A STRATEGY FOR FABRICATING COMPLEX STRUCTURES VIA A HYBRID MANUFACTURING PROCESS

Similar documents
FEASIBILITY OF BUILDING AN OVERHANG STRUCTURE USING DIRECT METAL DEPOSITION

Reviewed, accepted September 14, 2006

5-AXIS SLICING METHODS FOR ADDITIVE MANUFACTURING PROCESS

Microstructural characterization of diode laser deposited Ti-6Al-4V

Three-Dimensional Fabrication of Metallic Parts and Molds Using Hybrid Process of Powder Layer Compaction and Milling

Comparison of Thermal Properties of Laser Deposition and Traditional Welding Process via Thermal Diffusivity Measurement

Part Repair using a Hybrid Manufacturing System

2 Considerations and Potential Benefits

Evaluation of Direct Diode Laser Deposited Stainless Steel 316L on 4340 Steel Substrate for Aircraft Landing Gear Application

INVESTIGATION OF BUILD STRATEGIES FOR A HYBRID MANUFACTURING PROCESS PROGRESS ON TI-6AL-4V Lei Yan a, Leon Hill a, Joseph W Newkirk b, Frank Liou a

Additive Manufacturing

Fig1: Melt pool size of LAMP vs. µlamp. The LAMP process s melt pool is x the area of the LAMP s melt pool.

Development of Metal-based Additive Manufacturing System with Directed Energy Deposition Technology

Process Control of Laser Metal Deposition Manufacturing A Simulation Study

MODELING OF LASER BASED DIRECT METAL DEPOSITION PROCESS

Additive Manufacturing Challenges Ahead

Design and fabrication of functionally graded components by selective laser melting. C. N. Sun*#, S. Y. Choy*+, K. F. Leong*+, J.

MACHINE VISION BASED CONTROL OF GAS TUNGSTEN ARC WELDING FOR RAPID PROTOTYPING. I. S. Kmecko, R. Kovacevic and Z. Jandric

STUDY OF SHAPE DEPOSITION MANUFACTURING

Thermographic Investigation of Laser Metal Deposition

WELDPRINT 5AX. Hybrid manufacturing.

Mechanical properties and microstructure study for direct metal deposition of titanium alloy and tool steel

Build-up strategies for generating components of cylindrical shape with laser metal deposition

Variable Polarity GTAW in Rapid Prototyping of Aluminum Parts

DIE RECONFIGURATION AND RESTORATION USING LASER-BASED DEPOSITION. T.W. Skszek and M. T. J. Lowney. Abstract. DMD Process Overview

Application of a hybrid process for high precision manufacture of difficult to machine prismatic parts

COAXIAL LASER CLADDING OF STELLITE: ANYLYSIS OF PROCESS PARAMETERS. Marek VOSTŘÁK, Matěj HRUŠKA, Šárka HOUDKOVÁ, Eva SMAZALOVÁ

Die Hardfacing and Remanufacturing using Direct Metal Deposition (DMD) B. Dutta POM Group, Inc., Auburn Hills, MI-48326

DESIGNING FOR THE DMLS PROCESS JONATHAN BISSMEYER Senior Quality Engineer

High-Speed Direct Laser Deposition: Technology, Equipment and Materials

THE ASPECTS ABOUT RAPID PROTOTYPING SYSTEM

A Flexible Synchronous Powder Feeder for Electromagnetism Compress Digital Manufacturing of FGM Metal Component

MELT POOL GEOMETRY SIMULATIONS FOR POWDER-BASED ELECTRON BEAM ADDITIVE MANUFACTURING. Bo Cheng and Kevin Chou

Advanced Robotic Laser Cladding The Oerlikon MetcoClad System. July 2015

3DMP. Fast I Simple I Economic. GEFERTEC GmbH Berlin Germany. 3DMP - 3D Metal Print fast simple economic

Additive Layer Manufacturing: Current & Future Trends

Defects Classification of Laser Metal Deposition Using Acoustic Emission Sensor

Sanjay Joshi, Ph.D. Professor of Industrial and Manufacturing Engineering

SYSTEM INTEGRATION AND REAL TIME CONTROL ARCHITECTURE OF A LASER AIDED MANUFACTURING PROCESS

Influence of Process Parameters in the Direct Metal Deposition of H13 Tool Steel on Copper Alloy Substrate

Mesoscopic Assemblies with SDM Processing

PRE-MIXED POWDERS W. Li a, J. W. Zhang a, X. C. Zhang a, S. Karnati a, F. Liou a. Technology, Rolla, MO 65409, United States

Thermal Modeling and Experimental Validation in the LENS Process

EXPERIMENTAL INVESTIGATION EFFECT ON SAW USING RESPONSE SURFACE METHODOLOGY (RSM)

Increase of Heat Transfer to Reduce Build Time in Rapid Freeze Prototyping

Mold Design. Note. 13. Mold Manufacturing Techniques. Bong-Kee Lee School of Mechanical Engineering Chonnam National University.

voestalpine Additive Manufacturing Center Singapore Pte Ltd

Producing Metal Parts

University of Osijek, Mechanical Engineering Faculty, Slavonski Brod, Croatia

Available online at ScienceDirect. Procedia CIRP 42 (2016 )

Jewelry Laser Spot Welding Machine

CLOSED LOOP CONTROL OF 3D LASER CLADDING BASED ON INFRARED SENSING

AN INVESTIGATION OF MACHINABILITY & SURFACE INTEGRITY ON ALUMINIUM AND TITANIUM CARBIDE COMPOSITE MATERIAL USING ABRASIVE WATER JET MACHINING

Grinding of hard-material-coated forming tools on machining centers

Additive manufacturing with NX

Cladding and Additive Layer Manufacturing with a laser supported arc process

Jongen UNI-MILL VHC milling cutter

Beveling procedures and beveling machines beveling, a quick overview 1

Aluminum Matrix Syntactic Foam Fabricated with Additive Manufacturing

Investigating a Semi-Solid Processing technique using metal powder bed Additive Manufacturing Processes

Control Methods for the Electron Beam Free Form Fabrication Process. W. J. Seufzer, K. M. Taminger NASA Langley Research Center, Hampton VA 23681

The Definitive Guide to Direct Metal Printing

BASED ON WELDING/JOINING TECHNOLOGIES

Numerical Simulation of the Temperature Distribution and Microstructure Evolution in the LENS Process

Meso A/SMP Approach. Abstract

Working principle Equipments Process parameters MRR Electrode / Tool Power circuits Tool wear Dielectric Flushing Advantages Limitations Applications

Metal Additive Technology 101 Technology Choices and Applications

RECOMMENDATION OF OPTIMUM PROCESS PARAMETERS FOR THE MILLING OF CARBON STEEL USING TAGUCHI ANALYSIS.

WHITE PAPER. Production of PEEK parts with Additive Manufacturing

Direct Metal Printers. Metal Additive Manufacturing with the ProX DMP Series

AL LM6 HOLLOW CYLINDER FABRICATED USING CENTRIFUGAL CASTING

Laser powder surfacing of the Si-Mo spheroidal cast iron with nickel powder

International Journal of Modern Trends in Engineering and Research

In-Situ Preheating in Hybrid Layered Manufacturing for Tooling Elements

1.1 Milling machine G code supporting table 1-2

ADDITIVE MANUFACTURING Presentation

Design approaches for additive manufactured components

Welding Simulation Technologies for Highly Efficient Production of High-quality Social Infrastructure Products

Assessing Uneven Milling Cutting Tool Wear using Component Measurement

Modelling and Verification of Energy Consumption in CNC Milling

Process planning for rapid manufacturing of plastic injection mold for short run production

Amphibious Vehicle Test Branch

Control of Residual Stress, Distortion and Mechanical Properties in WAAM Ti64 Parts

Characterizing Interfacial Bonds in Hybrid Metal AM Structures John Linn, Jason M. Weaver, Michael P. Miles, Yuri Hovanski Brigham Young University

Available online at ScienceDirect. Procedia CIRP 17 (2014 )

The Shape Deposition Manufacturing Process

Aqueous-Based Extrusion Fabrication of Ceramics on Demand

THE CHARACTERIZATION OF THE PERFORMANCE OF A NEW POWDER FEEDER FOR LASER BASED ADDITIVE MANUFACTURING

Manufacturing Using Light and Dust

BAUSCH + STRÖBEL. Technical Specification SP100/200 SP3060. Filling machine for bottles Page 1 of 6

Sumi Dual Mill TSX-Series

Laser transformation hardening on rod-shaped carbon steel by Gaussian beam

Surface Modification of AISI 1020 Steel with TiC Coating by TIG Cladding Process

ELECTRA FL. Fiber laser cutting machine LVDGROUP.COM BEYOND YOUR EXPECTATIONS

Statistical Analysis of TIG Arc Weldment Characteristics

DESIGN OF AN EMPIRICAL PROCESS MODEL AND ALGORITHM FOR THE TUNGSTEN INERT GAS WIRE+ARC ADDITIVE MANUFACTURE OF TI-6AL-4V COMPONENTS.

5-Axis Machining Some Best Practices

Direct metal laser deposition of titanium powder Ti-6Al-4V

Optimization of Tool Wear for Different Metals in Turning Operation Using ANOVA & Regression Analysis

Hybrid Additive and Subtractive Machine Tools- Research and Industrial Developments

Transcription:

A STRATEGY FOR FABRICATING COMPLEX STRUCTURES VIA A HYBRID MANUFACTURING PROCESS Tarak A. Amine, Todd E. Sparks and Frank Liou Missouri University of Science and Technology Rolla, Missouri, United States of America Abstract The purpose of this paper is to introduce a strategy for fabricating complex structures via a hybrid manufacturing process. The Laser Aided Manufacturing Process (LAMP) lab at Missouri S&T has developed a hybrid process combining both a direct metal deposition process and a five-axis CNC milling. Accessibility is a difficulty when finish machining internal features. The concept is to pause the deposition process to finish machine an internal feature while it is still visible is one possible solution to this issue. However, this must be done in a manner that will not be spoiled when the deposition process continues. This paper discusses processing strategy, tool selection, and experimental validation of a technique to build complex structures via mid-process machining with an undercutting mill. Keywords: rapid prototyping, laser deposition, milling process. 1 Introduction & Background The Direct Metal Deposition (DMD) is a unique technique which can be used to manufacture near net shape components. However, the surface finish of parts made using DMD may not be suitable for some end-use components. This limits DMD to certain applications unless a finish machining operation is done as a post-deposition step [2]. In contrast, the resulting geometries of direct laser deposited components do not require rough machining, due to the additive nature of the process. As a result, the Hybrid Laser Deposition and Milling (HLDM) technique, capable of both DMD and finish machining, will reduce total processing time and/or tooling and material consumption for a given part geometry. Recently, research work on hybrid process has been done in different areas. Selective laser cladding (SLC) and milling processes were combined [4]. Plasma deposition was combined as additive with NC milling process as subtractive to fabricate metal vase [6]. Similarly, the combination of wire welding technology using a CO2 laser with milling was carried out [1]. A rapid pattern manufacturing system was developed for the sand casting involving both additive and subtractive techniques [5]. Funded by the National Science Foundation and Air Force Research Laboratory, the University of Missouri-Rolla (UMR) has developed the Laser Aided Manufacturing Process (LAMP). The (LAMP) has done some works related to hybrid process. CNC machining and layered deposition processes were integrated to realize the automatic hybrid manufacturing process without human interference [8]. An adaptive slicing algorithm for the five-axis Laser 175

Aided Manufacturing Process was developed at Missouri S&T. The newly developed algorithm implemented in process planning helps the hybrid system build parts more efficiently [9]. Machining conditions in HLDM are very harsh. The optics required for the DMD portion of the process precludes the usage of cutting fluids in the milling portion of the process. This issue is compounded for deep cavities and small features because they require a tool with a high length to diameter ratio. The purpose of the experimental investigation is to enhance a new technique of HLDM for machining deep or external features. This technique is based on sequential additive and subtractive operations that take advantage of specialized milling tools that can produce an undercut. Geometry such as thin features, deep cavities and internal features which are impossible to machine by conventional methods can be manufactured by HLDM. 2 Solutions for Production of Internal Features The HLDM concept is to deposit material using the laser deposition technique, layer by layer, which are subsequently machined to a specified geometry. They can be machined using small diameter and short tools to obtain required dimensions accuracy and surface finish quality as shown in figure (1). Laser deposition layers (a) (b) Figure (1): machining feasibility (a) machining whole part by conventional technique causes collision, (b) machining layer by layer. There are two possible routes to achieve the desired part geometry. The simplest solution, shown in Figure (1a), is to deposit the entire geometry and then machine it. This solution works well as long as the machining tool has accessibility to all the features that need to be machined. However, this can lead to a collision, so it is not a general-purpose solution. The second possibility is to machine the part periodically during the build process, as illustrated in Figure (1b). Periodic machining also allows the use of shorter tools, which allows access to smaller diameter tools. This solves the collision problem, but introduces two new issues: 176

1. Planning: When is it necessary to stop the deposition process and machine? Switching from the deposition process to the machining process takes time. To make the best use of the machine s capabilities, the number of process switches should be minimized. 2. Fidelity: How can the machined areas be protected from the laser during subsequent deposition? Without some kind of protection, the machined surfaces will have altered surface finish or, at worst, deformed geometry from melting, as illustrated in figure (4). 2.1 Undercut Milling The concept presented in this paper uses a tool capable of producing an undercut, a T-slot cutter in this instance, to partially machine the deposited material, leaving some material to act as a base for subsequent deposition [6]. Once the first layer laser deposition is done, the certain shielding height (h) and tool offset (w) must be maintained to avoid spoiling the machined surfaces, as shown in Figure (2).The factors h and w are investigated in Section 3.2, below. Figure (2): principle of milling machining using T-slot cutter All experiments were carried out on a 5 axis FADAL CNC milling machine with an integrated laser cladding nozzle, as shown below in figure (3). Laser deposition is used to deposit 177

a thin wall. When a thin wall is deposited, the vertical surface profile is machined using T-slot cutters to attain fine surface state of the near-net shape metal part. Figure (3): Integrated 5-axis FADAL CNC and Laser Deposition Head Experiments details: This work investigates the shielding height (h) and tool offset (w) dimensions needed to obtain the best dimensions. The goal of the experiment was to minimize w and h to reduce the machining time and cost, yet still provide shielding for the machined surface, as shown in figure (4). The system parameters used in the experiment are enumerated below: Laser deposition parameters: Laser power 1000 w Powder feed rate 8.0 g/min Feed rate 375 mm/min Milling machining parameters: The milling machining was done by using Cobalt T-slot milling cutter (cutter diameter 16.6 mm, 8 teeth) and the milling parameters are used in this work are [7] as following: Feed rate 50 Spindle speed 250 rpm Radial depths of cut are (0.4, 0.8 and 1.8 mm). Axial depth of cut is 4 mm. 178

Second deposition layer First deposition layer First deposition layer Spoiled surface Figure (4): undercut milling machining to reduce spreading of molten pool at the following deposition process 3 Proof of Concept 3.1 Manufacturing A turbine blade was fabricated by hybrid process combining both a direct metal deposition process and a five-axis CNC milling. It is roughly 30 mm length, 1 mm thick and 50 mm height as shown in figure (5). (a) (b) (c) (d) Figure (5): fabricate processes of a turbine blade. (a) laser deposition scene; (b) first layer of laser deposition process;(c) milling process scene; (d) fabricated sample 179

3.2 Analysis: The specific problem addressed in this paper is choosing and optimizing the tool offset distance (w) and the shielding height distance (h) to avoid spreading of molten at the subsequent laser deposition process and to reduce the spoiled surface distance of the previous machined surface profile layer, as shown in figure (4). The spoiled surface distance happen attribute to melt some amount of this overhang which is formed from (w) and (h). This spoiled surface distance is inversely proportional to (w) and (h) distances. In order to maximize the deposition layer thickness H to reduce the switching between laser deposition and milling machining processes, there are some conditions should be considered which is listed below: Conditions of the process: d 1 : tool diameter d 2 : shank diameter TL: tool length h 1 : tool width H: layer deposition thickness h: shielding height w : tool offset h 1 H - h d 1 - d 2 >w, illustrated in figure (6). Hmin: minimum deposition layer thickness depends on tool width h 1. Hmin h 1 +h Hmax: maximum deposition layer thickness depends on tool length TL. Hmax<h 1 + TL Figure (6): Tool dimensions condition of the process 180

There are two independent factors: shielding height (h) with three levels (1.00, 1.50 and 2.5 mm), and the second independent factor is tool offset (w) with three levels (0.40, 0.80 and 1.20 mm). There is one dependent variable which is a non-spoiled machined surface profile height.. Independent variables Factor A: shielding height (h) Factor A levels (1.00, 1.50 and 2.5 mm) Factor B: tool offset (w) Factor B levels (0.40, 0.80 and 1.20 mm) These levels of both factors were selected depend on previous experiments. Dependent variable: Non-spoiled machined surface profile layer (mm), and it is measured by digital caliper. The experiments parameters were investigated which are significantly affect the performance characteristics by the ANOVA and the F test (standard analysis) as shown in table (1) and (2). Table (1): Dependent Variable: non spoiled machined surface Source DF Squares Mean F Value Pr > F Square Model 8 3.86766667 0.48345833 52.55 <.0001 Error 18 0.16560000 0.00920000 Corrected Total 26 4.03326667 Table (2): Source DF Squares Mean Square F Value Pr > F Tool offset 2 1.12186667 0.56093333 60.97 <.0001 Shielding 2 2.66746667 1.33373333 144.97 <.0001 Tool offset*shielding 4 0.07833333 0.01958333 2.13 0.1191 Both of two factors shielding height (h) and tool offset (w) are significantly effect on the experiment. With a p-value of 0.1191, the combine if the treatment is not significant as shown in table (2), therefore, the regression model is linear as shown in SAS output in table (3). 181

Table (3): Parameter Estimate(Parameter Standard) Variable DF Estimate Error t Value Pr > t Intercept 1 9.06111 0.08245 109.90 <.0001 Tool offset 1 0.24667 0.02801 8.81 <.0001 Shielding 1 0.38000 0.02801 13.57 <.0001 height So, our regression model is: Y = β 0 + β 1 X + β 2 X (1) Y = 9.061 +0.246 X1 +0.38 X2 (2) Where, β 0: intercept of the line. Effects plots, with the regression line, are shown in figure (7). Figure (7): SAS output plot of regression model With this model the response variable which is non-spoiled machined surface distance (mm) can be estimated clearly. 182

4 Results and Discussion The optimization of minimum of both shielding height (h) and tool offset (w) distances requires the maximum non spoiled machined surface distance is attained. The regression model of experiment is obtained by using SAS software This work on the development of the DMD process using Hybrid Laser Deposition and Milling (HLDM) technique taking advantage of undercut machining using T-slot cutter to machine laser deposition components to improve surface roughness and dimensions accuracy To be an efficient solution, both shielding height (h) and tool offset (w) distances were minimized such that the machined surface was not damaged by subsequent laser metal deposition steps. For the 316L stainless steel used in this experiment, the minimum acceptable value of (h) and (w) were found to be 1.5 mm and 0.8 mm, respectively, when using 1000 W, 375 mm/min, and 8.0 g/min as the laser deposition parameters. A turbine blade was manufactured using these parameters. 5 Conclusions Metal Direct Prototyping is unique method among current RP techniques. Hybrid Laser Deposition and Milling (HLDM) can machine complicate shapes that traditional ways cannot do it taking advantage of additive and subtractive technique. Moreover, it is more economy than traditional machining when will be deal with expensive material attribute to some amount of removal material to get the desired shape. Using this technique, the processing time wasted due to switching between additive and subtractive methods can be minimized. The optimization parameters used here ensure that a minimum amount of material is wasted in the subtractive step. Finally, this method allows for unsupported undercut features to be fabricated via the hybrid process using only 3 axes. 6 References 1. Doo-sun Choi, S. H. Lee, B. S. Shin, K.H. Whang, Y.A. Song, S.H. Park & S.H. Jee, Development of a direct metal freedom fabrication technique using CO2 laser welding and milling technology, journal of materials processing technology.113(2001) 273-279. 2. Konrad Bartkowiak & Pawel Twardowski, Direct lasers deposition within post process machining characterization, ICALEO, paper 1305, 2009 Orlando, FL, USA. 3. Freyer, C. and Klocke, F., Fast manufacture of high strength tools from steel using CMB, Proceedings of SME Conference Rapid Prototyping and Manufacturing, Cincinnati, OH, May(2001) 14-17. 183

4. Jeng-Ywan Jenga, Ming-Ching Linb Mold fabrication and modification using hybrid processes of selective laser cladding and milling, Journal of Materials Processing Technology 110 (2001) 98±103. 5. Matthew C. Frank, Frank E. Peters, Xiaoming Luo, Fanqi Meng, Joseph Petrzelka, A Hybrid Rapid Pattern Manufacturing System for Sand Castings, Proceeding of the Solid Freeform Fabrication Symposium (2009), PP, 35-46. 6. Xinhong Xiong, Haiou Zhang, Guilan Wang, Metal Direct Prototyping by Using Hybrid Plasma Deposition and Milling, Journal of Materials Processing Technology 209 (2009) 124-130. 7. www.michigandrill.com. 8. Lan Ren, Todd Sparks, Jianzhong Ruan, and Frank Liou, Integrated Process Planning for A Multi-Axis Hybrid Manufacturing Process, Proceedings of the 2003 NSF Design and Manufacturing Grantees Conference, MPM, pp. 1-7, 2003. 9. Jianzhong Ruan, Kunnayut Eiamsa-ard, Jun Zhang, and Frank W. Liou. Automatic process planning of a multi-axis hybrid manufacturing system. In DETC, September 29 - October 2 2002. 184