Concept 13.1 Recombinant DNA Can Be Made in the Laboratory

Similar documents
A Lot of Cutting and Pasting Going on Here Recombinant DNA and Biotechnology

Biotechnology and DNA Technology

Chapter 13: Biotechnology

2054, Chap. 14, page 1

AP Biology Gene Expression/Biotechnology REVIEW

Biotechnolog y and DNA Technology

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

13-1 Changing the Living World

2014 Pearson Education, Inc. CH 8: Recombinant DNA Technology

CH 8: Recombinant DNA Technology

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc.

Lecture 25 (11/15/17)

Researchers use genetic engineering to manipulate DNA.

Recombinant DNA Technology. The Role of Recombinant DNA Technology in Biotechnology. yeast. Biotechnology. Recombinant DNA technology.

Chapter 8 Recombinant DNA Technology. 10/1/ MDufilho

Chapter 10 Genetic Engineering: A Revolution in Molecular Biology

-Is the process of manipulating genes and genomes

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering

Molecular Cloning. Restriction Enzymes and Ligases

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

Edexcel (B) Biology A-level

Chapter 9 Genetic Engineering

Genetics Lecture 21 Recombinant DNA

Molecular Cell Biology - Problem Drill 11: Recombinant DNA

CHAPTER 08: RECOMBINANT DNA TECHNOLOGY Pearson Education, Inc.

Recombinant DNA. Lesson Overview. Lesson Overview Recombinant DNA

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Genetic Engineering & Recombinant DNA

DNA Technology. B. Using Bacteria to Clone Genes: Overview:

Learning Objectives. 2. Restriction Endonucleases 3. Cloning 4. Genetic Engineering 5. DNA libraries 6. PCR 7. DNA Fingerprinting

Chapter 20 Biotechnology

BIOTECHNOLOGY : PRINCIPLES AND PROCESSES

Unit 2: Metabolism and Survival Sub-Topic (2.7) Genetic Control of Metabolism (2.8) Ethical considerations in the use of microorganisms

The Biotechnology Toolbox

Molecular Genetics Techniques. BIT 220 Chapter 20

Chapter 15 Recombinant DNA and Genetic Engineering. Restriction Enzymes Function as Nature s Pinking Shears

Genetics Faculty of Agriculture and Veterinary Medicine. Instructor: Dr. Jihad Abdallah Topic 16: Biotechnology

Revision Based on Chapter 15 Grade 10

It s All in the Hands Genetic Engineering

Chapter 20 DNA Technology & Genomics. If we can, should we?

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

Motivation From Protein to Gene

7.1 Techniques for Producing and Analyzing DNA. SBI4U Ms. Ho-Lau

Biotechnology. Chapter 13

I. Gene Cloning & Recombinant DNA. Biotechnology: Figure 1: Restriction Enzyme Activity. Restriction Enzyme:

Chapter 9. Biotechnology and DNA Technology

XXII DNA cloning and sequencing. Outline

Applicazioni biotecnologiche

AQA Biology A-level Topic 8: The control of gene expression

Essential Questions Real-World Reading Link Have you seen a handmade patchwork quilt? Patchwork quilts are

B. Incorrect! Ligation is also a necessary step for cloning.

CHAPTER 9 DNA Technologies

Cloning and Genetic Engineering

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review

Name AP Biology Mrs. Laux Take home test #11 on Chapters 14, 15, and 17 DUE: MONDAY, DECEMBER 21, 2009

sections of DNA containing a desired gene? What is Genetic engineering?

Genetics and Biotechnology. Section 1. Applied Genetics

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

4/26/2015. Cut DNA either: Cut DNA either:

Biotechnology: DNA Technology & Genomics

Biosc10 schedule reminders

CHAPTERS 16 & 17: DNA Technology

Recitation CHAPTER 9 DNA Technologies

A Level. A Level Biology. DNA Technology Questions. AQA, OCR, Edexcel. Name: Total Marks: Page 1

A Survey of Genetic Methods

Overview: The DNA Toolbox

Biotechnology. Chapter 20. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Overview: The DNA Toolbox

Chapter 12. DNA Technology. Lectures by Edward J. Zalisko

2 Gene Technologies in Our Lives

Bio 101 Sample questions: Chapter 10

Manipulating DNA. Nucleic acids are chemically different from other macromolecules such as proteins and carbohydrates.

Biotechnology. DNA Cloning Finding Needles in Haystacks. DNA Sequencing. Genetic Engineering. Gene Therapy

Biotechnology and Recombinant DNA

Genetics and Biotechnology 13.2 DNA Technology

DNA Cloning with Cloning Vectors

Biology 201 (Genetics) Exam #3 120 points 20 November Read the question carefully before answering. Think before you write.

BIOTECHNOLOGY. Understanding the Application

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA

CHAPTER 20 LECTURE SLIDES

Guided Notes Unit 5: Molecular Genetics

Chapter 15 Gene Technologies and Human Applications

BIOTECHNOLOGY. Sticky & blunt ends. Restriction endonucleases. Gene cloning an overview. DNA isolation & restriction

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

BIOTECHNOLOGY. Understanding the Application

Chapter 12 DNA Technology and Genomics

Unit 8: Genomics Guided Reading Questions (150 pts total)

Test Bank for Molecular Cell Biology 7th Edition by Lodish

Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Lectures 28 and 29 applications of recombinant technology I. Manipulate gene of interest

Genetic Engineering and Other Aspects of Biotechnology

Molecular Biology (2)

Selected Techniques Part I

Biotechnology: Genomics: field that compares the entire DNA content of different organisms

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329.

(A) Extrachromosomal DNA (B) RNA found in bacterial cells (C) Is part of the bacterial chromosome (D) Is part of the eukaryote chromosome

Genetics and Biotechnology Chapter 13

Multiple choice questions (numbers in brackets indicate the number of correct answers)

Transcription:

13 Biotechnology

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory It is possible to modify organisms with genes from other, distantly related organisms. Recombinant DNA is a DNA molecule made in the laboratory that is derived from at least two genetic sources.

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory Three key tools: Restriction enzymes for cutting DNA into fragments Gel electrophoresis for analysis and purification of DNA fragments DNA ligase for joining DNA fragments together in new combinations

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory Restriction enzymes recognize a specific DNA sequence called a recognition sequence or restriction site. 5.GAATTC 3 3.CTTAAG 5 Each sequence forms a palindrome: the opposite strands have the same sequence when read from the 5 end.

Figure 13.1 Bacteria Fight Invading Viruses by Making Restriction Enzymes

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory Some restriction enzymes cut DNA leaving a short sequence of single-stranded DNA at each end. Staggered cuts result in overhangs, or sticky ends; straight cuts result in blunt ends. Sticky ends can bind complementary sequences on other DNA molecules. Methylases add methyl groups to restriction sites and protect the bacterial cell from its own restriction enzymes.

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory Many restriction enzymes with unique recognition sequences have been purified. In the lab they can be used to cut DNA samples from the same source. A restriction digest combines different enzymes to cut DNA at specific places. Gel electrophoresis analysis can create a map of the intact DNA molecule from the formed fragments.

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory DNA fragments cut by enzymes can be separated by gel electrophoresis. A mixture of fragments is placed in a well in a semisolid gel, and an electric field is applied across the gel. Negatively charged DNA fragments move towards the positive end. Smaller fragments move faster than larger ones.

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory DNA fragments separate and give three types of information: The number of fragments The sizes of the fragments The relative abundance of the fragments, indicated by the intensity of the band

Figure 13.2 Separating Fragments of DNA by Gel Electrophoresis (Part 1)

Figure 13.2 Separating Fragments of DNA by Gel Electrophoresis (Part 2)

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory After separation on a gel, a specific DNA sequence can be found with a singlestranded probe. The gel region can be cut out and the DNA fragment removed. The purified DNA can be analyzed by sequence or used to make recombinant DNA.

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory DNA ligase is an enzyme that catalyzes the joining of DNA fragments, such as Okazaki fragments during replication. With restriction enzymes to cut fragments and DNA ligase to combine them, new recombinant DNA can be made.

Figure 13.3 Cutting, Splicing, and Joining DNA

Concept 13.1 Recombinant DNA Can Be Made in the Laboratory Recombinant DNA was shown to be a functional carrier of genetic information. Sequences from two E.coli plasmids, each with different antibiotic resistance genes, were recombined. The resulting plasmid, when inserted into new cells, gave resistance to both of the antibiotics.

Figure 13.4 Recombinant DNA (Part 1)

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Recombinant DNA technology can be used to clone (make identical copies) genes. Transformation: Recombinant DNA is cloned by inserting it into host cells (transfection if host cells are from an animal). The altered host cell is called transgenic.

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Usually only a few cells exposed to recombinant DNA are actually transformed. To determine which of the host cells are transgenic, the recombinant DNA includes selectable marker genes, such as genes that confer resistance to antibiotics.

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Most research has been done using model organisms: Bacteria, especially E. coli Yeasts (Saccharomyces), commonly used as eukaryotic hosts Plant cells, able to make stem cells unspecialized, totipotent cells Cultured animal cells, used for expression of human or animal genes whole transgenic animals can be created

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Methods for inserting the recombinant DNA into a cell: Cells may be treated with chemicals to make plasma membranes more permeable DNA diffuses in. Electroporation a short electric shock creates temporary pores in membranes, and DNA can enter.

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Viruses and bacteria can be altered to carry recombinant DNA into cells. Transgenic animals can be produced by injecting recombinant DNA into the nuclei of fertilized eggs. Gene guns can shoot the host cells with particles of DNA.

Concept 13.2 DNA Can Genetically Transform Cells and Organisms The new DNA must also replicate as the host cell divides. DNA polymerase does not bind to just any sequence. The new DNA must become part of a segment with an origin of replication a replicon or replication unit.

Concept 13.2 DNA Can Genetically Transform Cells and Organisms New DNA can become part of a replicon in two ways: Inserted near an origin of replication in host chromosome It can be part of a carrier sequence, or vector, that already has an origin of replication

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Plasmids make good vectors: Small and easy to manipulate Have one or more restriction enzyme recognition sequences that each occur only once Many have genes for antibiotic resistance which can be selectable markers

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Have a bacterial origin of replication (ori) and can replicate independently of the host chromosome Bacterial cells can contain hundreds of copies of a recombinant plasmid. The power of bacterial transformation to amplify a gene is extraordinary.

In-Text Art, Ch. 13, p. 249

Concept 13.2 DNA Can Genetically Transform Cells and Organisms A plasmid from the soil bacterium Agrobacterium tumefaciens is used as a vector for plant cells. A. tumefaciens contains a plasmid called Ti (for tumor-inducing). The plasmid has a region called T DNA, which inserts copies of itself into chromosomes of infected plants.

Concept 13.2 DNA Can Genetically Transform Cells and Organisms T DNA genes are removed and replaced with foreign DNA. Altered Ti plasmids transform Agrobacterium cells, then the bacterium cells infect plant cells. Whole plants can be regenerated from transgenic cells, or germ line cells can be infected.

In-Text Art, Ch. 13, p. 250

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Most eukaryotic genes are too large to be inserted into a plasmid. Viruses can be used as vectors e.g., bacteriophage. The genes that cause host cells to lyse can be cut out and replaced with other DNA. Because viruses infect cells naturally they offer an advantage over plasmids.

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Usually only a small proportion of host cells take up the vector (1 cell in 10,000) and they may not have the appropriate sequence. Host cells with the desired sequence must be identifiable. Selectable markers such as antibiotic resistance genes can be used.

Concept 13.2 DNA Can Genetically Transform Cells and Organisms If a vector carrying genes for resistance to two different antibiotics is used, one antibiotic can select cells carrying the vector. If the other antibiotic resistance gene is inactivated by the insertion of foreign DNA, then cells with the desired DNA can be identified by their sensitivity to that antibiotic.

Figure 13.5 Marking Recombinant DNA by Inactivating a Gene

Concept 13.2 DNA Can Genetically Transform Cells and Organisms Selectable markers are a type of reporter gene a gene whose expression is easily observed. Green fluorescent protein, which normally occurs in a jellyfish, emits visible light when exposed to UV light. The gene for this protein has been isolated and incorporated into vectors as a reporter gene.

Figure 13.6 Green Fluorescent Protein as a Reporter

Concept 13.3 Genes and Gene Expression Can Be Manipulated DNA fragments used for cloning come from three sources: Gene libraries Reverse transcription from mrna Products of PCR Artificial synthesis or mutation of DNA

Concept 13.3 Genes and Gene Expression Can Be Manipulated A genomic library is a collection of DNA fragments that comprise the genome of an organism. The DNA is cut into fragments by restriction enzymes, and each fragment is inserted into a vector. A vector is taken up by host cells which produce a colony of recombinant cells.

Concept 13.3 Genes and Gene Expression Can Be Manipulated Smaller DNA libraries can be made from complementary DNA (cdna). mrna is extracted from cells, then cdna is produced by complementary base pairing, catalyzed by reverse transcriptase. A cdna library is a snapshot of the transcription pattern of the cell. cdna libraries are used to compare gene expression in different tissues at different stages of development.

Figure 13.7 Constructing Libraries

Concept 13.3 Genes and Gene Expression Can Be Manipulated DNA can be synthesized by PCR if appropriate primers are available. The amplified DNA can then be inserted into plasmids to create recombinant DNA and cloned in host cells. Artificial synthesis of DNA is now fully automated.

Concept 13.3 Genes and Gene Expression Can Be Manipulated Synthetic oligonucleotides are used as primers in PCR reactions. Primers can create new sequences to create mutations in a recombinant gene. Longer synthetic sequences can be used to construct an artificial gene.

Concept 13.3 Genes and Gene Expression Can Be Manipulated Synthetic DNA can be manipulated to create specific mutations in order to study the consequences of the mutation. Mutagenesis techniques have revealed many cause-and-effect relationships (e.g., determining signal sequences).

Concept 13.3 Genes and Gene Expression Can Be Manipulated A knockout experiment inactivates a gene so that it is not transcribed and translated into a functional protein. In mice, homologous recombination targets a specific gene. The normal allele of a gene is inserted into a plasmid restriction enzymes are used to insert a reporter gene into the normal gene. The extra DNA prevents functional mrna from being made.

Concept 13.3 Genes and Gene Expression Can Be Manipulated The recombinant plasmid is used to transfect mouse embryonic stem cells. Stem cells unspecialized cells that divide and differentiate into specialized cells The original gene sequences line up with their homologous sequences on the mouse chromosome.

Concept 13.3 Genes and Gene Expression Can Be Manipulated The transfected stem cell is then transplanted into an early mouse embryo. The knockout technique has been important in determining gene functions and studying human genetic diseases. Many diseases have a knockout mouse model.

Figure 13.8 Making a Knockout Mouse

Concept 13.3 Genes and Gene Expression Can Be Manipulated Complementary RNA: Translation of mrna can be blocked by complementary micrornas antisense RNA. Antisense RNA can be synthesized and added to cells to prevent translation the effects of the missing protein can then be determined.

Concept 13.3 Genes and Gene Expression Can Be Manipulated RNA interference (RNAi) is a rare natural mechanism that blocks translation. RNAi occurs via the action of small interfering RNAs (sirnas). An srna is a short, double stranded RNA that is unwound to single strands by a protein complex, which also catalyzes the breakdown of the mrna. Small interfering RNA (sirna) can be synthesized in the laboratory.

Figure 13.9 Using Antisense RNA and sirna to Block the Translation of mrna

Concept 13.3 Genes and Gene Expression Can Be Manipulated DNA microarray technology provides a large array of sequences for hybridization experiments. A series of DNA sequences are attached to a glass slide in a precise order. The slide has microscopic wells, each containing thousands of copies of sequences up to 20 nucleotides long.

Concept 13.3 Genes and Gene Expression Can Be Manipulated DNA microarrays can be used to identify specific single nucleotide polymorphisms or other mutations. Microarrays can be used to examine gene expression patterns in different tissues in different conditions. Example: Women with a propensity for breast cancer tumors to recur have a gene expression signature.

Figure 13.10 Using DNA Microarrays for Clinical Decision-Making

Concept 13.4 Biotechnology Has Wide Applications Almost any gene can be inserted into bacteria or yeasts and the resulting cells induced to make large quantities of a product. Requires specialized expression vectors with extra sequences needed for the transgene to be expressed in the host cell.

Figure 13.11 A Transgenic Cell Can Produce Large Amounts of the Transgene s Protein Product

Concept 13.4 Biotechnology Has Wide Applications Expression vectors may also have: Inducible promoters that respond to a specific signal Tissue-specific promoters, expressed only in certain tissues at certain times Signal sequences e.g., a signal to secrete the product to the extracellular medium

Concept 13.4 Biotechnology Has Wide Applications Many medically useful products are being made using biotechnology. The two insulin polypeptides are synthesized separately along with the β- galactosidase gene. After synthesis the polypeptides are cleaved, and the two insulin peptides combined to make a functional human insulin molecule.

Figure 13.12 Human Insulin: From Gene to Drug (Part 1)

Figure 13.12 Human Insulin: From Gene to Drug (Part 2)

Concept 13.4 Biotechnology Has Wide Applications Before giving it to humans, scientists had to be sure of its effectiveness: Same size as human insulin Same amino acid sequence Same shape Binds to the insulin receptor on cells and stimulates glucose uptake

Concept 13.4 Biotechnology Has Wide Applications Pharming: Production of pharmaceuticals in farm animals or plants. Example: Transgenes are inserted next to the promoter for lactoglobulin a protein in milk. The transgenic animal then produces large quantities of the protein in its milk.

Figure 13.13 Pharming

Concept 13.4 Biotechnology Has Wide Applications Human growth hormone (for children suffering deficiencies) can now be produced by transgenic cows. Only 15 such cows are needed to supply all the children in the world suffering from this type of dwarfism.

Concept 13.4 Biotechnology Has Wide Applications Through cultivation and selective breeding, humans have been altering the traits of plants and animals for thousands of years. Recombinant DNA technology has several advantages: Specific genes can be targeted Any gene can be introduced into any other organism New organisms can be generated quickly

Figure 13.14 Genetic Modification of Plants versus Conventional Plant Breeding (Part 1)

Figure 13.14 Genetic Modification of Plants versus Conventional Plant Breeding (Part 2)

Table 13.2 Potential Agricultural Applications of Biotechnology

Concept 13.4 Biotechnology Has Wide Applications Crop plants have been modified to produce their own insecticides: The bacterium Bacillus thuringiensis produces a protein that kills insect larvae Dried preparations of B. thuringiensis are sold as a safe alternative to synthetic insecticides. The toxin is easily biodegradable.

Concept 13.4 Biotechnology Has Wide Applications Genes for the toxin have been isolated, cloned, and modified, and inserted into plant cells using the Ti plasmid vector Transgenic corn, cotton, soybeans, tomatoes, and other crops are being grown. Pesticide use is reduced.

Concept 13.4 Biotechnology Has Wide Applications Crops with improved nutritional characteristics: Rice does not have β-carotene, but does have a precursor molecule Genes for enzymes that synthesize β- carotene from the precursor are taken from daffodils and inserted into rice by the Ti plasmid

Concept 13.4 Biotechnology Has Wide Applications The transgenic rice is yellow and can supply β-carotene to improve the diets of many people β-carotene is converted to vitamin A in the body

Figure 13.15 Transgenic Rice Rich in -Carotene

Concept 13.4 Biotechnology Has Wide Applications Recombinant DNA is also used to adapt a crop plant to an environment. Example: Plants that are salt-tolerant. Genes from a protein that moves sodium ions into the central vacuole were isolated from Arabidopsis thaliana and inserted into tomato plants.

Figure 13.16 Salt-tolerant Tomato Plants (Part 1)

Figure 13.16 Salt-tolerant Tomato Plants (Part 2)

Concept 13.4 Biotechnology Has Wide Applications Instead of manipulating the environment to suit the plant, biotechnology may allow us to adapt the plant to the environment. Some of the negative effects of agriculture, such as water pollution, could be reduced.

Concept 13.4 Biotechnology Has Wide Applications Concerns over biotechnology: Genetic manipulation is an unnatural interference in nature Genetically altered foods are unsafe to eat Genetically altered crop plants are dangerous to the environment

Concept 13.4 Biotechnology Has Wide Applications Advocates of biotechnology point out that all crop plants have been manipulated by humans. Advocates say that since only single genes for plant function are inserted into crop plants, they are still safe for human consumption. Genes that affect human nutrition may raise more concerns.

Concept 13.4 Biotechnology Has Wide Applications Concern over environmental effects centers on escape of transgenes into wild populations: For example, if the gene for herbicide resistance made its way into the weed plants Beneficial insects can also be killed from eating plants with B. thuringiensis genes

Answer to Opening Question Bioremediation is the use, by humans, of organisms to remove contaminants from the environment. Composting and wastewater treatment use bacteria to break down large molecules, human wastes, paper, and household chemicals. Recombinant DNA technology has transformed bacteria to help clean up oil spills.

Figure 13.17 The Spoils of War