Periodic Activity of Metals Periodic Trends and the Properties of the Elements

Similar documents
Reactions of Alkali Metals Activity Series of Metals

Reactions of Alkali Metals

Activity of metals SCIENTIFIC. Demonstration and Inquiry. Introduction. Concepts. Background. Inquiry Approach. Demonstration Questions

Alchemy: A Cross-Curricular Activity Copper, Silver, and Gold Redox Reactions

Periodic Trends and the Properties of Elements

, to form the products magnesium oxide, MgO(s), and magnesium nitride, Mg 3

Chapter 11. Reactivity of metals

Chapter 12 Reactivity of Metals 12.1 Different Reactivities of Metals Recall an experiment performed in F.3

Periodic Trends and the Properties of Elements The Alkaline Earth Metals

Equation Writing and Predicting Products Chemistry I Acc

INDIAN SCHOOL MUSCAT SENIOR SECTION DEPARTMENT OF CHEMISTRY CLASS X- PRACTICAL WORKSHEET

Key Points. ATOMIC STRUCTURE Atom: the smallest part of an element that still has the characteristics/ properties of that element.

Greenhouse Effect and Global Warming Environmental Science Student Laboratory Kit

The Crystal Forest Favorite Holiday Demonstrations

GRADE: 10 CHEMISTRY MCQ (TERM-1)

TYPES OF CHEMICAL REACTIONS PART I INTRODUCTION

Year 9 Science. 9C5: Energy Changes in Reactions and the Reactions of Metals. Home-Learning Challenge

EXPERIMENT 5. The Periodic Table INTRODUCTION

Chemical reactions and electrolysis

PRECAUTIONS WHILE PERFORMING CHEMISTRY ACTIVITIES. Do not touch anything without the permission of the teacherin the lab.

Oxygen Formula: O 2 Bonding: covalent Appearance: colourless gas. Oxygen is one of the two main gases in our atmosphere, the other being nitrogen.

CONSERVATION OF MATTER AND CHEMICAL PROPERTIES

Properties of Elements

Properties of Elements

EMPIRICAL FORMULA DETERMINATION

85 Q.51 Which of the following carbonates would give the metal when heated with carbon? (1) MgCO 3 (2) PbCO 3 (3) K 2 CO 3 (4) CuCO 3

S1 Building Blocks Summary Notes

I. PHYSICAL PROPERTIES. PROPERTY METALS NON-METALS 1.Lustre Metals have shining surface. They do not have shining surface.

EXPERIMENT. The Reaction of Magnesium with Hydrochloric Acid; The Molar Volume of Hydrogen

NCEA Level 1 Chemistry (90933) 2012 page 1 of 5. Q Evidence Achievement Achievement with Merit Achievement with Excellence NØ N1 N2 A3 A4 M5 M6 E7 E8

The following are the completed but unbalanced equations. Each equation is numbered to match each step of the cycle:

Determination of the Empirical Formula of Magnesium Oxide

Covered with a thin layer of oxide at ordinary temperatures.

The Reactivity Series

The empirical formula of a compound

Before Statement After

Oxidation and Reduction

TWEED RIVER HIGH SCHOOL 2006 PRELIMINARY CHEMISTRY. Unit 2 Metals

PERCENT Y IELD: COPPER T Ra NSFORMATIONS

Lab #3: Law of Definite Proportions

Copper Odyssey. Chemical Reactions of Copper

A Cycle of Copper Reactions

Unit 4 WATER 4.1 Occurrence and Physical Properties

GraspIT AQA GCSE Chemical changes

Chapter 3: Metals and Non-metals Question 1: Define amphoteric oxides. Give two examples. Answer: Oxides that react with both acids and bases to form

Experiment Twelve Empirical Formula of Magnesium Oxide

9.2.1 Similarities and trends in the properties of the Group II metals magnesium to barium and their compounds

Iron filings (Fe) 56g IRON + SULPHUR IRON SULPHIDE

Preliminary Chemistry

Reactivity Series. Question Paper. Save My Exams! The Home of Revision. Module Double Award (Paper 1C) Chemistry of the Elements.

Unit 9F Patterns of reactivity. About the unit. Expectations. Science Year 9. Where the unit fits in

1. What are amphoteric oxides? Give two examples of amphoteric oxides.

To identify and classify various types of chemical reactions.

(a) To find out which is the more reactive metal, zinc or tin, the following experiment could be carried out. piece of zinc shiny surface

CHEMICAL WASTE DISPOSAL GUIDE

Chapter 3 Metals and Non-metals

APPENDIX N: SPECIAL PHYSICAL HAZARDS PRECAUTIONS TO INCLUDE IN SITE-SPECIFIC SOPS

Experiment Twelve Empirical Formula of Magnesium Oxide

ADVANCED AP PLACEMENT CHEMISTRY. Activity Series. Introduction. Objective. Chemicals and Equipment

EMPIRICAL FORMULA OF MAGNESIUM OXIDE

FACTFILE: GCE CHEMISTRY

EMPIRICAL FORMULA OF MAGNESIUM OXIDE

28. Some reactions of alcohols Student Sheet

Warning. Chlorine Gas (Cl 2 ) Chlorine gas production

to the presentation Teaching Thermodynamics: Chemical Potential from the Beginning Regina Rüffler, Georg Job

2.3 Chemical Changes corrosion Kinds of Corrosion

I. PHYSICAL PROPERTIES PROPERTY METALS NON-METALS

METALS AND THEIR COMPOUNDS

Compounds & Reactions Week 1. Writing Formulas & Balancing Equations. Write the chemical formula for each molecular (covalent) compound.

An Organized Table Worksheet Due Thursday Name: Date: Period:

Explain, in terms of structure and bonding, why sodium oxide has a high melting point

Compiled by Rahul Arora What do you mean by corrosion? How can you prevent it?

Strong under tension and compression. Malleable. Low density. Have a dull appearance. Good conductors of electricity and heat

1. Which of the following elements has the highest percentage by mass in nature? A. Oxygen B. Aluminium C. Nitrogen D. Silicon

UNITECH BATTERY LIMITED

CHEM 1215 LAB NOTES EXPT #2: PHYSICAL AND CHEMICAL CHANGES 1

Safety Data Sheet. Magnesium Metal

SAFETY DATA SHEET (SDS) Carb/Bicarb Buffer, w/activator 01. Product and Company Identification

Extracting a metal from its ore 2004 by David A. Katz. All rights reserved.

PHYSICAL AND CHEMICAL CHANGES CLASS 7. Types of changes: The changes are of two kinds, physical and chemical..

Physical Behavior of Metals

(06) WMP/Jun10/CHEM5

Edexcel GCSE Chemistry. Topic 4: Extracting metals and equilibria. Obtaining and using metals. Notes.

Year 7 Chemistry HW Questions

Metals and Non-metals

Page 1 of 15. Website: Mobile:

*20GSD2101* Double Award Science: Chemistry. Unit C1 Foundation Tier THURSDAY 14 MAY 2015, MORNING [GSD21] *GSD21* TIME 1 hour.

Contact us:

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

Teacher Demo: Photosynthesis and Respiration: Complementary Processes

Safety Data Sheet. Manganese Metal

Metals And Their Properties- Physical and Chemical

NCERT solutions for Metals and Non Metals

Cu (s) Cu 2+ (aq) Cu(OH) 2 (s) CuO (s) Cu 2+ (aq) Cu (s)

MATERIAL SAFETY DATA SHEET MD BATTERY MATERIAL SAFETY DATA SHEET

A Hydrogen Powered Bottle Rocket

Determination of the Empirical Formula of Magnesium Oxide

SAFETY DATA SHEET 1. PRODUCT AND COMPANY IDENTIFICATION. Product name: BoroSpec K Potassium Borohydride Powder

Transcription:

elearning 2009 Introduction Periodic Activity of Metals Periodic Trends and the Properties of the Elements Publication No. 95022 Elements are classified based on similarities, differences, and trends in their properties, including their chemical reactions. The reactions of alkali and alkaline earth metals with water are pretty spectacular chemical reactions. Mixtures bubble and boil, fizz and hiss, and may even smoke and burn. Introduce the study of the periodic table and periodic trends with this exciting demonstration of the activity of metals. Concepts Alkali and alkaline earth metals Physical and chemical properties Periodic table and trends Metal activity Materials turnings, Ca, 0.3 g Beaker, Berzelius (tall-form), Pyrex, 500-mL, 4 metal, Li, precut piece Forceps or tongs ribbon, Mg, 3-cm Knife (optional) metal, Na, precut piece Petri dishes, disposable, 4 Phenolphthalein, 1% solution, 2 ml Scissors Water, distilled or deionized, 600 ml Safety Precautions and sodium are flammable, water-reactive, corrosive solids; dangerous when exposed to heat or flame. They react violently with water to produce flammable hydrogen gas and solutions of corrosive metal hydroxides. Hydrogen gas may be released in sufficient quantities to cause ignition. Do NOT scale up this demonstration using larger pieces of sodium or lithium! These metals are shipped in dry mineral oil. Store them in mineral oil until immediately before use. Do not allow these metals to stand exposed to air from one class period to another or for extended periods of time. Purchasing small, pre-cut pieces of lithium and sodium greatly reduces their potential hazard. metal is flammable in finely divided form and reacts upon contact with water to give flammable hydrogen gas and corrosive calcium hydroxide. metal is a flammable solid and burns with an intense flame. Perform this demonstration in a well-ventilated lab only. Do not handle any of the metals with bare hands. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. All students or spectators should also be wearing chemical splash goggles during this demonstration. Use a Class D powder fire extinguisher such as dry sand for reactive metals. Please review current Material Safety Data Sheets for safety, handling, and disposal information. Preparation 1. Obtain four 500-mL, tall-form beakers and label them Li, Na, Mg, and Ca. Add approximately 150 ml of distilled or deionized water to each beaker. Label four Petri dishes Li, Na, Mg, and Ca and place them next to the beakers. 2. Cut the magnesium ribbon into 3-cm strips using scissors. 3. The precut lithium and sodium metal pieces should be approximately 0.5 cm 0.5 cm 0.5 cm, or 0.2 0.3 g each. 4. Divide the calcium turnings into five samples, about 0.3 g each. Flinn Scientific Teaching Chemistry elearning Video Series 95022 011509

Procedure 1. Place one piece of each metal in its respective Petri dish on an overhead projector. Observe and compare the physical properties of the metals: Color, luster (shine), hardness, and malleability. 2. Have students record the properties of the elements on the worksheet. 3. Discuss possible rankings of the metals with respect to their physical properties. Which metal appears to be the shiniest? Softest (or hardest)? 4. Use forceps or tongs to quickly transfer one piece of sodium metal to water in its respective labeled (Na) beaker. Have students make detailed observations of the resulting chemical reaction and record all observations on the worksheet. metal, which initially floats on the surface, immediately begins to hiss and sizzle on the water surface and appears to melt. Popping sounds are heard and the metal begins to bounce around and finally disappear. A smoky gas forms and ignites the metal on the surface of the water. Sparks may be seen where the metal ignites. 5. Repeat step 4 using lithium metal in its respective (Li) beaker. As observations are made, ask students to compare the rate and intensity of the reaction versus that of sodium. Record all observations on the worksheet. 6. Repeat step 4 twice more, using calcium and magnesium, respectively. Compare the activity of each metal against the previous metal and against sodium as a reference metal. Record all observations 7. Refer to the observations to rank the metals in order of their reactivity. Which metal is most active? Least active? Answer Questions #1 and #2 on the worksheet. 8. Refer to Question #3 on the worksheet. Based on class discussion, draw arrows to indicate the directions in which metal activity increases across a row and within a column in the periodic table, as shown below. Activity increases Li Na Mg Ca 9. Ask students to predict the activity of potassium metal based on the observed periodic trend in the activity of metals (Answer Question #4 on the worksheet). Discuss the extreme reactivity of potassium metal (and why it was not used in this demonstration). 10. After the metals have reacted (with the exception of magnesium, which does not react under these conditions), add 5 drops of phenolphthalein solution to the mixture in each beaker. 11. Observe the color change(s) and discuss what a color change indicates. What types of solutions exhibit this color change? Discuss the possible identity of the product(s). (See the Discussion section.) 12. Write balanced chemical equations for the reactions of the metals with water (Question #5). Discuss the evidence for the formation of both hydrogen gas and metal hydroxides. 13. (Optional) Have students write a paragraph describing in words the physical and chemical properties of one of the metals. Instruct students to include as much descriptive detail as possible. An example is given below. is a soft, silver-white solid. Upon exposure to air it gradually develops a white oxide coating. It can be cut with a knife. It is less dense than water and reacts spontaneously and vigorously on contact with water. The metal piece appears to pop or sizzle on the surface and a smoky white gas forms. The metal may ignite on the surface of the water in the vicinity of the smoke. The products are hydrogen gas and sodium hydroxide. The hydrogen gas that is formed pops and briefly ignites. hydroxide makes the solution basic (red) to phenolphthalein indicator. Disposal Please consult your current Flinn Scientific Catalog/Reference Manual for general guidelines and specific procedures governing the disposal of laboratory waste. Use tongs or forceps to remove unreacted magnesium from its beaker. Dispose of excess magnesium metal according to Flinn Suggested Disposal Method #26a. Do not dispose of any of the other reaction mixtures until all of the metal in each has completely reacted. The resulting basic solutions in each beaker can be neutralized and disposed of according to Flinn Suggested Disposal Method #10. 2

Tips We strongly recommend the purchase of small quantities only of sodium and lithium metal. Purchase only the amounts that will be used in one academic year. and lithium are available in small, precut pieces that are suitable for demonstrations (Flinn Catalog Nos. S0329 and L0057, respectively). We do not recommend the use of potassium in the high school science laboratory. Potassium is considerably more waterreactive than sodium and is a serious fire and explosion hazard. There is a significant and often undetectable explosion risk because of the propensity of potassium to form a superoxide (peroxide) coating on its surface. Potassium reacts with oxygen in air to form a coating of yellow potassium superoxide (KO 2 ), even when the metal is stored under dry mineral oil. Old pieces of potassium are thus extremely dangerous. When the metal is cut, the pressure of the knife may touch off a violent, uncontrollable, explosive reaction between the superoxide coating and the underlying metal. metal must be reasonably fresh to react with water. Old (dull) calcium metal will not react with water. The reactions of sodium and lithium with water may be quite vigorous we recommend using tall-form (Berzelius) beakers to contain any molten metal pieces that may splatter. Do NOT scale up this demonstration. The use of a ChemCam video camera will make it easier for students to observe the appearance and properties of the metal pieces. Demonstrate the softness of lithium and sodium by showing how the metal pieces can be cut with a dry spatula or knife. In ranking the metals in order of their activity, it is easier to begin with pairwise comparisons. Which is more active sodium or lithium? or magnesium? or sodium? Is the activity of metals related to their hardness? Density? The answer, a firm maybe, depends on the comparisons being made. The alkali metals as a group are softer and less dense than their nearest alkaline earth metal neighbors, and also more reactive. Within the group of alkali metals, however, the opposite trend is observed. is less dense but also less reactive than sodium. Discussion reacts with water to form hydrogen gas and sodium hydroxide, according to the following balanced chemical equation. 2Na(s) + 2H 2 O(l) H 2 (g) + 2NaOH(aq) + Heat As sodium metal reacts with water, a great deal of heat is generated. The sodium melts and seems to float or bob on the water surface. The oxide coating that may have dulled the metal disappears and sodium s silvery gray, metallic character is more apparent. The evolution of hydrogen gas is evident in the production of a white smoke, which pops and ignites as it is heated above its flash point. The formation of sodium hydroxide, a strong base, is inferred from the color change observed with phenolphthalein, an acid base indicator. Phenolphthalein is colorless in neutral or slightly basic solutions (ph < 8) and red in more basic solutions (ph >10). Between ph 8 and 10 phenolphthalein appears various shades of pink. The balanced chemical equations for reactions of other active metals with water are given below. 2Li(s) + 2H 2 O(l) H 2 (g) + 2LiOH(aq) Ca(s) + 2H 2 O(l) H 2 (g) + Ca(OH) 2 (aq) Of the four metals tested, sodium is the most active and magnesium is the least active. does not react with water under these conditions (it may react slightly in hot water). The order of metal reactivity is Na > Li, Ca >> Mg. Periodic trends in the activity of metals are generally attributed to differences in their ionization energies. The activity of metals increases as the value of their first ionization energy decreases. Within a vertical column (group or family) of elements in the periodic table, ionization energy decreases from top to bottom. As a result, metal activity increases going down a column in the periodic table (K > Na > Li; Ca > Mg). Across a horizontal row (period or series) in the periodic table, ionization energy also increases from left to right. As a result, metal activity decreases from left to right across a row in the periodic table (Na >> Mg; K >> Ca). 3

Connecting to the National Standards This laboratory activity relates to the following National Science Education Standards (1996): Unifying Concepts and Processes: Grades K 12 Evidence, models, and explanation Constancy, change, and measurement Content Standards: Grades 5 8 Content Standard A: Science as Inquiry Content Standard B: Physical Science, properties and changes of properties in matter, transfer of energy Content Standards: Grades 9 12 Content Standard A: Science as Inquiry Content Standard B: Physical Science, structure of atoms, structure and properties of matter, chemical reactions, interactions of energy and matter Answers to Worksheet Questions Data Table Physical Properties of Metals Observations Dark gray black solid. The surface has a slight bluish sheen and a tacky texture, like hard rubber. Can be cut with a knife. Silvery gray, shiny, hard metal ribbon. The metal can be easily bent and cut with scissors. Light weight. Soft, silver white, shiny metallic solid. Can be cut with a knife. Shiny, dark silver gray metal pieces; hard not easily cut. Rough texture. Reactions of Metals with Water Observations floats on water reacts slowly at first, then more vigorously. Sizzles and bounces on water. Bubbles of gas, smoky fumes observed as metal turns white around edges and then disappears after about 5 minutes. does not react with water at room temperature. floats on the water immediately begins to sizzle and hiss. Bubbles of gas, heat released. melts and bounces around. Sparks as gas or metal ignites. The reaction is very fast metal disappears within 30 seconds. Final solution is slightly cloudy. Metal sinks, then mixture slowly begins to bubble, sizzle and fume. Metal turns white and melts and water becomes very cloudy. 4

Questions 1. What is the common name for the family of metals in (a) Group 1 and (b) Group 2 of the periodic table? (a) Alkali metals (b) Alkaline earth metals 2. Rank the four metals used in this demonstration from most active to least active based on their reactivity with water. Na > Li > Ca >> Mg 3. The metals are arranged below according to their relative positions in the periodic table. (a) Draw a horizontal arrow across the top to show the direction in which the activity of a metal increases across a period (row) in the periodic table. (b) Draw a vertical arrow along the side to show the direction in which the activity of a metal increases within a group (family) in the periodic table. Group 1 Group 2 Period 2 Li Metal activity increases in the directions the arrows point. Period 3 Na Mg Period 4 K Ca 4. Look up the position of potassium metal in the periodic table and write in the symbol for potassium in the appropriate location in the arrangement of metals in Question #3. Based on the trend in metal activity observed in this activity, predict whether potassium metal is more or less reactive than sodium with water. Potassium metal is dangerously reactive with water (and air). It is more reactive than both sodium and calcium. Metal activity increases going down a column in the periodic table. 5. Write a balanced chemical equation for the reaction of (a) sodium metal and (b) calcium metal with water. a. 2Na(s) + 2H 2 O(l) 2NaOH(aq) + H 2 (g) b. Ca(s) + 2H 2 O(l) Ca(OH) 2 (aq) + H 2 (g) Reference This activity was adapted from a demonstration in The Periodic Table, Volume 4 in the Flinn ChemTopic Labs series, Cesa, I., Editor; Flinn Scientific: Batavia, IL (2002). Flinn Scientific Teaching Chemistry elearning Video Series A video of the Periodic Activity of Metals activity, presented by Irene Cesa, is available in Periodic Trends and the Properties of the Elements, part of the Flinn Scientific Teaching Chemistry elearning Video Series. Materials for Periodic Activity of Metals are available from Flinn Scientific, Inc. Materials required to perform this activity are available in the Periodic Activity of Metals Chemical Demonstration Kit available from Flinn Scientific. Materials may also be purchased separately. Catalog No. Description AP7180 Periodic Activity of Metals Chemical Demonstration Kit GP1060 Beaker, Berzelius, 500-mL C0345 10 g L0024, 10 g M0139 Ribbon, 12.5 g S0329, 5 pieces Consult your Flinn Scientific Catalog/Reference Manual for current prices. 5

Data Table Periodic Activity of Metals Worksheet Physical Properties of Metals Observations Reactions of Metals with Water Observations Questions 1. What is the common name for the family of metals in (a) Group 1 and (b) Group 2 of the periodic table? 2. Rank the four metals used in this demonstration from most active to least active based on their reactivity with water. 3. The metals are arranged below according to their relative positions in the periodic table. (a) Draw a horizontal arrow across the top to show the direction in which the activity of a metal increases across a period (row) in the periodic table. (b) Draw a vertical arrow along the side to show the direction in which the activity of a metal increases within a group (family) in the periodic table. Period 2 Group 1 Group 2 Li Period 3 Na Mg Period 4 Ca 4. Look up the position of potassium metal in the periodic table and write in the symbol for potassium in the appropriate location in the arrangement of metals in Question #3. Based on the trend in metal activity observed in this activity, predict whether potassium metal is more or less reactive than sodium with water. 5. Write a balanced chemical equation for the reaction of (a) sodium metal and (b) calcium metal with water. 2009 Flinn Scientific, Inc. All Rights Reserved. Reproduction permission is granted only to science teachers who have purchased Periodic Trends and the Properties of the Elements in the Flinn Scientific Teaching Chemistry elearning Video Series. No part of this material may be reproduced or transmitted in any form or by any means, electronic or mechanical, including, but not limited to photocopy, recording, or any information storage and retrieval system, without permission in writing from Flinn Scientific, Inc. 95022