Supporting How2Guide. Kees Kwant, 27 November 2014

Similar documents
Regulatory and Policy Frameworks for Bioenergy. Kees Kwant NL Enterprise Agency Vice Chair IEA Bioenergy

Prospects for the International Bioenergy Market and Scientific Cooperation

Sustainable valorisation of (biomass) residue in industry leads to a Biobased Economy. Ir. Kees W. Kwant

International Energy Agency Biofuels & Bioenergy Technology Roadmaps

Status of Bioenergy and roadmap to the future

How2Guide for Bioenergy. Ingrid Barnsley, Anselm Eisentraut Southeast Asia regional workshop July 2014, Bangkok, Thailand

Gasification of Biomass and Waste Recent Activities and Results of IEA Bioenergy Task 33

Bioenergy and Biobased Economy Development in the Netherlands. Ir. Kees W. Kwant

Bio-Refining in a Future Bio-Economy

The IEA Bioenergy Task 42 Perspective for Biorefining in a Growing Bioeconomy Bert Annevelink

Current Trends andfuture Bioenergy Trends

Sustainable Bioenergy Systems for the Bioeconomy Development Status and Challenges

Role of biomass in meeting future energy demands

Highlights of the Conference Nicolae Scarlat

IEA BIOENERGY TASK 37: Energy from Biogas How do we shape up on the International stage?

Biomass Resource Assessment IEA Task 43 / Australia / EU. Prof. Mark Brown Director, Forest Industries Research Centre

IEA BIOENERGY TASK 37: Energy from Biogas Country Report 2016

Task 42 Update Bio-refineries

Success factors of bioenergy for CHG mitigation in Scandinavia

Bioenergy Australia.

Anselm Eisentraut Bioenergy Analyst Current status and future outlook for biofuels EBTP 4 th Stakeholder Plenary Meeting

The role of biogas in the global energy transition. REGATEC 2015, Barcelona Spain Shunichi NAKADA International Renewable Energy Agency

2010 USDA Agricultural Outlook Forum

ECN Research and Development in bioenergy

Greening the Gas Grid David Wall Senior Postdoc Researcher MaREI

Global Bioenergy Partnership (GBEP)

INTERNATIONAL ENERGY AGENCY. In support of the G8 Plan of Action TOWARD A CLEAN, CLEVER & COMPETITIVE ENERGY FUTURE

Aspects of Sustainable Biomass Supply chains. By: Kees Kwant

Biomass valorisation in the sugarcane processing industry

BIOEN BIOTA PFPMCG SEI ICRAF SCOPE

EUBCE th European Biomass Conference & Exhibition

Industrial renewable heat

BIOENERGY FOR SUSTAINABLE DEVELOPMENT Thematic Meeting at Eighth IRENA Assembly Abu Dhabi, 12 January 2018 BRIEF SUMMARY 1. Leading international

Bioelectricity production and prospects for Africa. Dr Smail Khennas Senior energy and climate change expert

The Global Bioenergy Partnership

Sustainable Biofuels and Bioproducts from our Forests: Meeting the Challenge

UPDATE OF CEM FURTHER EVENTS AND CHP/DHC WORKING GROUP

IEA Task 40 Sustainable International Biomass Trade: aspects for the Central European Region

The role of Bioenergy Africa. Ir. Kees W. Kwant

Strong focus on market and policy analysis

Biorefineries for Eco-efficient Processing of Biomass Classification and Assessment of Biorefinery Systems

Waste Business Monitor The only source of "real time" trend data analysing global waste plant developments

The importance of energy and activity data for technology policy modeling

FINNISH WASTE-TO-ENERGY AND BIOENERGY OFFERING

Biobased Economy in the Netherlands and the regions. Opportunities & Challenges. Ir. Kees W. Kwant

Sustainable international bioenergy markets

Policies having an impact on the biobased economy in Europe. Dirk Carrez IAR General Assembly

EUBCE 2018 CALL FOR PAPERS. 26 th European Biomass Conference & Exhibition MAY COPENHAGEN - DENMARK Bella Center Copenhagen

4 th APP China-Japan New and Renewable Energy Seminar

ENERGY SUPPLY WITH NEGATIVE CARBON EMISSIONS. Historical Environmental Budget of Bioethanol in Brazil and Future Expectations

The IEA Heat Pump Programme. Research, Development, Demonstration and Promotion of Heat Pumping Technology.

IEA Task 40 Sustainable International Biomass Trade: aspects for the Central European Region

TCP ETSAP - Energy Systems Modelling

Product and chain development for Oil Palm

The Global Bioenergy Partnership

Sustainability of bioenergy: from theory to practice. Overview of concepts, policies and case studies

Policies and measures to promote sustainable bioenergy production and use in the Baltic Sea Region

BIOENERGY WORLDWIDE Review of the world progress and future tasks. Priorities in bioenergy technologies development.

Biomass co-firing. Technology, barriers and experiences in EU. Prof.dr.ir. Gerrit Brem. TNO Science and Industry

Annette Schou Senior Policy Advisor, Danish Energy Agency, Ministry of Climate and Energy

Market development and biomethane trade in Europe

The Biorefinery Fact Sheet and its Application to Wood Based Biorefining - Case Studies of IEA Bioenergy Task 42 Biorefining

Task 36. Integrating Energy Recovery into Solid Waste Management

EUROPEAN BIOMASS CHP IN PRACTICE

Anselm Eisentraut Bioenergy Analyst A Roadmap for Biofuels Copenhagen,

IEA Bioenergy Task 37 Energy from Biogas

Australian Renewable Energy Agency

Energy Efficiency Indicators: The Electric Power Sector

Global Bioenergy Partnership (GBEP)

Outline. A leading ethanol player. The SEKAB Group. Bioethanol from Cellulose - Technology status and Strategy for Commercialisation.

Biomass Cogeneration Network- BIOCOGEN

Sustainability of biofuels: GHG emissions

Bioenergy markets: the policy demand for heat, electricity and biofuels, and sustainable biomass supply

Sustainable Production (SP) of the Biomass Industries in Malaysia

IEA TECHNOLOGY COLLABORATION PROGRAMME ON HEAT PUMPING TECHNOLOGIES (HPT TCP)

Second Annual California Biomass Collaborative Forum

EXECUTIVE SUMMARY PROCESS AND SITE SELECTION

Industrial Energy-Related Technologies and Systems. An Implementing Agreement established under the auspices of the International Energy Agency

The role of Biomass in Renewable Energy Sources and its potential for green house gas reduction

Possible Role of a Biorefinery s Syngas Platform in a Biobased Economy Assessment in IEA Bioenergy Task 42 Biorefining

Overcoming Barriers with Integrated Support Frameworks

Valorisation of organic household waste & greenery cuttings

The sustainable management of water in agriculture an OECD perspective. Wilfrid Legg Trade and Agriculture Directorate

An Introduction to the Joint Programming Initiative on Agriculture, Food Security and Climate Change (FACCE-JPI)

Business in a Changing Climate

Integration of Advanced Biofuels in the Circular Economy

Dennis St. George, M.Sc., P.Eng. Sr. Biosystems Engineer

A spatially explicit techno-economic assessment of green biorefinery concepts for Austria

The development of the Biorefinery and the SUSTOIL project

Danish Industry Agreement on Biomass Sustainability

WORKING TOGETHER FOR SUSTAINABLE DEVELOPMENT

Seminar on the Production and Use of Biogas. Production and Use of Biogas: EU Regulations and Research. David Baxter

Bioenergy with CCS: Achieving a 2 C target and beyond. Samantha McCulloch IEA CCS Unit IEA Bioenergy Workshop, 16 November 2016

Bio-energy and the European Pulp and Paper Industry An Impact Assessment

IBUS Integrated Biomass Utilisation Systems

Bioenergy Optimization Program Demonstration Project Presentation Compost Matters In Manitoba March 22, 2017

Bioenergy and Microalgae

Green Biorefinery IEA Biorefinery Course, 13th September 2010 Edwin Keijsers WUR Food and Biobased Research Michael Mandl JOANNEUM RESEARCH RESOURCES

Smart Grids and IEA ENARD Annex II: DG System Integration into Distribution Networks "

Netherlands Programmes Sustainable Biomass: Combining bioenergy production and food. Ella Lammers December 2013

Transcription:

Supporting How2Guide Facilitating commercialisation and market deployment of environmentally sound, socially acceptable and cost-competitive bioenergy systems and technologies Kees Kwant, 27 November 2014 1

Contents IEA Bioenergy Netherlands Programmes Sustainable Biomass Case study sugar cane Brasil

IEA Bioenergy.. Provides an international forum for sharing information and developing best practice on Technology development Non-technical barriers and issues Regulatory and legislative issues Produces authoritative information on key strategic issues affecting deployment www.ieabioenergy.com 3

Bioenergy involves a range of feedstocks and technology options that can produce heat, power and liquid fuels www.ieabioenergy.com 4

23 Contracting Parties Australia Austria Belgium Brazil Canada Croatia Denmark European Commission Finland France Germany Ireland Italy Japan Korea Netherlands New Zealand Norway South Africa Sweden Switzerland United Kingdom United States www.ieabioenergy.com 5

Biomass expected to grow: ETP2014 Biomass: 2010: 52 EJ -> 2050: 164 EJ http://www.iea.org/etp/explore 6

Introduction Bioenergy has significant scope to make a greater contribution to secure and sustainable energy provision Global modelling results - Total primary energy supply IEA Energy Technology Perspectives 2014 7

FRAMEWORK Bioenergy s significant potential to contribute to future global energy demand Bioenergy s role in the transition to a low carbon economy Bioenergy s role in the emerging biobased economy Bioenergy s intrinsic interlinkage with the growing demand for food, feed and fibre 8

OBJECTIVES OF THE STRATEGIC PLAN Objective 1 - to promote the market deployment of technologies and systems for sustainable energy production from biomass Objective 2 - to raise public awareness through communication with key stakeholders for the use of biomass as an energy source and to provide clear and verified information on bioenergy Objective 3 - to strengthen the outreach efforts of the Implementing Agreement to involve interested new member countries, industry and multilateral organisations Objective 4 - to increase the dissemination of information 9

KEY ROLE OF IEA BIOENERGY Independent body to give clear and verified information on bioenergy 10

FOCUS OF IMPLEMENTATION STRATEGY Technology development and deployment through Tasks programmes and ExCo engagement Strategic projects to address and resolve cross-tasks issues and broader topics Expanded and more effective collaboration with other international bodies FAO GBEP IRENA SE4ALL 11

Our Work: Tasks Tasks The work of IEA Bioenergy is structured in a number of Tasks, which have well defined objectives, budgets, and time frames. Their activities include: Coordination of national RD&D programmes, information exchange and joint projects Task meetings, study tours and workshops Publications, reports, newsletters, websites Networking with industrial and other stakeholders www.ieabioenergy.com 12

10 Tasks in three areas Feedstock Forest and agricultural products, MSW and recovered fuels Conversion Combustion, gasification, pyrolysis, anaerobic digestion, fermentation, biorefineries Integrating Research Issues GHG balances, socioeconomic drivers, international trade, systems analysis www.ieabioenergy.com 13

TASKS SUPPORTING IMPLEMENTATION Task Structure Sources Process Process Task 36 36 MSW MSW Task 37 LFG/AD Biogas Task 32 Task 32 Combustion and and Cofiring Cofiring Task 43 Biomass Feedstocks / Socioeconomics Task 33 Task 33 Gasification Gasification Task 34 Pyrolysis Task 34 Pyrolysis Task 39 Task 39 Liquid Liquid fuels Fuels Product Task 42 Biorefineries Overview Task 38 GHG Effects Task 40 Sustainable Trade Task 40 Sustainable Trade Task 41 System Analysis 14

Ongoing Tasks: 32 Biomass Combustion and Co-firing 33 Thermal Gasification of Biomass 34 Pyrolysis of Biomass 36 Integrating Energy Recovery into Solid Waste Management 37 Energy from Biogas 38 Climate Change Effects of Biomass and Bioenergy Systems 39 Commercialising Conventional and Advanced Liquid Biofuels from Biomass 40 Sustainable International Bioenergy Trade: Securing Supply and Demand 42 Biorefining Sustainable Processing of Biomass into a Spectrum of Marketable Biobased Products and Bioenergy 43 Biomass Feedstocks for Energy Markets www.ieabioenergy.com 15

Added Value from Tasks in IEA Bioenergy: promote the optimisation of the economic, environmental and social value of bioenergy through research and development collaboration identification of best practices in bioenergy policy pro-active communication with main stakeholders facilitate accelerated deployment of bioenergy globally 16

Results: Strategic Position Papers Using a LCA Approach to Estimate the Net GHG Emissions of Bioenergy Bioenergy Land Use Change and Climate Change Mitigation Bioenergy - a sustainable and reliable energy source. A review of status and prospects Sustainable Production of Woody Biomass for Energy Municipal Solid Waste and Its Role in Sustainability Benefits of Bioenergy Potential Contribution of Bioenergy to Future World Energy Needs Synergies and Competition in Bioenergy Systems Gaps in the Research of 2 nd Generation Transportation Biofuels www.ieabioenergy.com 17

Annual Reports and Newsletters The Annual Report (122 pp) contains a report from the Executive Committee and a detailed progress report on each of the Tasks. It also includes key information such as Task participation, Contracting Parties, budget tables, and the reports and papers produced by the Implementing Agreement. A feature article based on the work of a Task is also included. IEA Bioenergy News covers the most recent ExCo meeting and workshop. It also features an editorial from a Member Country, news from the Tasks recent publications and upcoming events. www.ieabioenergy.com 18

Netherlands Programmes Sustainable Biomass 2009 2014 40 pilots Sustainable Production Import Certification Closing the Cycles www.rvo.nl/biomass

Tools and Lessons from 40 pilot projects overall lessons learned from the NPSB programme. Based on 37 projects and 30 assignments for additional research. Large diversity in projects (scope, biomass resource, country of operation). highlights and recommendations

Experience in certification has grown Competition between certification systems as well Certification for biomass and bioenergy is in a learning curve, especially in / for: Unexplored countries Alternatives feedstocks and end-uses Specific producer (smallholder groups) Development of new impacts (ILUC, carbon debt) The NPSB program served as a capacity building catalyst tools and guidance has been developed It is important to select a certification scheme at the start of a project to understand what type of data management system is needed to meet requirements, and to align this with day-to-day business Self-assessment tools are beneficial during project development and implementation certification systems should enhance their use

Key Conclusions Unlocking sustainable and affordable biomass is possible: transition towards using resources more efficiently creating alternative resources. multiple positive sustainability impacts. requires time, investment and effort. pilot projects created a spin-off in Knowledge and tools business opportunities replication and transfer of technologies. Lesson: integrated approaches with concerted action from multiple stakeholders. One of the examples: Creating an enabling environment and practical experiences on the ground should go hand in hand.

Key recommendations: Concerted action is needed from all stakeholders. Project developers Fully integrate sustainability, certification, stakeholder consultation and capacity building as components in business development and implementation. These elements contribute to a project s feasibility and finance. Knowledge institutions More research (learning by doing) on optimized models for innovative sustainable biomass chains, in line with the concept of climate smart agriculture. More insight is especially needed on how to develop large-scale affordable and sustainable value chains Governments Design local, national and international policies and commitments to support a transition towards using and developing affordable, sustainable, innovative biomass resources (away from the business as usual commodities) in large volumes, and to facilitate for the investment and effort needed to do so NGOs Play a role in projects to articulate the voice of the local communities and to translate concerns on the grassroots level to government and policy level; This requires cooperation with governments and the market.

Sustainable Biobased Approach 24 www.rvo.nl/biomass Integrated Food & Materials production Smart agriculture Increased production Sustainable and Rural Development Local Resources and local use Tapping unused or abandoned land Smart use of biomass Circular Economy, Cascading Biorefinery Ref: http://www.sahyog-europa-india.eu/images/d2_3_strategic_advise_on_biobased_research_based_on_sahyog_inventory_v3.pdf

Case study Brasil -Utilisation of Residues -Closing Cycles -Valorisation residues -Economic Opportunities www.rvo.nl/biomass

Study: Opportunities to increase sustainability and output in cane sector in Brasil Bagasse Fuel Fibrous products Animal feed Filter cake Fertilizer Compost Animal feed Sugar cane Cane mill Ethanol Fuel Chemical Solvent Sugar Functional foods Dextran Sweeteners Molasses Animal feed Fermentation products Fertilizer Straw Fuel Fiber Fermentable substrates www.rvo.nl/biomass

Present situation of sugarcane bioethanol in Brasil As far as we know -Still a large number of mills have a low efficiency of the power plant, due to limited access to grid -Existing scheme to improve CHP in mills does not cover all plants -Under utilisation of straw from the field --> Potential to increase harvest and outputs from the mills and improve GHG balance www.rvo.nl/biomass

Potential Availability of excess biomass: Straw With increased mechanical harvesting, the tops and leaves can be collected Straw = 30% by mass of the produced sugarcane Sustainable harvesting allows for 50% straw to be removed from field (need for nutrient recycling) Based on harvest season 2008/2009 (648 Mtonne cane) Assuming 100% green harvesting (no burning) yield 97 Mtonne straw (mc 50%) or 870 PJ 28 www.rvo.nl/biomass

Possibilities of additional output from existing plants By 1. improving efficiency of boiler/chp 2. Process Optimisation (Pinch analysis) Option Biomass available Mtonne Pellets PJ Efficiency improvements of boilers / CHP 107 Mtonnes bagasse 54 884 Efficiency improvements in process demand 75 Mtonnes bagasse 37 616 Or: Second Generation bioethanol; 25 liter/ton cane -> total additional 15 billion liter www.rvo.nl/biomass

Other applications of excess bagasse Bagasse can be used as a component in animal feed. Such synergies between food and energy production offer real measures for reducing the risk of indirect land-use change (ILUC) 1 Bagasse could be used as a heat source in other industrial sectors, such as the steel industry, which already uses charcoal for about a third of its energy needs (CGEE 2008). Sugargane biomass can also be used for high-value applications such as biochemistry, as is illustrated by the recent deal between European Solvay and the Brazilian National Bioethanol Science and Technology Laboratory (CTBE) to develop chemical routes for high-added value molecules => mills as bio-refineries www.rvo.nl/biomass

Other applications of excess bagasse Bagasse can be used as a component in animal feed. Such synergies between food and energy production offer real measures for reducing the risk of indirect land-use change (ILUC) 1 Bagasse could be used as a heat source in other industrial sectors, such as the steel industry, which already uses charcoal for about a third of its energy needs (CGEE 2008). Sugargane biomass can also be used for high-value applications such as biochemistry, as is illustrated by the recent deal between European Solvay and the Brazilian This National cup is 100% Bioethanol biocompostable Science and Technology Laboratory (CTBE) to develop chemical routes for high-added value molecules => This mills coffee as bio-refineries cup is made of Sugarcane fibres and coated with PLA www.rvo.nl/biomass

Conclusions Sustainable Bioenergy implementation needs clear guidance Results/evidence from different countries to be used IEA Bioenergy Implementing Agreement ready to contribute and use the How2Guide on Bioenergy

Thank you Questions? Kees.Kwant@RVO.nl www.ieabioenergy.com 33