Intact and reduced mab/adc fragment separation on reversed phase chromatography with mass spec detection

Similar documents
mabs and ADCs analysis by RP

Fraction Analysis of Cysteine Linked Antibody-Drug Conjugates Using Hydrophobic Interaction. chromatography. Agilent 1260 Infinity II Bio-Inert System

Advanced Characterization of Antibody Drug Conjugates (ADCs) by Liquid Chromatography and Mass Spectrometry (LC/MS) John Gebler, Ph.D.

mab and ADC Analysis Shanhua Lin, Ph.D. The world leader in serving science

Thermo Scientific MAbPac HIC Columns. Novel Hydrophobic Interaction HPLC Columns. Designed for Monoclonal Antibody Analysis

Columns for Biomolecules BioLC Column Lines

Thermo Scientific. MAbPac HIC-10. Product Manual. P/N: June Part of Thermo Fisher Scientific

Analysis of Monoclonal Antibody and Related Substances using a New Hydrophobic Interaction Chromatography (HIC) Column

Size Exclusion BioHPLC Columns

ION EXCHANGE KIT FOR MAB SEPARATIONS

Developing Quantitative UPLC Assays with UV

NISTmAb characterization with a high-performance RP chromatography column

Gentle Bioanalysis of Proteins

BioHPLC columns. Tim Rice Biocolumn Technical Specialist

UHPLC for Large Bio-Therapeutics

4/4/2013. BioHPLC columns. Paul Dinsmoor Biocolumn Technical Specialist. April 23-25, Size Exclusion BioHPLC Columns

PLRP-S Polymeric Reversed-Phase Column for LC/MS Separation of mabs and ADC

Intact & Subunit Purity

HIC as a Complementary, Confirmatory Tool to SEC for the Analysis of mab Aggregates

Analysis of Intact and C-terminal Digested IgG1 on an Agilent Bio MAb 5 µm Column

Towards an in vivo Stability Assay for ADCs and Their Metabolites in Serum by Affinity Capture LC-MS

Application Note. Biopharma. Authors. Abstract. James Martosella, Phu Duong Agilent Technologies, Inc Centreville Rd Wilmington, DE 19808

Development of Analysis Methods for Therapeutic Monoclonal Antibodies Using Innovative Superficially Porous Particle Biocolumns

SEC Column Selection Guide for the Separation of Water-soluble Polymers

Simple Techniques for Improving the Isolation of Synthetic Peptides Jo-Ann Jablonski Principal Scientist Waters Corporation

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

Rapidly Characterize Antibody- Drug Conjugates and Derive Drug-to-Antibody Ratios Using LC/MS

Characterize mab Charge Variants by Cation-Exchange Chromatography

Separate and Quantify Rituximab Aggregates and Fragments with High-Resolution SEC

Protein Quantitation using various Modes of High Performance Liquid Chromatography

ProPac Elite WCX, 5 μm Particle, for Fast, High Resolution Protein and mab Analysis. July 2018

AdvanceBio HIC: a Hydrophobic HPLC Column for Monoclonal Antibody (mab) Variant Analysis

Method Optimisation in Bottom-Up Analysis of Proteins

R R Innovation Way P/N SECKIT-7830 Newark, DE 19711, USA Tel: Fax: Website: Published in November 2013

Disulfide Linkage Analysis of IgG1 using an Agilent 1260 Infinity Bio inert LC System with an Agilent ZORBAX RRHD Diphenyl sub 2 µm Column

Monoclonal Antibody Analysis on a Reversed-Phase C4 Polymer Monolith Column

2012 Waters Corporation 1

Bivalirudin Purification:

ADVANCE ACCURACY AND PRODUCTIVITY FOR FASTER ANALYSIS

Rapid UHPLC Analysis of Reduced Monoclonal Antibodies using an Agilent ZORBAX Rapid Resolution High Definition (RRHD) 300SB-C8 Column

Promix TM. Enter a New Era in Biomolecule Analysis with. Columns. Unsurpassed Selectivity and Peak Capacity for Peptides and Proteins

Fast Agilent HPLC for Large Biomolecules

Higher Order mab Aggregate Analysis using New Innovative SEC Technology

Fast protein separations with ion exchange columns

MAbPac RP Column. High-performance reverse phase chromatography column for monoclonal antibody analysis

Size Exclusion Chromatography/ Mass Spectrometry Analysis of Antibody Drug Conjugates Using the Agilent 1260 Infinity II Bio-Inert LC

High Throughput Sub-4 Minute Separation of Antibodies using Size Exclusion Chromatography

Charged Surface Hybrid C18 for High Resolution LC and LC/MS Peptide Separations

Clone Selection Using the Agilent 1290 Infinity Online 2D-LC/MS Solution

Agilent AdvanceBio SEC Columns for Aggregate Analysis: Instrument Compatibility

Application of Agilent AdvanceBio Desalting-RP Cartridges for LC/MS Analysis of mabs A One- and Two-dimensional LC/MS Study

Sean M. McCarthy and Martin Gilar Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL RESULTS AND DISCUSSION

Charge Heterogeneity Analysis of Rituximab Innovator and Biosimilar mabs

Chromatographic Workflows for Biopharmaceutical Characterization

Application Note. Author. Abstract. Pharmaceuticals. Detlef Wilhelm ANATOX GmbH & Co. KG. Fuerstenwalde, Germany mau

Agilent OpenLAB CDS MatchCompare for the Comparison of Peptide Mapping Samples

Smartube Benchmark of Nano-LC

Analysis of amoxicillin and five impurities on the Agilent 1220 Infinity LC System

High Performance Polymer Chromatography Products

Faster Separations Using Agilent Weak Cation Exchange Columns

Fast mass transfer Fast separations High throughput and improved productivity Long column lifetime Outstanding reproducibility Low carryover

Chromatography column for therapeutic protein analysis

Biotherapeutic Method Development Guide

Fast and Efficient Peptide Mapping of a Monoclonal Antibody (mab): UHPLC Performance with Superficially Porous Particles

A Comprehensive Workflow to Optimize and Execute Protein Aggregate Studies

HPLC Columns HIC PH-814 MANUAL. Shodex HPLC Columns Europe, Middle East, Africa, Russia. For technical support please use contact details shown below:

Biotherapeutic Method Development Guide

Method Development Considerations for Reversed-Phase Protein Separations

Barry Boyes 1,2, Tim Langlois 1, Brian Wagner 1, Stephanie Schuster 1 and Joe DeStefano 1

Precise Characterization of Intact Monoclonal Antibodies by the Agilent 6545XT AdvanceBio LC/Q-TOF

Intact Glycoprotein Isoforms Separation on Proteomix Strong Anion Exchange (SAX) Chromatography Using Salt and ph Gradients

Genotoxicity is the property of a compound

Scale-up with the Agilent SD-1 Purification System analytical and preparative runs on a single system

Reversed-phase Separation of Intact Monoclonal Antibodies Using Agilent ZORBAX Rapid Resolution High Definition 300SB-C8 1.

Automated 2-D HPLC Using Trap Columns for the Fractionation, Isolation and Screening of Natural Products

High-resolution Analysis of Charge Heterogeneity in Monoclonal Antibodies Using ph-gradient Cation Exchange Chromatography

Protein-Pak Hi Res HIC Column and HIC Protein Standard

Size Exclusion BioHPLC columns Ion Exchange BioHPLC columns

Superficially porous particles with carbon core and nanodiamond polymer shell for protein separations. Szabolcs FEKETE, Davy GUILLARME

Analysis of Monoclonal Antibody (mab) Using Agilent 1290 Infinity LC System Coupled to Agilent 6530 Accurate-Mass Quadrupole Time-of-Flight (Q-TOF)

High-Resolution Charge Variant Analysis for Top-Selling Monoclonal Antibody Therapeutics Using a Linear ph Gradient Separation Platform

Zwitterion Chromatography ZIC

Characterization of Antibody Drug Conjugates by Liquid Chromatography Mass Spectrometry

Fundamentals and Techniques of Preparative HPLC. Parto Zist Behboud Tel: 42108

Fast and High Resolution Analysis of Intact and Reduced Therapeutic Monoclonal Antibodies (mabs)

Characterization of mab aggregation using a Cary 60 UV-Vis Spectrophotometer and the Agilent 1260 Infinity LC system

Improved Peptide Maps Using Core-Shell Media: Explaining Better Biopharmaceutical Applications With Kinetex C18 Columns

ph gradient analysis of IgG1 therapeutic monoclonal antibodies using a 5 µm WCX column

Application Note. Authors. Abstract. Biopharmaceuticals

Fast and Comprehensive 2-Dimensional Liquid Chromatography of Block Copolymers through Temperature Gradient Driven Trapping

The Agilent 1260 Infinity BioInert Quaternary Pump. Scope of a low-pressure mixing UHPLC pump with Bio-Inert Capabilities

Sepax Technologies, Inc.

Characterize Fab and Fc Fragments by Cation-Exchange Chromatography

columns P r o P a c H I C C o l u m n S o l u t i o n s f o r P r o t e i n A n a l y s i s

Increasing Throughput and Efficiency with Exactive LC/MS and Triple Quadrupole LC/MS/MS

Impurity Detection with a New Light Emitting Diode Induced Fluorescence Detector Coupled to the Agilent 7100 Capillary Electrophoresis System

Multiple Detector Approaches to Protein Aggregation by SEC

Nature Protocols: doi: /nprot Supplementary Figure 1

Separating proteins with activated carbon

Transcription:

PM1016 Intact and reduced mab/adc fragment separation on reversed phase chromatography with mass spec detection Proteomix RP-1000 1

Possible Different cysteine ADC components under acidic/denaturing condition 2 Intact 2, L1 and H1HL 4 L1, H2H1L, H1H1, LH2 6 L1, H2H2, H3, LH2 8 L1, H3 Non reduced: Intact 2, L1, H1HL, H2H1L, H1H1, LH2, H2H2, H3 Fully reduced: L0, H0, L1, H1, H2, H3 Herceptin: L0 = 23,439 Da, H0 = 50,620 Da 2

MAb Herceptin and its ADCs Separation on Proteomix RP-1000 Column: Proteomix RP-1000 (5 µm, 1000 Å, 4.6 x 100 mm); Flow rate: 1.0 ml/min; Detector: UV 210 nm; Column temperature: 80 C; Sample: Herceptin and ADCs 1 mg/ml diluted in water; Injection volume: 10 ml 400 375 350 325 Gradient: 2-22 min, 30-48%B 300 275 250 225 200 175 Cysteine ADC 2 non-cleavable linker Cysteine ADC 1 cleavable linker Herceptin 2.5 5 7.5 10 12.5 15 17.5 20 22.5 min 3

Herceptin Cysteine ADC2 Separation on Proteomix RP-1000 Column: Proteomix RP-1000 (5 µm, 1000 Å, 4.6 x 100 mm); Flow rate: 1.0 ml/min; Detector: UV 210 nm; Column temperature: 80 C; Sample: Cysteine ADC 2 1 mg/ml diluted in water; Injection volume: 10 ml for gradient 1, 8 ml for gradient 2 140 Each in full scale 130 120 110 100 90 80 70 60 G1: 2-22 min, 25-55%B G2: 2-22 min, 30-48%B min 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 4

Herceptin Cysteine ADC2/Blank Separation on Proteomix RP-1000 Column: Proteomix RP-1000 (5 µm, 1000 Å, 4.6 x 100 mm); Flow rate: 1.0 ml/min; Detector: UV 210 nm; Column temperature: 80 C; Sample: Cysteine ADC 2 1 mg/ml diluted in water; Injection volume: 8 ml 350 325 2-22 min, 30-48%B Minimum sample carry over in the blank injection after sample run. 300 275 250 225 200 ADC Blank 175 2.5 5 7.5 10 12.5 15 17.5 20 22.5 min 5

Herceptin and its lysine ADC separation Proteomix RP-1000 Column: Proteomix RP-1000 (5 µm, 1000 Å, 4.6 x 100 mm); Flow rate: 1.0 ml/min; Detector: UV 210 nm; Column temperature: 80 C; Sample: Herceptin and lysine ADC 1 mg/ml diluted in 0.1% TFA; Injection volume: 10 ml 100 2-22 min, 25-55% B Each in full scale 80 60 Unconjugated mab 40 Lysine-ADC 20 Herceptin 0 2.5 5 7.5 10 12.5 15 17.5 20 min 6

Herceptin Cysteine ADC2 Separation-2.1 x 50 mm mass spec analysis Column: Proteomix RP-1000 (5 µm, 1000 Å, 2.1 x 50 mm) Flow rate: 0.4 ml/min; Detector: UV 210 nm; Column temperature: 80 C; Column pressure: 45 bar; Sample: ADC 2 diluted in water; Injection volume: 3 ml cysteine ADC 2 180 160 140 120 1. L1 1 2. Unconjugated mab 4 3, 4 mixture of different fragments 5. H2L0 3 5 6. H3 6 0-25min, 25-50% B 100 80 60 2 * 40 6 8 10 12 14 16 18 20 22 24 min 7

Herceptin Cysteine ADC2 Separation-2.1 x 50 mm Column: Proteomix RP-1000 (5 µm, 1000 Å, 2.1 x 50 mm) Flow rate: 0.4 ml/min; Detector: UV 210 nm; Column temperature: 80 C; Column pressure: 70 bar; Sample: ADC 2 diluted in water; Injection volume: 3 ml cysteine ADC 2 Peak 1 L1 Peak 5 H2L0 8

Herceptin/ADC1/ADC2 Separation- small size 2.1 x 50 mm 0.6 ml/min fast analysis Column: Proteomix RP-1000 (5 µm, 1000 Å, 2.1 x 50 mm) Flow rate: 0.6 ml/min; Detector: UV 210 nm; Column temperature: 80 C; Column pressure: 70 bar; Sample: Herceptin, ADC 1 and ADC 2 diluted in water; Injection volume: 0.5 ml for Herceptin, 1 ml for ADC 1 and ADC 2 300 0-5 min, 34-51% B 250 Unconjugated mab 200 150 Herceptin-ADC2 Herceptin-ADC1 Herceptin 100 1 2 3 4 5 6 min 9

MAb/ADC Fragment Separation on Reversed Phase Proteomix RP-1000 Reduced-Herceptin vs. Herceptin-Lys, Cys ADCs Column: Proteomix RP-1000 (5 µm, 1000 Å, 2.1 x 50 mm) Flow rate: 0.4 ml/min; Detector: UV 214 nm; Column temperature: 80 C; Column pressure: 45 bar; Injection: 1 ml for DTT reduced Herceptin (3 mg/ml), 3 ml Lys-ADC and Cys-ADC (1mg/mL each) 250 L1 0-25min, 25-50% B 225 200 L0 H0 H1 175 H2 H3 150 Cys-ADC2 125 100 75 50 Herceptin Lys-ADC 5 7.5 10 12.5 15 17.5 20 22.5 25 min 10

Cysteine ADC DAR analysis on Proteomix HIC Column: Proteomix HICBu-NP5 (5 mm, 4.6 x 35 mm) Mobile phase: A: 2 M ammonium sulfate in 0.025 M sodium phosphate, ph 7.0, B: 0.025 M sodium phosphate ph 7.0, C : 100% IPA Flow rate: 0.8 ml/min, Detector: UV 214 nm, Column temperature: 25 Sample: Herceptin ADC2, 1 mg/ml in 25 mm sodium phosphate, Injection: 10 ml, 1200 1000 800 D2 DAR= (2*AreaD2+4*AreaD4+6*AreaD6+8*AreaD8) Total peak area * D4a 600 D0 D4b D6 D8 Cysteine ADC 2 400 200 0 Herceptin 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 min 11 11

ADC HIC fraction 4a-DTT reduced fragment separation Reversed phase Proteomix RP-1000 Column: Proteomix RP-1000 (5 µm, 1000 Å, 2.1 x 50 mm) Flow rate: 0.4 ml/min; Detector: UV 214 nm; Column temperature: 80 C; Column pressure: 45 bar; Injection: 30 ml for cysteine ADC separated on HIC, fraction 4a concentrated to 45 ml, reduced with 20 mm DTT 200 180 160 0-25min, 25-50% B LC1 Fully reduced ADC: L0, H0, L1, H1, H2, H3 140 H1 120 100 80 60 40 * * Reduced Cys-ADC 2 Reduced fraction 4a from HIC 5 7.5 10 12.5 15 17.5 20 22.5 25 min 12

TFA effect on the ADC fragments separation Column: Proteomix RP-1000 (5 µm, 1000 Å, 2.1 x 50 mm) Mobile phase: A: X % TFA in water; B: X % TFA in 100% ACN; Flow rate: 0.4 ml/min; Detector: UV 214 nm; Column temperature: 80 C; Column pressure: 45 bar; Injection: 3 ml for DTT reduced Herceptin cysteine ADC 0.1 and 0.05% TFA runs, 2 ml for 0.02% TFA) 200 DTT reduced cysteine ADC 150 100 0.1% TFA 50 0.05% TFA 0.02% TFA 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 min 13

Column Temperature effect Proteomix RP-1000 14

BSA and mab separation with 25 C /40 C / 80 C Column: Proteomix RP-1000 (5 µm, 1000 Å, 4.6 x 100 mm); Mobile phase: A: 0.1% TFA in water; B: 0.1% TFA in 100% ACN Flow rate: 1.0 ml/min; Detector: UV 210 nm; Sample: BSA and mab 1mg/mL; Injection volume: 20 ul 2000 1750 BSA 2-22 min, 20-70% 1500 1250 1000 750 500 250 80 C 40 C 25 C 0 0 5 10 15 20 25 30 2000 1750 1500 1250 1000 750 500 250 mab 2.5 5 7.5 10 12.5 15 17.5 20 22.5 min 15 80 C 40 C 25 C min

Herceptin Cysteine ADC 2 Separation Column: Proteomix RP-1000 (5 µm, 1000 Å, 4.6 x 100 mm); Flow rate: 1.0 ml/min; Detector: UV 210 nm; Column temperature: 25, 80 C; Sample: Herceptin Cysteine ADC 2 1 mg/ml diluted in 0.1% TFA; Injection volume: 20 ml 700 2-22 min, 20-70% 600 500 400 300 200 80 C 25 C 100 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 min 16

PM1016 Product Information Column Part number Proteomix RP-1000 (5 µm, 1000 Å, 4.6 x 100 mm) 465950-4610 Proteomix RP-1000 (5 µm, 1000 Å, 2.1 x 50 mm) 465950-2105 Proteomix HIC Bu-NP5 (5 µm, 4.6 x 35 mm) 413NP5-4603 17