Hydrogeology and Simulation of Ground- Water Flow in a Glacial-Aquifer System at Cortland County, New York

Similar documents
Overview. Students will...

Movement and Storage of Groundwater The Hydrosphere

Groundwater 3/16/2010. GG22A: GEOSPHERE & HYDROSPHERE Hydrology

East Maui Watershed Partnership Adapted from Utah State University and University of Wisconsin Ground Water Project Ages 7 th -Adult

Memorandum. Introduction. Carl Einberger Joe Morrice. Figures 1 through 7

The Corning Primary Aquifer -One of 18. NYSDEC Primary Aquifers in New York

WELLHEAD PROTECTION DELINEATION REPORT FOR THE VILLAGE OF BEAR LAKE DECEMBER 2002

General Groundwater Concepts

Groundwater Flow Demonstration Model Activities for grades 4-12

Song Lake Water Budget

Supplemental Guide II-Delineations

Groundwater. Importance of Groundwater. The Water Table. Geol 104: Groundwater

RESPONSIBLE PLANNING FOR FUTURE GROUND WATER USE FROM THE GREAT FLATS AQUIFER : TWO CASE STUDIES: THE GEP ENERGY

Groundwater and surface water: a single resource. Santa Cruz River, Tucson

CHAPTER 13 OUTLINE The Hydrologic Cycle and Groundwater. Hydrologic cycle. Hydrologic cycle cont.

Groundwater basics. Groundwater and surface water: a single resource. Pore Spaces. Simplified View

Strength. Performance. Passion. Paris Pit CAP. April 30, Permit To Take Water Application Holcim (Canada) Inc.

Introduction to Groundwater

True False Click and Drag Artesian wells are naturally under pressure and require no additional pumps to get the water out of the ground.

Numerical Modeling of Groundwater Flow in the Navajo Sandstone Aquifer at the Tuba City, Arizona, Disposal Site 15167

The Impact of Nonpoint Source Contamination on the Surficial Aquifer of the Delmarva Peninsula

ENGINEERING HYDROLOGY

Trip A-5 APPLIED GEOMORPHOLOGY FOR LAND USE AND PLANNING IN CORTLAND, NEW YORK

OUTLINE OF PRESENTATION

HYDROGEOLOGY OF THE HUMBOLDT RIVER BASIN, IMPACTS OF OPEN-PIT MINE DEWATERING AND PIT LAKE FORMATION

Groundwater. Groundwater Movement. Groundwater Movement Recharge: the infiltration of water into any subsurface formation.

How & Where does infiltration work? Context: Summary of Geologic History Constraints/benefits for different geologic units

Aquifer Characterization and Drought Assessment Ocheyedan River Alluvial Aquifer

Potential effects evaluation of dewatering an underground mine on surface water and groundwater located in a rural area

Lecture 20: Groundwater Introduction

Assessment of the Groundwater Quantity Resulting from Artificial Recharge by Ponds at Ban Nong Na, Phitsanulok Province, Thailand

Understanding the Water System

Watershed: an area or ridge of land that separates waters flowing to different rivers, basins, or seas. It is the interdependent web of living

Irrigation. Branch. Groundwater Quality in the Battersea Drainage Basin

1.0 Introduction. 1.1 The Stream Depletion Issue. 1.2 Purpose of the Guidelines

GW Engineering EXAM I FALL 2010

Feasibility Study Addendum: Executive Summary

Lecture 21: Groundwater: Hydraulic Conductivity

Wickes Manufacturing TCE Plume Site Mancelona, Michigan

B-7. Predictive Assessment Model of Quaternary Alluvium Hydrogeology. J:\scopes\04w018\10000\FVD reports\final EIA\r-EIA app.doc

global distribution of water!

EES 1001 Lab 9 Groundwater

Groundwater Earth 9th Edition Chapter 17 Mass wasting: summary in haiku form Importance of groundwater Importance of groundwater

Prepared For: Town of Castle Valley, Utah

Groundwater Level and Movement

4.0 Procedures And Layer Descriptions:

Hydrogeology 101 3/7/2011

Environmental Data Management and Modeling, Niagara Falls Storage Site Lewiston, New York

Freight Street Development Strategy

GROUNDWATER AND GENEVA LAKE

Investigation of a Floodplain Pond to Improve Alluvial Aquifer Sustainability: A Quantity and Quality Report

Ground Water Chapter 11

Water Resources on PEI: an overview and brief discussion of challenges

GROUNDWATER BASICS SUBJECTS: TIME: MATERIALS: OBJECTIVES Math (Advanced), Science (Physics) 1 class period

A Hydrologic Study of the North Hills, Helena, Montana

DYNFLOW accepts various types of boundary conditions on the groundwater flow system including:

LAKE ARROWHEAD Hayes Township, Otsego County, Michigan. Preliminary Lake Level Augmentation Evaluation

Illinois State Water Survey Division

FACT FLASH. 5: Groundwater. What is groundwater? How does the ground store water? Fact Flash 5: Groundwater

5. Basin Evaluation Salt and Nitrate Balance

Our Eastern Shore Groundwater Part IV Groundwater Quality on the Eastern Shore: How safe is our groundwater and are there ways we can protect it?

Characterizing Groundwater and Surface- Water Interactions in Selected Northeast Twin Cities Lakes

STRAWMAN OUTLINE March 21, 2008 ISWS/ISGS REPORT ON THE OPPORTUNITIES AND CHALLENGES OF MEETING WATER DEMAND IN NORTH-EAST ILLINOIS

Florida Aquifer Geology

NATURAL FEATURES, LAND SUITABILITY FOR DEVELOPMENT AND DEVELOPMENT CONCERNS

Florida Aquifer Geology

Grounding Water: An Exploration of the Unseen World Beneath Our Feet

How Groundwater Interacts with Lakes and Streams

AESI AESI 6/17/2015 HOW AND WHERE DOES INFILTRATION WORK? o Context: Summary of Geologic History. o Constraints/benefits for different geologic units

The Hydrologic Cycle (with emphasis on groundwater)

GROUNDWATER & SGMA 101

groundwater. Because watersheds are complex systems, each tends to respond differently to natural or human activities.

Ground Water, Wells and the Summer of 1999

Background Information on the. Peace River Basin

Category 1 Waste Rock Stockpile Groundwater Containment System

Groundwater. Chapter 10 11/22/2011. I. Importance of groundwater

How does groundwater get in the earth? Where does it come from?

Environmental Geochemistry II. Aleš Bajer

GROUNDWATER MONITORING IN THE GREATER HUDSON HOPE AREA FINAL REPORT

Design Guideline for Gravity Systems in Soil Type 1. January 2009

SECTION 3 NATURAL RESOURCES

ITS GEOLOGY AND HYDROLOGY

MEMORANDUM. Kathy Yager USEPA OSRTI Dick Goehlert USEPA Region 1 Darryl Luce USEPA Region 1 Mindy Vanderford, GSI Environmental, Inc.

Deep River-Portage Burns Waterway Watershed 2015

Why Care About Contaminants in Groundwater?

The soil is a very. The soil can. The manure. Soil Characteristics. effective manure treatment system if manures are applied at the proper rate.

Purpose. Utilize groundwater modeling software to forecast the pumping drawdown in a regional aquifer for public drinking water supply

Florida Aquifer Geology

GROUNDWATER. Water Resources of NYS: The Nature of its Underground Water. Composite Groundwater Environment. Groundwater Resources of NYS

Corrective Action Cost Estimate for Known or Reasonably Foreseeable Release to Water For Lopez Canyon Landfill By The City of Los Angeles Bureau of

Modeling the Managed Aquifer Recharge for Groundwater Salinity Management in the Sokh River Basin

Albemarle County Hydrogeologic Assessment Summary Report

FAX

OAK RIDGES MORAINE Groundwater Program

Rockland County s Water Resources -Selected Findings from the USGS Study- Paul M. Heisig, Hydrologist New York USGS Water Science Center Troy, NY

Hydrology of the West Campus, SUNY Stony Brook

Freshwater. 260 Points Total

Environmental Resource Inventories. What are ERIs? Significance of information How to use them

DESIGN PARAMETERS FOR MULTI-PHASE EXTRACTION SYSTEMS USING UNSATURATED AND SATURATED SOIL PROPERTIES

8. Regional groundwater system

Transcription:

In Cooperation with Cortland County Soil and Water Conservation District Hydrogeology and Simulation of Ground- Water Flow in a Glacial-Aquifer System at Cortland County, New York The City of Cortland and surrounding communities obtain water from a highly productive glacial-aquifer system that underlies the western part of Cortland County (figs. 1 and 2). The study area encompasses about 12 square miles and includes the Otter Creek-Dry Creek valley and parts of the West Branch, East Branch, and Tioughnioga River valley and surrounds the bedrock hill (figs. 1 and 2) in Cortland upon which the State College campus stands. This aquifer system has been designated as a Primary Aquifer by the New York State Department of Environmental Conservation and as a Sole Source Aquifer by the U.S. Environmental Protection Agency (EPA). The upper (unconfined) aquifer is highly permeable and close to land surface, which makes it highly susceptible to contamination. Potential sources of contamination include leaking petroleumproduct storage tanks, leachate from landfills and septic systems, road-deicing salts, agricultural pesticides and fertilizers, and chemical spills (such as solvents and degreasers) at commercial and industrial facilities. Protection of this aquifer system from contamination is critical to ensure a safe drinking-water supply for the area. In 1989, the U.S. Geological Survey (USGS), in cooperation with Cortland County Departments of Health and Planning, began a 3 1/2-year study to define the hydrogeology of the glacial aquifer. The results of the study were published in Miller and others (1998). This Fact Sheet summarizes the results of that study and depicts the stratigraphy and model-generated areas that contribute ground water to wells. Unconfined sand and gravel aquifer Confining unit Confined sand and gravel aquifer Cosmos Hill (fine sand, silt, and clay) Hill Carr Hill Figure 1. Generalized hydrogeologic framework of the glacial-aquifer system, Cortland County, New York. Till U.S. Department of the Interior Fact Sheet FS 54-3 U.S. Geological Survey April 24

HYDROGEOLOGY OF THE GLACIAL-AQUIFER SYSTEM The glacial-aquifer 1 system in the Cortland area is bounded laterally by till-covered bedrock hills and beneath by the bedrock valley floor (figs. 1 and 3). It consists of an unconfined sand and gravel aquifer 4 to 8 feet thick that overlies a lacustrine confining layer 1 to 155 feet thick that, in turn, overlies a confined sand and gravel aquifer that ranges from 1 to 17 feet thick (figs. 1 and 3). The confining unit impedes vertical movement of ground water between the upper and lower aquifers in the middle of the valley, but the two aquifers are connected in many places along the valley walls where the confining layer is absent (fig. 3). 1 Boldface terms are explained in glossary A supply well in Cortland aquifer NEW YORK 76º15' 12'3" 1' 7'3" HOMER Cortland County Cortland 42º 37' 3" A A / Area shown in this figure STUDY AREA 35' AQUIFER BOUNDARY MUNICIPALITY BOUNDARY GROUND-WATER DIVIDE between Oswego River basin and Susquehanna River basin DIRECTION OF STREAMFLOW PRODUCTION WELL FIELD LINE OF HYDROGEOLOGIC SECTION (section shown in fig. 3) Lime Hollow Road production well A Fall Creek Valley Fish Hatchery City of Cortland well field TCE spill site A / Hill Terrace Road well field CITY OF CORTLAND 1 1 2 Superfund site 2 MILES 3 KILOMETERS TOWN OF CORTLANDVILLE TOWN OF VIRGIL Base from U.S. Geological Survey 1:62,5 series: Cortland (193) and Groton (193) Sewage-treatment plant Blodgett Mills McGraw 9.5 miles to Marathon Figure 2. Location and principal features of study area, Cortland County, New York. 2

GLACIAL HISTORY Glaciers covered central New York several times during the Ice Age, or Pleistocene Epoch, which began around 1.6 million years ago and ended when the ice left the New York area about 1, years ago. A major readvance (Valley Heads readvance) and standstill of the ice in central New York between 14, and 14,9 years ago resulted in the deposition of large amounts of sediment at the ice front. This material formed several types of deposits, one of which was a series of hummocky ridges that blocked several north-south-trending valleys. These ridges form a complex that extends across central New York and is known as the Valley Heads Moraine. Segments of the Valley Heads Moraine are found in the western part of the study area and in valleys to the north (fig. 4). The upper part of these segments consists of unsorted sediments, mainly coarse sand and gravel; the lower part consists of mostly fine-grained material such as till and lacustrine sand, silt, and clay (fig. 3). The Valley Heads Moraine formed plugs in the major valleys; these plugs blocked the natural drainage and resulted in the formation of lakes. One such lake formed in the valleys of the Tioughnioga River basin. Upland streams and meltwaters from the glacier transported large amounts of sediment into the lake; the coarse-grained sediments (sand and gravel) settled near the water s edge, whereas the fine-grained sediments (very fine sand, silt, and clay particles) were carried farther out into the lake, where they settled to form lacustrine (lake-bottom) deposits. These lacustrine deposits typically range from 9 to 155 feet thick in the central parts of the valleys and pinch out along the valley edges (fig. 3). The lacustrine unit forms the bottom of the surficial (unconfined aquifer) and the top boundary of the confined basal aquifer in the study area (figs. 1 and 3). The outlet of the lake (at Messengerville, fig. 4) was gradually lowered by erosion, and this lowering eventually allowed the lake to drain. Subsequent meltwater from the retreating ice developed a braided-stream system within the valleys, and large amounts of outwash sand and gravel (fig. 4) were deposited on top of the former lakebed (fig. 3). This outwash forms a wedge-shaped deposit that is more than 1 ft thick in the western part of the study area and thins eastward to the Tioughnioga River, where it is 35 to 45 feet thick. The outwash and morainal sediments form the highly permeable unconfined surficial aquifer in the Cortland area. 42º45' 1 76º15' 1 ONONDAGA CO CORTLAND CO 76º1' Tully 76º5' West East A A / FEET 1,25 1,2 1,15 1,1 1,5 1, 95 9 85 326 QUATERNARY AGE DEVONIAN AGE KAME MORAINE - poorly sorted silt, m sand, and gravel deposited during Valley Heads episode Qosg OUTWASH - stratified sand and gravel LACUSTRINE DEPOSITS - stratified very fine Qlsc sand, silt, and clay Dss m BEND IN SECTION 2 Qlsc KAME DEPOSITS - hummocks composed of stratified, poorly sorted silt, sand, and gravel TILL - poorly sorted clay, silt, sand, and stones Dss SHALE AND SILTSTONE 329 WELL AND WELL NUMBER-- well number assigned by USGS m VERTICAL EXAGGERATION X 2 DATUM IS NGVD OF 1929 11 32 Pond Qosg Qlsc Dss 378 381 4 Water table May 28-29, 1991 Qosg 1, 2, FEET 5 METERS Otter Creek Figure 3. Hydrogeologic section A-A (Line of section shown in fig. 2). 42 Dss 42º3' CAYUGA CO TOMPKINS CO City of Cortland Limit of study area OUTWASH DEPOSITS.- Dashes indicate direction of meltwater flow POSITIONS OF VALLEY HEADS ICE, hachures on ice side TOPOGRAPHIC CONTOUR.- Datum is NGVD of 1929 Base from U.S. Geological Survey, 1954, 1:25, Area shown in figure 1 Messengerville Outwash drains south through Tioughnioga River valley Marathon Figure 4. Positions of Valley Heads ice and of outwash deposits in the Tioughnioga River basin, Cortland County, New York. 5 MILES 5 KILOMETERS 3

AQUIFER RECHARGE AND DISCHARGE The unconfined aquifer receives recharge from three sources under natural (nonpumping) conditions (1) infiltration of precipitation that falls directly on the aquifer, (2) upland sources, such as runoff from unchanneled hillsides and seepage from bedrock slopes that border the aquifer, and (3) seepage from tributaries that flow onto the aquifer (fig. 5). The aquifer receives additional recharge from (1) infiltration beneath recharge basins at an industrial site in the western part of the aquifer (fig. 6), and (2) induced infiltration from streams and ponds near the major pumping wells. The confined aquifer is recharged along the edges of the valley (fig. 5). Water in the unconfined aquifer discharges (1) into the West Branch and main stem of the Tioughnioga River and, during seasonally high water-level conditions, to the lower reaches of Otter Creek, (2) to pumping wells, and (3) to springs that are the headwaters of Fall Creek valley in the western part of the study area (fig. 2). The study area contains four major pumping centers the City of Cortland well field, the well field for the Town of Cortlandville on Terrace Road, a well for the Town of Cortlandville on Lime Hollow Road, and a purge well at the former typewriter plant in the western part of the study area (fig. 6). Most of the water pumped from the production wells is eventually routed to the sewagetreatment plant as wastewater (fig. 2), where it is treated and discharged into the Tioughnioga River. SIMULATION OF GROUND- WATER FLOW A numerical ground-water flow model was constructed through the computer program MODFLOW to calculate hydraulic heads (water-table elevations) in the aquifer system and to derive water budgets. The directions of ground-water flow can be inferred from the hydraulic heads calculated by the model. Ground water moves from areas of high head to areas of low head, and the direction of flow is controlled by local factors such as aquifer geometry, distribution of recharge, and location of discharge areas (streams, ponds, and pumping wells), all of which are represented in the model. Model simulations indicate that water in the unconfined aquifer moves laterally from the edges of the valley toward the center, then flows northeastward along the axis of the Otter Creek- Dry Creek valley, where it discharges to pumping wells, the West Branch Tioughnioga River, and the main stem of the Tioughnioga River. Small upland tributary Uplands SOURCES OF RECHARGE TO SAND AND GRAVEL AQUIFERS IN LARGE VALLEYS Infiltration of precipitation that falls directly over the valley Unchanneled runoff and (or) ground-water flow from hillsides Large upland tributary Large valley A B Regional ground-water flow through bedrock and till Infiltration from tributary stream (see letters A and B) Recharge that moves laterally to river Recharge that moves downward to confined aquifer Terrace River B Alluvial fan A SAND AND GRAVEL LACUSTRINE FINE SAND, SILT, AND CLAY TILL BEDROCK Reach of tributary stream that gains water from ground-water discharg Reach of tributary stream that loses water to aquifer Figure 5. Sources of recharge to the glacial-aquifer system at Cortland County, NewYork. 4

RECHARGE AND DISCHARGE Water from the uplands is the largest source of aquifer recharge under average-recharge conditions and provides 55 percent of total recharge; this includes seepage from upland streams that flow onto the aquifer (32 percent of total recharge) plus unchanneled runoff and ground-water inflow from uplands (23 percent, table 1). The second-largest source is precipitation that falls directly onto the aquifer (38 percent of total recharge). The greatest discharge from the aquifer occurs as leakage to streams (69 percent of total discharge, table 1); the second largest is to pumping wells (28 percent of total discharge). AREAS CONTRIBUTING RECHARGE TO LARGE PUMPING WELLS Contributing areas to major pumping wells were calculated through the computer program MODPATH, which computes hypothetical paths of imaginary particles of water moving through a simulated ground-waterflow system and their traveltimes (fig. 6). Pumping large quantities of water from an aquifer system causes a drawdown of water levels within the aquifer, and the drawdown decreases with increasing distance from the pumping well. The lowering of the water level by pumping causes ground water to flow to the well. The flowpaths, and the size and extent of the well s contributing area depend on the hydraulic characteristics of the flow system, such as aquifer geometry, recharge rate, discharge rate, permeability of aquifer material, and type of well construction, including location, pumping rate, and position and length of the screen. Contributing-area analyses were done for low-, average-, and high-recharge conditions. The analysis for low-recharge conditions (fig. 6) resulted in the largest contributing areas. The model-generated contributing areas are U-shaped, with the open end facing upgradient from the well, and extend over most of the unconfined-aquifer area upgradient from the wells (fig. 6). The City of Cortland municipal well had the largest contributing area of all wells simulated. Recharge from tributaries such as Otter Creek and the unnamed tributary north of Otter Creek were indicated to be sources of water to the city well; thus, evaluations of the quality of water pumped by the city well need to consider the water quality of these two streams. The largest contributing areas resulted from the lowrecharge condition; therefore, the low-recharge condition defines the worst case (largest area) that water managers will need to consider when evaluating potential sources of contaminants that may threaten the water supply. GLOSSARY Aquifer - A geologic formation, group of formations, or part of a formation that contains sufficient saturated permeable material to yield significant quantities of water to springs and wells. Confined aquifer (artesian aquifer) - An aquifer that is completely filled with water under pressure and that is overlain by material that restricts the movement of water. Confining layer (confining unit) - A body of impermeable or distinctly less permeable (see permeability) material stratigraphically adjacent to one or more aquifers that restricts the movement of water into and out of the aquifers. Contributing area - The area in a drainage basin that contributes water to streamflow or recharge to an aquifer. Discharge - The volume of fluid passing a point per unit of time, commonly expressed in cubic feet per second, million gallons per day, gallons per minute, or seconds per minute per day. Discharge area (ground water) - Area where subsurface water is discharged to the land surface, to surface water, or to the atmosphere. Drawdown - The difference between the water level in a well before pumping and the water level in the well during pumping. Also, for flowing wells, the reduction of the pressure head as a result of the discharge of water. Flowpath - An underground route for ground-water movement, extending from a recharge (intake) zone to a discharge (output) zone such as a pumping well or shallow stream. Glacial - Of or relating to the presence and activities of ice or glaciers. Lacustrine - Pertaining to, produced by, or formed in a lake. Moraine - A mound, ridge, or other distinct accumulation of glacial drift, deposited chiefly by direct action of glacier ice. Permeability - The capacity for transmitting a fluid; a measure of the relative ease with which a porous medium such as unconsolidated sediment can transmit a liquid. Recharge (ground water) - The process involved in the absorption and addition of water to the zone of saturation. Recharge area (ground water) - An area within which water infiltrates the ground and reaches the zone of saturation. Runoff - That part of precipitation or snowmelt that appears in streams or surface-water bodies. Till - Predominantly unsorted and unstratified drift, deposited directly by and underneath a glacier without subsequent reworking by meltwater, and consisting of a heterogeneous mixture of clay, silt, sand, gravel, and boulders. Unconfined aquifer - An aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. Upgradient - Of or pertaining to the place(s) from which ground water originated or traveled through before reaching a given point in an aquifer. 5

42º 37' 3" 76º15' 76º1' 1 42º 35' 2 Stupke Pond Recharge lagoons Otter Creek 3 MODEL-CALCULATED CONTRIBUTING RECHARGE AREAS Area contributing recharge to City of Cortland well no. 3 Area contributing recharge to Town of Cortlandville production well, Lime Hollow Road Area contributing recharge to Town of Cortlandville production well, Terrace Road Area contributing recharge to industrial recovery well 42º 32' 3".5 1 MILE.5 1 KILOMETER Boundary of ground-water-flow model Production wells- 1 = City of Cortland 2 = Town of Cortlandville (Terrace Road site) 3 = Town of Cortlandville (Lime HolLow Road site) Industry purge well (former typewriter plant) Figure 6. Model-calculated contributing recharge areas for major production wells during lowrecharge conditions, in the unconfined aquifer, Cortland County, New York. Table 1. Steady-state water budget for glacial aquifer at Cortland, N.Y., for average-recharge conditions, May 28 through June 4, 1991. [ft 3 /s, cubic feet per second] Budget component A. Recharge to the aquifer system Amount (ft 3 /s) Percent of total Precipitation on the aquifer 14.4 38 Upland sources Seepage losses from tributary 12.2 32 streams Unchanneled runoff and groundwater 8.8 23 inflow from uplands Ground-water inflow from valleys to.9 3 model area Infiltration at recharge basins 1.7 4 TOTAL 38. 1 B. Discharge from aquifer system Pumping wells 1.7 28 Discharge from aquifer to streams 26.1 69 Ground-water outflow from model area 1.2 3 TOTAL 38. 1 REFERENCE CITED Miller, T.S., Sherwood, D.A., Jeffers, P.M., and Mueller, Nancy, 1998, Hydrogeology, water quality, and simulation of ground-water flow in a glacial-aquifer system, Cortland County, New York: U.S. Geological Survey Water- Resources Investigations Report 96-4255, 84 p. by Todd S. Miller FOR MORE INFORMATION: Subdistrict Chief U.S. Geological Survey 3 Brown Rd Ithaca, N.Y. 1485 This fact sheet and related information can be found on the world wide web at http://ny.usgs.gov 6