RayBio Genomic DNA Magnetic Beads Kit

Similar documents
DNA Purification Magnetic Beads


Presto Mini Plasmid Kit

Easy Tissue & Cell Genomic DNA Purification Kit. Cat. #:DP021E/ DP021E-150 Size:50/150 reactions Store at RT For research use only

Genomic DNA Mini Kit (Blood/Cultured Cell) For research use only

Presto Mini gdna Bacteria Kit

Blood DNA Isolation 96-Well Kit (Magnetic Bead System) Product # 62600

DNA isolation from tissue DNA isolation from eukaryotic cells (max. 5 x 106 cells) DNA isolation from paraffin embedded tissue

AccuPrep Genomic DNA Extraction Kit

Soil DNA Extraction Kit

DNA Isolation Reagent for Genomic DNA

Geneaid DNA Isolation Kit (Yeast)

Please read all the information in booklet before using the unit

Presto 96 Well gdna Bacteria Kit

Presto Stool DNA Extraction Kit

E.Z.N.A. Tissue RNA Kit. R preps R preps

Presto Food DNA Extraction Kit

Total RNA Purification Kit. Cat. #.: TR01 / TR Size : 50 / 150 Reactions Store at RT For research use only

Bacteria Genomic DNA Purification Kit

Cells and Tissue DNA Isolation Kit (Magnetic Bead System) 50 Preps Product # 59100

Plant DNA Isolation Kit (Magnetic Bead System) 50 Preps Product # 58200

Cells and Tissue DNA Isolation 96-Well Kit (Magnetic Bead System) Product # 62500

Total RNA Miniprep Purification Kit. Cat.# :TR01/TR Size : 50/150 Reactions Store at RT

EZ-10 SPIN COLUMN GENOMIC DNA MINIPREPS KIT HANDBOOK

Tissue & Cell Genomic DNA Purification Kit. Cat. #:DP021/ DP Size:50/150 reactions Store at RT For research use only

Presto Soil DNA Extraction Kit

Bioneer Corporation 8-11,Munpyeongseo-ro, Daedeok-gu, Daejeon 34302, Republic of Korea Tel: Fax:

GRS Genomic DNA Kit BroadRange - #GK

Mag-Bind PX Blood RNA 96 Kit. M x 96 preps M x 96 preps

USER GUIDE. HiYield TM Total RNA Extraction Kit

Plasmid DNA Extraction Miniprep Kit

Presto 96 Well DNA Bacteria Advanced Kit

Thermo Scientific MagJET Plant Genomic DNA Kit #K2761, #K2762 Read Storage information (p. 4) upon receipt and store kit components appropriately!

E.Z.N.A. Plant RNA Kit. R preps R preps R preps

96-well Genomic DNA Extraction Kit. Protocol Book. (Deep Well) Ver RBP96B-2

EZ-DNA. Instructions for Use. Genomic DNA Isolation Reagent. Product Description. Kit Reagent. Reagent Required But Not Supplied.

Thermo Scientific GeneJET Plant Genomic DNA Purification Mini Kit #K0791, #K0792

Kit Components Product # (50 samples) Wash Solution A Elution Buffer B

QIAGEN Supplementary Protocol: Isolation of genomic DNA from tissue using the QIAGEN-tip Storage of tissue samples.

Protocol for DNA extraction from FFPE Samples

Note: for laboratory research use only. RNA High-purity Total RNA Rapid Extraction Kit (Spin-column) Signalway Biotechnology

ISOLATE II Blood DNA Kit. Product Manual

Thermo Scientific GeneJET Whole Blood RNA Purification Mini Kit #K0761

HiYield TM Genomic DNA Extraction Kit Reagent

E.Z.N.A. Bacterial RNA Kit. R preps R preps

CAT. NO. BR BR BR SIZE 10 preps 50 preps 250 preps. Buffer LYSIS LC 12 ml 25 ml 120 ml. Buffer LYSIS LD 10 ml 25 ml 125 ml

E.Z.N.A. Plant RNA Kit. R preps R preps R preps

For Research Use Only Ver

DNA/RNA/Protein Extraction Kit

E.Z.N.A. HP Viral RNA/DNA Kit. R preps R preps

E.Z.N.A. Stool DNA Kit. D preps D preps D preps

PureLink Plant Total DNA Purification Kit

mdi Stool Genomic DNA Miniprep Kit User Guide ADVANCED MICRODEVICES PVT. LTD. Membrane Technologies 21, Industrial Area, Ambala Cantt (INDIA)

Genomic DNA Extraction Kit (Tissue)2.0

TaKaRa MiniBEST Plasmid Purification Kit Ver.4.0

Plasmid DNA Extraction Midiprep Kit

Human whole blood RNA Purification Kit

E.Z.N.A. Blood DNA Mini Kit. D preps D preps D preps

Bioneer Corporation 8-11, Munpyeongseo-ro, Daedeok-gu, Daejeon 34302, Republic of Korea Tel: Fax:

E.Z.N.A. MicroElute Genomic DNA Kit. D preps D preps D preps

Kit Specifications. Time to Complete 10 Purifications

Total Arrest RNA. For Isolation of DNA free RNA for RT PCR. (Cat. # , ) think proteins! think G-Biosciences

LaboPass TM Blood mini

Plus Blood Genomic DNA Purification Kit

MicroElute Total RNA Kit. R preps R preps R preps

Introduction 2. Storage and Stability Kit Contents Safety Information.. 3. Before Starting... 3

Fast and reliable purification of up to 100 µg of transfection-grade plasmid DNA using a spin-column.

Geneaid Maxi Plasmid Kit & Geneaid Maxi Plasmid Kit (Endotoxin Free)

Product # 24700, 24750

E.Z.N.A. Total RNA Kit II. R preps R preps R preps

E.Z.N.A. Stool DNA Kit. D preps D preps D preps

foodproof Sample Preparation Kit II

HiYield TM Genomic DNA Extraction Kit

Plant DNA Isolation Reagent. Cat. # 9194

Product # Specifications. Kit Specifications Column Binding Capacity 25 µg

E.Z.N.A. Blood RNA Kit. R preps R preps

QIAamp Fast DNA Stool Mini Handbook

E.Z.N.A. mirna Kit. R preps R preps R preps

Plasmid DNA Isolation Column Kit Instruction Manual Catalog No. SA-40012: 50 reactions SA-40011: 100 reactions

Soil DNA Isolation Kit (Magnetic Bead System) 50 Preps Product # 58100

GenElute Mammalian Genomic DNA Miniprep Kit

Viral Nucleic Acid Isolation

TaKaRa MiniBEST Universal RNA Extraction Kit

I-Blue Midi Plasmid Kit. I-Blue Midi Plasmid Kit. (Endotoxin Free) IBI SCIENTIFIC. Instruction Manual Ver For Research Use Only.

EasyPrep TM Plant Genomic DNA. Miniprep Manual. Table of Contents. Introduction Kit Contents... 4

Spin Micro DNA Extraction Kit

Plant Total RNA Purification Kit. Cat. #.: TR02 / TR Size : 50 / 150 Reactions Store at RT For research use only

AxyPrep Blood Genomic DNA Miniprep Kit

FavorPrep Blood / Cultrued Cell Total RNA Purification Mini Kit. User Manual

For Research Use Only Ver

Manual innuprep Micro RNA Kit

Kit Specifications Number of Preps 25 Maximum Saliva Input Average Yield from 0.25 ml of Saliva 7 µg Average purity (OD260/280)

EZ-10 SPIN COLUMN GENOMIC DNA MINIPREPS KIT HANDBOOK

Plant microrna Purification Kit Product # 54700

Mag-Bind Blood DNA KF 96 Kit. M x 96 preps M x 96 preps

E.Z.N.A. PF Micro RNA Kit. R preps R preps

BioMag SelectaPure mrna Purification System

ReliaPrep gdna Tissue Miniprep System

PureColumn DNA Extraction Kit

AccuPrep GMO DNA Extraction Kit Cat. No.: K-3031

Transcription:

RayBio Genomic DNA Magnetic Beads Kit Catalog #: 801-112 User Manual Last revised January 4 th, 2017 Caution: Extraordinarily useful information enclosed ISO 13485 Certified 3607 Parkway Lane, Suite 100 Norcross, GA 30092 Tel: 1-888-494-8555 (Toll Free) or 770-729-2992, Fax:770-206-2393 Web: www.raybiotech.com, Email: info@raybiotech.com 1

RayBiotech, Inc. RayBio Genomic DNA Magnetic Beads Kit Protocol Table of Contents Section Page # I. General Description 3 II. Safety Instructions 3 III. Storage and Stability 3 IV. How it Works 4 V. Limitations and Precautions 5 VI. Working Instructions A. Materials Provided B. Additional Materials C. Reagent Preparation D. Procedure E. Storing DNA VII. Analyzing the Results A. DNA yield B. DNA quality VIII. Protocol Customization Options A. Starting Sample Amount B. Elution Solution Amount Please read the entire manual carefully before starting your experiment 5 5 5 6 6 8 9 9 9 11 11 12 2

I. General Description RayBio s Genomic DNA Magnetic Beads Kit is designed to purify genomic DNA from mammalian tissues and bacteria. Paramagnetic beads with uniform particle size efficiently bind DNA, resulting in high yields of DNA with minimal RNA, proteins, nucleases, and other cellular contaminants. The kit is intended for manual purifications using a magnetic separator. The protocol can be easily customized to optimize sample yield and quality depending on the type of tissue or bacteria. See Section 8 for customization options. II. Safety Instructions Use appropriate protective equipment (including but not limited to gloves, lab coats, and safety glasses) when collecting tissues and bacteria. The Binding Solution and Wash Solution 1 contain guanidine hydrochloride, which can be irritating to eyes and skin. Always wear gloves, lab coats, safety glasses, and/or other protective equipment when using these solutions. Refer to Safety Data Sheet for further information. III. Storage and Stability Upon delivery of the kit, remove the RNase A Solution and Proteinase K Solution vials and store at -20 C. Remove the Magnetic Beads Solution and store at 4 C. Do not freeze the magnetic beads solution. All other kit reagents may be stored at room temperature (20-25 C). Do not use after the printed expiration date. 3

IV. How it Works First the crude sample, incubated with Lysis Solution, Proteinase K Solution, and RNase A Solution to digest cells and denature proteins and RNA, is added to the magnetic beads. Next, DNA binds to the beads in the presence of the Binding Solution. A magnet is used to secure the beads, with DNA attached. Remaining cell debris is washed away in a series of two wash steps. DNA is then eluted and transferred to a new tube. Pure, high-quality isolated genomic DNA may then be used for downstream procedures such as PCR and qpcr, or stored long-term. Figure 1. Schematic of RayBio Genomic DNA Magnetic Beads Kit process. 4

V. Limitations and Precautions Initial handling of sample tissue can significantly affect the yield and quality of resulting DNA. To avoid degrading the DNA, use fresh sample material, or immediately freeze samples at -20 C to -80 C until purification. Avoid freezing and thawing samples repeatedly. Overall DNA yield, quality and test reproducibility may vary depending on sample type and amount, age, and condition before and after storage. VI. Working Instructions A. Materials Provided 1. Lysis Solution, 22 ml 2. Proteinase K Solution, 2.1 ml 3. RNase A Solution, 2.1 ml 4. Binding Solution concentrate, 20 ml 5. Genomic DNA Magnetic DNA solution, 2 X 1.1 ml 6. Wash Solution 1 concentrate, 14 ml 7. Wash Solution 2 concentrate, 18 ml 8. Elution Solution, 22 ml B. Additional Materials Required 1. Disposable gloves and other protective equipment 2. Micro-pipettes with disposable plastic tips 3. 1.5 ml sterile plastic microcentrifuge tubes 4. 4 C refrigerator and -20 C freezer 5. 96-100% Ethanol 6. Tissue disruption equipment (dissection scissors, razor, mortar and pestle with liquid nitrogen, homogenizer etc.) 7. Vortexer 8. Heating block, thermomixer, or water bath capable of 65 C 9. Magnetic microcentrifuge tube separator, Solo (RayBio cat#: 801-206) or Multi-6 (RayBio cat#: 801-205) or similar 10. Minicentrifuge 11. Lysozyme buffer (Gram-positive bacteria only): 25 mm Tris-HCl ph 8.0, 2.5 mm EDTA, 1% Triton X-100, add fresh Lysozyme to 20 mg/ml concentration immediately before use 5

C. Reagent Preparation Before the first use of the kit, add 96-100% Ethanol to the Binding Solution concentrate, Wash Solution 1 concentrate, and Wash Solution 2 concentrate as specified below. Mark the bottle to indicate that ethanol has been added. Wear gloves when handling the reagents (see Safety Instructions in Section 2). Binding Solution: Add 12 ml 96-100% Ethanol Wash Solution 1: Add 42 ml 96-100% Ethanol Wash Solution 2: Add 42 ml 96-100% Ethanol Before each use, check for any precipitate formation in the solutions. If observed, shake to re-dissolve any precipitates. D. Procedures 1. Prepare Samples: Mammalian Tissues: 1. Cut fresh or frozen tissues into small pieces using dissection scissors, razor, mortar and pestle with liquid nitrogen, homogenizer, or similar. Cut tissue samples quickly or on ice to avoid extended times at room temperature. 2. Weigh out up to 15 mg of tissue pieces. 3. Collect tissue pieces into a 1.5 ml microcentrifuge tube (not provided) pre-filled with 200 µl Lysis Solution. Gram-negative Bacteria 1. Add up to 2 x 10 9 Gram-negative bacterial cells (about 1 ml of overnight culture) to a 1.5 ml microcentrifuge tube (not provided). 2. Centrifuge 10 minutes at 5,000 x g to pellet the cells, and discard the supernatant. 3. Add 200 µl Lysis Solution and vortex or pipette up and down to resuspend the pellet. 6

Gram-positive Bacteria 1. Add up to 2 x 10 9 Gram-positive bacterial cells (about 1 ml of overnight culture) to a 1.5 ml microcentrifuge tube (not provided). 2. Centrifuge 10 minutes at 5,000 x g to pellet the cells, and discard the supernatant. 3. Add 400 µl Lysozyme buffer with fresh Lysozyme (see Section 6.B.12) and vortex. 4. Incubate 1 hour at 37 C, vortexing occasionally. 5. Centrifuge 10 minutes at 5,000 x g to pellet the cells, and discard the supernatant. 6. Add 200 µl Lysis Solution and vortex or pipette up and down to resuspend the pellet. 2. Incubate the sample at 55 C for 30 minutes (bacteria) to 1 hour (tissues) until digested, vortexing occasionally or using a thermomixer. For larger sample pieces, lysing for 2 hours or more may be required. 3. Pulse spin (~1 second) the sample lysate with a minicentrifuge to remove any condensation from the sides and lid of the tube. 4. Add 20 µl of RNase A Solution and vortex well. Incubate at room temperature for 10 minutes. 5. During the RNase A incubation, in a new 1.5 ml tube add 400 µl of 96-100% Ethanol (not provided). Vortex the Genomic DNA Magnetic Bead Solution well to ensure complete resuspension of the beads, and add 20 µl of bead solution to the ethanol. Vortex well. 6. After the RNase A incubation, add 300 µl of Binding Solution (prepared with ethanol, see section 6.C) to the sample lysate and vortex for 3 seconds. Transfer the sample lysate to the ethanol/bead mix and vortex for 5 seconds. Allow the tube to sit at room temperature for ~30 seconds. 7. Place the tube on the magnetic separator for 3 minutes. Leaving the tube on the separator, remove and discard the supernatant using a pipette, without disturbing the beads that have collected at the magnet. 8. Remove the tube from the magnetic separator and add 500 µl Wash Solution 1 (prepared with ethanol, see section 6.C). Vortex briefly to resuspend the beads and return the tube to the magnetic separator for 2 minutes. Leaving the tube on the separator, remove and discard the supernatant using a pipette, without disturbing the beads that have 7

collected at the magnet. 9. Remove the tube from the magnetic separator and add 500 µl Wash Solution 2 (prepared with ethanol, see section 6.C). Vortex briefly to resuspend the beads and return the tube to the magnetic separator for 2 minutes. Leaving the tube on the separator, remove and discard the supernatant using a pipette, without disturbing the beads that have collected at the magnet. 10. Remove the tube from the magnetic separator and add 500 µl Wash Solution 2 (prepared with ethanol, see section 6.C). Vortex briefly to resuspend the beads and return the tube to the magnetic separator for 2 minutes. Leaving the tube on the separator, remove and discard the supernatant using a pipette, without disturbing the beads that have collected at the magnet. 11. Pulse spin to remove any wash solution drops remaining on the sides and lid of the tube. Return the tube to the magnetic separator for ~30 seconds. Leaving the tube on the separator, remove and discard any additional supernatant using a pipette, without disturbing the beads that have collected at the magnet. 12. Remove the tube from the magnetic separator and add 150 µl Elution Solution. Vortex briefly to resuspend the beads. 13. Incubate the sample at 65 C for 10 minutes, vortexing occasionally or using a thermomixer. 14. Pulse spin to remove any condensation from the sides and lid of the tube. 15. Return the tube to the magnetic separator for 2 minutes. Leaving the tube on the separator, transfer the eluate to a new 1.5 ml tube using a pipette. The eluate contains the purified genomic DNA. E. Storing DNA Store the purified DNA in the Elution Solution at 4 C for immediate use, or at -20 C for long-term storage. To avoid repeated freezing and thawing, store the DNA in aliquots. 8

VII. Analyzing The Results A. DNA Yield DNA yield can be estimated by UV absorbance. Using a spectrophotometer blanked against the Elution Solution, measure the A 260 (DNA absorbance) and A 320 (turbidity/cuvette impurity) readings. Use the following equation: DNA yield (µg) = (A260 reading - A320 reading) x dilution factor x 50 µg/ml x sample elution volume (ml) Subtracting the absorbance at A 320 results in a corrected reading that does not overestimate the DNA quantity. For DNA, an A 260 of 1.0 = 50 µg/ml when measured in a cuvette with a 10 mm optical path length. Sample Type Starting Amount DNA Yield Mouse brain 15 mg Up to 9 µg Mouse ear chip 15 mg Up to 14 µg Mouse lung 15 mg Up to 22 µg Mouse muscle 15 mg Up to 4 µg Mouse tail clip 15 mg Up to 23 µg E. coli cells ~ 2 X 10 9 cells Up to 12 µg Lactobacillus cells ~ 2 X 10 9 cells Up to 13 µg Figure 2. Expected yield of genomic DNA from various samples types and starting quantities using the Genomic DNA Magnetic Beads Kit, standard protocol. B. DNA Quality Similarly, DNA quality can be estimated by UV absorbance readings. Measure the absorbance at A 280 and A 230, and correct by subtracting the A 320 absorbance. Highly pure DNA has an A 260 /A 280 ratio of ~1.7 2.0, indicating it has minimal contamination by proteins, and an A 260 /A 230 ratio of >1.5, indicating it has minimal contamination by organic compounds and salts. Below, Figure 3 displays a spectrophotometric curve of DNA purified from mouse brain tissue, and Figure 4 shows genomic DNA from various samples analyzed by gel electrophoresis, another indicator of quality: 9

Figure 3. Spectrophotometric curve of high-purity DNA purified from 15 mg of mouse brain tissue using the Genomic DNA Magnetic Beads Kit standard protocol. Figure 4. Agarose gel (1%) electrophoresis of 450 ng genomic DNA purified using the Genomic DNA Magnetic Beads Kit, standard protocol, for the following samples: Lane 1 1 Kb Plus molecular weight ladder, Lane 2 mouse brain, Lane 3 mouse ear, Lane 4 mouse lung, Lane 5 mouse tail, Lane 6 E.coli cells. 10

VIII. Protocol Customization Options Many different types of mammalian tissues and bacteria may be used as starting material for DNA purification using the Genomic DNA Magnetic Beads Kit. Different sample matrices have very different structures and expected DNA yields (see Section 7.A). As such, the experienced user may wish to adjust various steps in the standard protocol to optimize the results for the desired downstream application. Listed below are suggested customization options. A. Starting Sample Amount The amount of starting sample material used directly impacts the amount of DNA purified. Some sample matrices, such as mammalian muscle and heart tissues, generally yield lower DNA amounts due to their fibrous or fatty structure. If a larger quantity of DNA is required for samples like these, a higher amount of initial sample can be used during the sample lysate preparation step, Section 6.D.1. Figure 5 below illustrates how increasing the starting sample amount increases the DNA yield: Figure 5. DNA yield (μg) vs. purity (corrected A260/A280 ratio see Section 7.B) using starting amounts of 5, 10, or 15 mg of mouse tail tissue and 150 μl elution volume. Note that increasing the amount of sample greatly increases the yield and slightly decreases the purity ratio of the genomic DNA obtained for this sample matrix (mouse tail). For tissues like these that generally yield higher amounts of pure DNA (see Section VII.A), decreasing the amount of starting material may be preferable if limited material is available, and/or to obtain higher purity. For this reason, it is useful to optimize the starting sample amount 11

according to the specific tissues being purified by the user, and the intended downstream application. In general, 15 mg of sample material is recommended. B. Elution Solution Amount Changing the amount of Elution Solution added in Section VI.D.12 changes the resulting concentration and yield of DNA. Depending on the intended downstream application, a higher concentration of the final sample or a higher overall yield of DNA may be more desirable. Figure 6 below demonstrates the inverse relationship between concentration and yield: Figure 6. DNA yield (μg) vs. concentration (μg/ml) using ~2 x 10 9 E.coli cells with increasing elution volumes. To increase the DNA yield, use a higher volume of Elution Solution. To increase the DNA concentration, use a lower volume of Elution Solution. In general, 150 μl is the recommended volume. 12

This product is for research use only. 2017 RayBiotech, Inc 13