,2]. The identification of key transcriptional regulators of pluripotency, as well as chemically defined media and cell culture conditions that drive PSCs towards distinct cell fates, have enabled researchers to derive a multitude of differentiated cell types with a high degree of control and precision [3]. One of the hallmarks of the transition from pluripotency towards terminal differentiation is the orchestrated nuclear expression of various transcription factors that act as regulators of cell fate determination. In the case of hpsc-derived cardiomyocytes, the downregulation and eventual loss of pluripotency markers is followed by the sequential expression of other factors that act to restrict cell fate potential [4]. The cells initially become committed to a general mesodermal lineage, followed by specification to cardiovascular progenitors, and finally to differentiated cardiomyocytes that exhibit many of the physiological properties of primary cardiac cells, including spontaneous electrical activity and contractility [5]. For researchers studying cardiovascular biology or cardiotoxicity of potential drug candidates, the ability to reliably generate cell cultures with these properties can greatly accelerate discovery and screening. Quantification of the dynamic expression patterns of transcription factors that underlie cardiomyocyte differentiation often relies on detection of mrna transcripts via quantitative reverse transcription PCR (RT-qPCR) in cell and tissue lysates made from heterogeneous populations of cells. While this approach is highly sensitive and can be performed using small amounts of input material, it does not provide resolution at the level of the individual cells. An alternate approach is to use specific antibodies for detection and quantification of transcription factor expression at the single-cell level using either high-content imaging and analysis, or multiparameter flow cytometry. A major challenge for image-based analysis of differentiating PSCs is the complex, three-dimensional nature of the cell colonies formed in culture that confounds automated focus and acquisition (Figure 1).

A Day : monolayer B Day 8: Z = 15 μm C Day 8: Z = 3 μm D Day 8: Z = 5 μm Nkx2.5 Oct4 DAPI Merge Figure 1. Confocal images of hpscs prior to differentiation (A) and 8 days after induction (B D) of cardiomyocyte differentiation. (A) Cells are labeled with antibodies against Oct4 (Invitrogen Alexa Fluor 488 dye, green) and Nkx2.5 (Alexa Fluor 568 dye, red), and with DAPI (blue) to label nuclei. Nearly all cells show positive green nuclear staining for Oct4, consistent with maintenance of a pluripotent state. No red labeling was detected for Nkx2.5, indicating that cells have not begun to differentiate along a cardiac mesodermal fate. Cells form a confluent monolayer at this stage and can be easily imaged using a single plane. (B D) Cells were labeled with anti-nkx2.5 (Alexa Fluor 488 dye, green) and DAPI (blue). These represent individual optical slices taken from 15, 3, and 5 µm depths within a 15 µm Z-stack confocal image (B, C, and D, respectively). This demonstrates that the differentiated hpscs, many of which are Nkx2.5 +, are distributed throughout the 15 µm thickness. Because of the three-dimensional nature of these cultures, accurate analysis of Nkx2.5 + cells cannot easily be achieved using wide-field, high-content analysis imaging systems. Here, we describe a flow cytometric method for the simultaneous quantification of Oct4, a canonical marker of pluripotency, and Nkx2.5, a marker of cardiac fate, in hpscs induced to differentiate towards cardiomyocytes. Analysis was performed on an Invitrogen Attune NxT Flow Cytometer, which is ideally suited for use with fragile and large cell types like stem cells and cardiomyocytes, as it allows for gentle and safe analysis without clogging the instrument or wasting cells. This is partly due to the fact that the Attune NxT Flow Cytometer was developed with acoustic-assisted hydrodynamic focusing technology, and advanced fluidics was designed to minimize clogging and effectively handle a broad range of cell types. This allows for a higher degree of data, detail, and throughput that enables processing of a large range of sample types, including large clumpy cells, samples with a low concentration of cells, and precious samples, more quickly and accurately than ever before with no loss in data quality. Methods Materials WiCell human ipscs (Cat. No. WA9) Gibco Vitronectin protein (Cat. No. A147) Gibco Essential 8 Medium (Cat. No. A1517-1) Gibco PSC Differentiation Kit (Cat. No. A29212-1) Gibco TrypLE Express enzyme (Cat. No. 1265-1) Cell Signaling Technology Rabbit Anti-Oct4, clone C3A3, Alexa Fluor 488 conjugate (Cat. No. 5177) Cell Signaling Technology Rabbit Anti-Nkx2.5, clone E1Y8H (Cat. No. 8792) Invitrogen Donkey Anti Rabbit IgG, Alexa Fluor 647 conjugate (Cat. No. A-31573) Jackson ImmunoResearch Normal donkey serum (Cat. No. 17--121) Jackson ImmunoResearch Rabbit IgG (Cat. No. 11--2) BD Pharmingen Stain Buffer (Cat. No. 554657) Sigma Aldrich Triton X-1 (Cat. No. X1) Gibco Phosphate-Buffered Saline (PBS) (Cat. No. 11) Invitrogen Countess II Automated Cell Counter (Cat. No. AMQAX1) Invitrogen EVOS XL Core Imaging System (Cat. No. AMEX1) Attune NxT Flow Cytometer, 4-laser configuration (Cat. No. A24858) Thermo Scientific Nunc 6-well tissue culture plates (Cat. No. 14675, or equivalent) Thermo Scientific 12 x 75 mm round bottom tubes (Cat. No. S4122, or equivalent) Polysciences Formaldehyde, 16%, methanol-free (Cat. No. 18814)

Cell culture and antibody labeling The PSC Differentiation Kit is a complete, ready-to-use, xeno-free system for the efficient differentiation of hpscs into contracting cardiomyocytes within 1 days of initiating differentiation. Differentiated cardiomyocytes can be maintained in Gibco Maintenance Medium for >3 days. Undifferentiated H9 hpscs were cultured and expanded in Essential 8 Medium on vitronectin-coated 6-well plates, according to the product manuals [6,7]. On day, the medium was exchanged with Differentiation Medium A. On day 3, the medium was exchanged with Differentiation Medium B. On day 5, the medium was exchanged with Maintenance Medium, and cells were maintained for an additional 5 7 days (Figure 2). By day 12, contractility could be observed using the EVOS XL Core Imaging System with phase-contrast optics, consistent with cardiac cell differentiation. On each day during the differentiation process, cells were detached from plates using TrypLE Express enzymatic dissociation solution and triturated to a single-cell suspension. Cell counts and viability measurements were taken using a Countess II Automated Cell Counter, and the typical cell diameter was determined to be 13 µm. A total of 1 x 1 6 cells from each time point were transferred to centrifuge tubes, and cells were fixed in freshly prepared 4% formaldehyde in PBS for 15 min. Cells were then centrifuged at 4 x g for 5 min and washed in PBS. Fixed cells were stored in PBS at 4 C until all time points were collected. Cells were permeabilized and blocked in BD Pharmingen Stain Buffer containing 5% normal donkey serum and.1% Triton X-1 surfactant for 2 min at room temperature. Rabbit anti-nkx2.5 antibody was added at 1:2 in blocking buffer, and cells were incubated overnight at 4 C. Following washes in stain buffer, cells were incubated with donkey anti rabbit IgG with Alexa Fluor 647 conjugate at 4 μg/ml in blocking buffer for 2 hr at room temperature in the dark. Following a wash step in stain buffer, 1 μg/ml of rabbit IgG in blocking buffer was added for 2 min to saturate rabbit IgG binding sites. Rabbit anti-oct4 antibody with Alexa Fluor 488 conjugate was added at 1:5 in a solution containing blocking buffer and rabbit IgG for 2 hr at room temperature. Cells were washed in stain buffer and acquired on the Attune NxT Flow Cytometer. Flow cytometry acquisition Data were acquired using the BL1 and RL1 detectors for the anti-oct4 antibody (Alexa Fluor 488 conjugate) and anti-nkx2.5 antibody (Alexa Fluor 647 conjugate), respectively (Table 1), and forward scatter (FSC) and side scatter (SSC). Data were collected at a flow rate of 2 µl/min with stop criteria set on 1, total events, using a FSC threshold. Table 1. Optical configuration. Antibody Fluorophore Excitation laser (nm) Emission filter (nm) Oct4 Alexa Fluor 488 488 53/3 BL1 Nkx2.5 Alexa Fluor 647 638 67/14 RL1 Attune NxT detector Oct4 + PSC Differentiation Kit Nkx2.5 Essential 8 Medium Differentiation Medium A Differentiation Medium B Maintenance Medium Cytometry readout Culture and expand PSCs Days 2 Mesodermal commitment Days 3 4 Cardiac mesodermal induction Days 5 14 maturation Characterize cardiomyocytes for key markers Figure 2. Workflow of cardiomyocyte differentiation.

Results A dual-parameter plot of FSC-width vs. FSC-height was used to identify singlet cells, and a gate was drawn around the single-cell population (Figure 3). Using the singlet gate, a dual-parameter plot was created for Oct4 fluorescence vs. Nkx2.5 fluorescence. A quadrant gate was used to identify the cell population as it differentiates the Oct4 + events (green), the Nkx2.5 + events (red), and dual negative events (blue) (Figure 4). The plots were displayed in the precedence-density format, and percent positive for each target was recorded (Figure 5). Prior to differentiation, nearly 1% of all cells were Oct4 + and Nkx2.5, consistent with a pluripotent state. After day 3, the frequency of Oct4 + cells began to decline, consistent with a loss of pluripotency and a transition to a terminally differentiated cardiomyocyte phenotype, with robust expression of Nkx2.5 detected by day 8. FSC-H (x 1 3 ) 5 25.1 Day 1: All events 25 5 75 1 FSC-W Figure 3. A dual-parameter plot of FSC-width vs. FSC-height was used to identify single cells. A gate labeled singlet was drawn around the single-cell population. Data from (A) day 1 and (B) day 1 show changes in forward scatter profiles with cell differentiation. FSC-H (x 1 3 ) 5 25.1 Day 1: All events 25 5 75 1 FSC-W Day 1: Singlet Day 2: Singlet Day 3: Singlet Day 4: Singlet Day 5: Singlet 1 4 1 3 1 2 1 4 1 3 1 2 1 4 1 3 1 2 1 4 1 3 1 2 1 4 1 3 1 2-1 2 1 3 1 4 1 5 1 6-1 2-1 2-1 2-1 2 1 2 1 3 1 4 1 3 1 4 1 5 1 6 1 5 1 6 1 3 1 4 1 5 1 6 1 2 1 2 Day 6: Singlet Day 7: Singlet Day 8: Singlet Day 9: Singlet Day 1: Singlet 1 4 1 3 1 2 1 4 1 3 1 2 1 4 1 3 1 2 1 4 1 3 1 2 1 4 1 3 1 2-1 2 1 2 1 3 1 4 1 5 1 6-1 2 1 2 1 3 1 4 1 5 1 6-1 2 1 2 1 3 1 4 1 5 1 6-1 2 1 2 1 3 1 4 1 5 1 6-1 2 1 2 1 3 1 4 1 5 1 6 Figure 4. Two-parameter plots representing staining profiles for Oct4 and Nkx2.5 in H9 hpsc cells during cardiomyocyte differentiation. All plots were gated on singlet cells. At day 1 (A), nearly all cells are Oct4 + and Nkx2.5, consistent with a pluripotent state. During the time course of differentiation, with data shown for each day of differentiation (B J), cells lose Oct4 expression and begin to express the cardiac marker Nkx2.5. The precedence-density plot display is used, with the red-colored population representing Nkx2.5 + cells, and the green-colored population representing Oct4 + cells.

Conclusion The Attune NxT Flow Cytometer enables single-cell quantification of cells expressing markers of both pluripotency (Oct4) and cardiomyocyte specification (Nkx2.5) in H9 hpscs as they are induced to differentiate using defined media that are included in the Differentiation Kit. Results obtained using immunolabeling with specific antibodies against these transcription factors are consistent with published data using RT-qPCR quantification of Oct4 and Nkx2.5 mrna transcripts [4,8] with the added advantage of analysis at the single-cell level. Because hpscs form dense three-dimensional clusters as they differentiate, flow cytometric quantification has an advantage over image-based, high-content analysis of these cultures. Stem cells and cardiomyocytes represent traditionally challenging samples for flow cytometry testing due to their size, fragility, and scarcity. Equipped with acousticassisted hydrodynamic focusing, the Attune NxT Flow Cytometer is able to achieve sample throughput rates up to 1 times faster than those of traditional cytometers. This means that you can process samples more quickly and acquire sufficient events even from very dilute samples. Researchers using challenging samples such as tumor and stem cells are particularly interested in this feature of the Attune NxT Flow Cytometer because the quality of the data is not compromised by this very rapid sampling rate, unlike with traditional flow cytometers, where the data quality degrades as sample rate is increased. Many cell types and samples are now within your reach with the Attune NxT Flow Cytometer. Percent positive 1 8 6 4 2 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 1 Oct4 % pos 97 95 83 37 5 5 Nkx2.5 % pos 1 1 4 48 65 6 Figure 5. Oct4 and Nkx2.5 expression over 1 days in culture. Prior to differentiation, 97% of all cells expressed the Oct4 + /Nkx2.5 phenotype, consistent with a pluripotent state. With induction, expression of Oct4 declines, consistent with a loss of pluripotency, and a transition to a terminally differentiated cardiomyocyte phenotype is seen as expression of Nkx2.5 increases. These results were obtained by placing quad gates on an Oct4 vs. Nkx2.5 dual-parameter plot and looking at percent positive (gated on singlet cells). References 1. Robinton DA, Daley GQ (212) The promise of induced pluripotent stem cells in research and therapy. Nature 481:295-35. 2. Addis RC, Epstein JA (213) Induced regeneration the progress and promise of direct reprogramming for heart repair. Nat Med 19:829-836. 3. Chen G et al. (211) Chemically defined conditions for human ipsc derivation and culture. Nat Methods 8:424-429. 4. Zhang J et al. (29) Functional cardiomyocytes derived from human induced pluripotent stem cells. Cir Res 14:e3-e41. 5. Burridge PW et al. (212) Production of de novo cardiomyocytes: human pluripotent stem cell differentiation and direct reprogramming. Cell Stem Cell 1:16-28. 6. User Guide: Essential 8 Medium, Thermo Fisher Scientific MAN7569. 7. Protocol: Culturing PSCs in Essential 8 Medium, Thermo Fisher Scientific MAN735. 8. Yang L et al. (28) Human cardiovascular progenitor cells develop from a KDR+ embryonic stem cell-derived population. Nature 453:524-528. Find out more at thermofisher.com/attune For Research Use Only. Not for use in diagnostic procedures. 216 217 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Triton is a trademark of Union Carbide Corporation. BD Pharmingen is a trademark of Becton, Dickinson and Company. Essential 8 is a trademark of Cellular Dynamics International, Inc. COL31961 917