Today: Dinner Time! Yum Yum. Primary Producers = base of food web

Similar documents
Today: Dinner Time! Yum Yum

(Brief) History of Life

Continued from Lecture 20a

Ecosystems. Trophic relationships determine the routes of energy flow and chemical cycling in ecosystems.

3 2 Energy Flow Slide 1 of 41

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall

10/17/ Energy Flow. Producers. Where does the energy for life processes come from?

4/13/2015. The Biosphere

Producers. living systems need energy to function. autotrophs. Sunlight is the main energy source for life on Earth.

OCEANOGRAPHY Chapter 13

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

Productivity and fisheries. Energy flow. Biological pyramids. Why study production processes?

Marine lifestyles and relationships

4/28/2013. Transmission of Light in Seawater. Color in the Ocean Color of ocean ranges from deep blue to yellow-green Factors Turbidity from runoff

COMMUNITY ECOLOGY. Interspecific Interactions. Ecosystems unit

Lesson Overview. What is Ecology? Lesson Overview. 3.1 What Is Ecology?

Ecosystems Part 2. Food Chains, Food Webs, and Energy

Ch 3 - The Biosphere. 3.1 What is Ecology?

COMMUNITIES & ECOSYSTEMS. Professor Andrea Garrison Biology 11 Illustrations 2010 Pearson Education, Inc. unless otherwise noted

The Biosphere Chapter 3. What Is Ecology? Section 3-1

Biological Oceanography

What will all of these ingredient create? What is the mystery ingredient?

Notes: Ocean Environments and Food Webs. Source: CMAPP

ECOLOGY Energy Flow Packet 2 of 4

Energy. Raw materials to make building blocks of life. From sun or chemicals. From food

Class XII Chapter 14 Ecosystem Biology

Patterns of Productivity

Includes the coastal zone and the pelagic zone, the realm of the oceanographer. I. Ocean Circulation

SUNLIGHT & OCEAN ZONATION

Chapter 3 Ecosystem Ecology. Tuesday, September 19, 17

3 2 Energy Flow. Slide 1 of 41. Copyright Pearson Prentice Hall

Chapter 55: Ecosystems

We share the Earth. Ecology & Environmental Issues

CHAPTER 2 CONCEPTS OF ECOLOGY AND NATURAL RESOURCES

ECOSYSTEMS. Follow along in chapter 54. *Means less important

WHAT IS ECOLOGY? Ecology- the scientific study of interactions between organisms and their environments, focusing on energy transfer

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Energy Flow Through an Ecosystem:

Chapter 55: Ecosystems

How Ecosystems Work: Energy Flow and Nutrient Cycles

Chapter 2 Interactions in Ecosystems

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

How Ecosystems Work Section 1. Chapter 5 How Ecosystems Work Section 1: Energy Flow in Ecosystems DAY 1

EOC Review. a. Dominant b. Recessive c. Codominant d. Incompletely Dominant

How to Use This Presentation

Global Biogeochemical cycles and Ocean Productivity

What Keeps Us and Other Organisms Alive?

Ecology Chapter 11: Marine

Biology Slide 1 of 41

Ecological Organization Intro to Enviro Expo Part 1

SY 2018/ st Final Term Revision. Student s Name: Grade: 10A/B. Subject: Biology

Ecosystems and the Biosphere: Energy Flow Through the Ecosystem and the Recycling of Matter

Ecology Part 2: How Ecosystems Work

Ecosystems and Food Webs

Biology. Slide 1 of 41. End Show. Copyright Pearson Prentice Hall

STAAR Science Tutorial 55 TEK 8.11D: Human Dependence on Ocean Systems

Ecosystem Ecology for Wildlife Scientists. Don White, Jr., Ph.D.

What is Ecology? Abiotic (non-living) Biotic (living)

Production and Life OCEA 101

Section 1: Energy Flow in Ecosystems

SUSTAINING ECOSYSTEMS

Chapter 5: How Ecosystems Work Section 1, Energy Flow in Ecosystems

Food Chains and Food Webs

Food Chains, Food Webs, and the Transfer of Energy

Production vs Biomass

UNIT 1 SUSTAINING ECOSYSTEMS

OPTION C.2 COMMUNITIES & ECOSYSTEMS

BIOL 300 Foundations of Biology Summer 2017 Telleen Lecture Outline. Ecology and Ecosystems

Unit 2: Ecology. Chapters 2: Principles of Ecology

Overview of Chapter 3

Patterns of Productivity

Chapter 36: Population Growth

Multiple Choice. Name Class Date

What is Ecology? The study of the interactions between organisms and the living (biotic) and nonliving (abiotic) components of their environment.

Intro to Ecology. Chapter 18

autotroph an organism that uses the Sun s energy and raw materials to make its own food; a producer

The Energy of Life Chapter 3

Ecology: Part 2. Biology Mrs. Bradbury

Dead Zones for Dinner

Chapter 4. Ecosystems

Part I: Salish Sea Introduction. Review:

Global Warming leads to Underwater Deserts. SUHAS.E.P I Year.Dept of Mechanical engineering RVCE

HYDROSPHERE EOG REVIEW

LIVING IN THE ENVIRONMENT, 18e G. TYLER MILLER SCOTT E. SPOOLMAN. Ecosystems: What Are They and How Do They Work?

Biol 210 Environmental Biology Exam 1C Spring 2016

Energy Transfer p

Chapter 7 Review. C. energy

What is ECOLOGY? The study of the biotic and abiotic factors in an environment and their interactions.

Freshwater ecosystems

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

What is Ecology? Includes land, air, and water as well as life. Living organisms are NOT distributed uniformly throughout the biosphere.

2.2 Communities and Ecosystems

Biology Ecology Unit Chapter 2 Study Guide

Earth Systems and Interactions

Lesson Overview. Cycles of Matter. Lesson Overview. 3.4 Cycles of Matter

What is Ecology? ECOLOGY is a branch of biology that studies ecosystems.

Ecosystems & Energy Chapter 5

Unit 3: Ecology II Section 1: Environmental Systems and Nutrient Cycling

Cycles of Ma,er. Lesson Overview. Lesson Overview. 3.4 Cycles of Matter

Transcription:

Today: Productivity in the marine world Food webs and trophic levels Chemotrophic communities Dinner Time! Yum Yum Oceans are brimming with life Not a lot of diversity But a great abundance of organisms And very efficient producers (protista or plankton) Sat. image of chlorophyll Production = synthesis of organic molecules from inorganic compounds (autotrophs) Primary Producers = base of food web Primary Producers synthesize organic molecules from inorganic nutrients (phytoplankton) Feed other organisms (zooplankton) Most are photosynthetic - previous map of chlorophyll = map primary production 1

How do they produce Photosynthesis Sunlight + 6CO 2 + 6H 2 O => chlorophyll => glucose (C 6 H 12 O 6 ) + 6O 2 Glucose is used by both autotrophs and heterotrophs to Grow the organism Energy in Respiration Respiration How organisms get energy from glucose (C 6 H 12 O 6 ) + 6O 2 => 6CO 2 + 6H 2 O + Energy (H) What is meant by primary productivity? A. Asexual reproduction. B. The conversion of inorganic molecules into organic molecules. C. Respiration D. Consumption of lower organisms by predators. Productivity in oceans Chlorophyll content = productivity of photosynthetic organisms (mostly phytoplankton) Note: not the same everywhere High on some parts of coasts Higher at high latitudes What causes variations in productivity? Average annual chlorophyll 2

Requirements for productivity: Sunlight: Most primary producers are photosynthetic Live in photic zone Nutrients: Nitrogen & Phosphorous must be available N (as nitrate or NO 3 ) Used in making proteins = building blocks of life P as phosphate (PO 4 ) Required for DNA Use to make cell walls Required in Respiration Stable water column No vertical mixing when nutrients are present Production in Coastal Areas Estuaries have high nutrient levels due to (1) river input and (2) recycling of nutrients due to flow of fresh and salt water. Ekman flow results in coastal upwelling that brings nutrients to surface Equatorial Pacific Pacific Surface water diverges at equator, bringing nutrients to surface Notice areas of convergence (gyres) have low productivity 3

Productivity vs. Latitude: High Latitude Short summer But, long summer days Big Bloom - Why so big? Nutrients brought to surface during winter overturn Stable upper water column during summer Melting sea ice No vertical mixing Perfect for phytoplankton bloom! Mid-latitudes: Nutrients brought to surface during winter overturn Spring bloom - solar radiation increases Grazing lowers productivity in late spring Second bloom Separate species of phytoplankton Lower nutrient level due to previous bloom, so this one is not so productive. Tropics: Small summer bloom Why is productivity so low in the tropics? Nutrients are limited! No vertical mixing during change of seasons Thus, nutrients are not cycled to photic zone. 4

Combining Solar radiation and nutrient availability (midlatitude): Nutrients are high in winter b/c of vertical mixing, and low in summer due to consumption by producers Notice biomass lags behind nutrients - b/c of required solar radiation animation Compare productivity in the oceans Upwelling zones (high latitude and coastal): Greatest Primary Productivity Lowest total Primary Productivity - small area Concentrated in space and time (upwelling & Coastal) Good eatin Yum Yum Open oceans: Lowest Primary Productivity Greatest total Primary Productivity - vast size Diffuse or low concentration - not good eatin Compare marine productivity to terrestrial productivity Upwelling zones and Estuaries approach productivity of the most productive cultivated Land! Their productivity is similar to rain forests! Estuaries and upwelling zones are DENSE with life! 5

Which is not required for primary production? A. Nutrients B. Sunlight C. Stable water column Nutrients and Dead Zones or Harmful Algal Blooms (HAB) Over abundance of Nutrients (P & N) causes HAB Lots of P and N cause phytoplankton to Bloom in excess They die & sink, consumed by bacteria Bacteria consume ALL O 2 during respiration, creating anaerobic conditions at depth (hypoxia) This lack of O 2 Kills aerobic organisms E.g. Neuse, Tar, Roanoke, Chowan Rivers: 1999 Hurricane Floyd Nasty little algae on East Coast Pfiesteria piscicida - dinoflagellate Recently discovered at NC-State after HAB caused massive fish kills in Neuse River, Pamlico Sound, Chesapeake Bay. Can cause serious illness in Humans if breathed. Flagellate stage - eat algae saves chloroplast from algae and uses them for a few weeks swims to find a fish host. Toxic Zoospore causes lesions on fish, consume the oozing goo. Kills fish Amoeboid Stage Gorges on dead fish Cist stage - dormant 6

HAB / Dead Zones (continued) Fertilizers (N & P) from mid-continent flow down the river and out into Gulf of Mexico (see the sediment plume) During summer, the Dead Zone (hypoxia region) increases Annual Dead zone! This also occurs at the deltas of many rivers world wide. HAB in Gulf Mississippi river system drains midcontinent and carries tons of fertilizer to the gulf coast. Causing an annual HAB and dead zone Since 1993, the average extent of midsummer bottom-water hypoxia in the northern Gulf of Mexico has been approximately 16,000 square kilometers Approximately twice the average size measured between 1985 and 1992. The hypoxic zone attained a maximum measured extent in 2002, when it was about 22,000 square kilometers larger than the size of the state of Massachusetts. May 2002 flooding Miss R May 1993 - huge flood (no spike?) Pisco Chile:Algal Bloom and Fish Kill, 2004 Industrial fishing Fish meal (1 ton per 5 tons of anchovy) Shellfish farming Effluent from the fish meal factories serves as nutrients for algae. April 2-4, 2004 anchovy landings were ~10-11 ktons per day (or ~8 ktons of effluent per day) Sediment plumes Effluent caused major phytoplankton bloom and fish kill along the coast. Authorities closed the port for 22 days costing local industry ~27.5 million Pisco 7

Marine food webs begin here: This is basically a map of phytoplankton Phytoplankton Photosynthetic organisms convert inorganic molecules to organic molecules base of the marine food web (supply nutrients to nearly all other organisms!) First link in all marine chains: Zooplankton Zooplankton are herbivore plankton Most numerous and massive population of herbivores on Earth Zooplankton are the primary consumers Convert all plant life to animal tissue Feed all Carnivores (directly or indirectly) Krill Food Web Example: Herring Web = complex interconnected chains Webs = pathways of nutrients & energy Notice: Organisms feed at various levels Organisms occupy various levels during life cycle Disruption of one level, effects all other levels because it disrupts the transfer of nutrients to higher tropic levels! Marine food web - shifting baseline 8

Trophic Pyramids Input nutrients & solar E at base (phytoplankton) Nutrients out at each level Bacteria cycle nutrients back to base! Trophic levels: numbers & mass decrease, size of organism increases Energy transfer between trophic levles: 10% (90% loss to metabolism, life, decay) To produce 10 kg of salmon requires 100 kg fish to feed salmon, 1000 kg zooplankton to feed the fish, 10000 kg phytoplankton to feed the zooplankton Re-visit Antarctic food web Humans hunted baleen whales to near extinction. This disrupted Energy transfer to killer whales What was the result? Over harvesting of lower levels! lots of mass required to replace the energy transfer lost by declining whale numbers Disrupted food web & nutrient cycling? What to eat? Leopard Seal Chemosynthetic communities: Depart from norm (above) At the base of this chain are the chemosynthetic bacteria Use Sulfur-compounds (or methane) to make organic molecules from CO 2 and O 2 Live in water & in crust! (extremophiles) 9

Extremophiles: organisms living in extreme conditions Some bacteria live at >500ºC In hydrothermal vents, hotsprings, in the crust near eruptions Some bacteria live at <12ºC Cold water, Ice, sediment Life under Europa s Ice sheets? In 2005 an entirely new ecological community was discovered beneath the Larsen Ice Shelf off the coast of Antarctica. Mats of chemosynthetic algae feeding on cold seeps supported communities of filter feeders that fed on algae. Higher trophic levels in vent communities Some organisms (shrimp) feed directly on bacteria Others on bacteria bi-products (symbiosis) Tube worms have bacteria in their gut So do clams and mussels Then some open ocean predators feed on these or others - linking food webs Higher trophic levels 10

Recall the Hydrothermal System Video How do bacteria dominate life on Earth? A. By mass, bacteria are the most abundant life form. B. By number, bacteria are the most abundant life form. C. Bacteria have existed on Earth longer than any other organism D. Bacteria can live in extreme environments as well as benign environment, and thus they dominate all ecosystems. E. All of the above Would you suggest this class to a friend for gen ed credit? A. I already have recommended it. B. If asked, I would recommend it. C. If asked, I would not recommend it. D. I have already recommended against it. 11

Compared to your other classes, how interesting was this class to you. A. Very B. Somewhat C. Neutral D. Not very E. Not at all Review Questions What is respiration and photosynthesis - what do each consume and produce What is primary production Compare the productivity of the oceans at various latitudes - what controls productivity correlations with latitude? Why are coastal regions so productive? How and why does productivity vary with the seasons? What are harmful algal blooms and what causes them? Compare and contrast phytoplankton with zooplankton. What is a food web, and what is at the base of most marine food webs? Why are trophic pyramids wider at the base than the top? How is energy lost and transferred at any level in a trophic pyramid Where do nutrients come from? How does disrupting any level of a food web effect the other levels? What type of organism is at the base of hydrothermal food webs? 12