Industrial Trials on Basic Fluxes in SiMn Smelting

Similar documents
THE EFFECT OF ALUMINA IN FERROMANGANESE SLAG

Slags in Production of Manganese Alloys

Parameters Affecting the Production of High Carbon Ferromanganese in Closed Submerged Arc Furnace

EFFECT OF CHROME ORE QUALITY ON FERROCHROME PRODUCTION EFFICIENCY

Carbon Materials for Silicomanganese reduction

Pyrometallurgy of iron is still the most important pyrometallurgical process economically.

EQUILIBRIUM IN PRODUCTION OF IDGH CARBON FERROMANGANESE

MANGANESE FUNDAMENTALS MANGANESE ALLOYS PRODUCTION: IMPACT OF CHEMICAL COMPOSITIONS OF RAW MATERIALS ON THE ENERGY AND MATERIALS BALANCE

The thermodynamic activity of MnO in stainless steel type slags

MANGANESE ALLOYS PRODUCTION AND OPERATION MANGANESE ORE AND ALLOYS PILOTING TOOLS AT ERAMET RESEARCH. ERAMET research, pyrometallurgy department,

Pilot Scale Production of Manganese Ferroalloys Using Heat-Treated Mn-Nodules

Oxidation of Iron, Silicon and Manganese

SECONDARY STEELMAKING

Ferrochromium in Converter Practice

The ROMA project (Resource Optimization and Recovery in the Material Industry) a typical cooperation project in Norway

PYROMETALLURGY OF IRON

Application practice of BOF Slag tailings in steelmaking process

COMPUTER SIMULATION OF THE EQUILIBRIUM RELATIONS ASSOCIATED WITH THE PRODUCTION OF MANGANESE FERROALLOYS

EAF REFRACTORY PERFORMANCE AT PACIFIC STEEL NEW ZEALAND

Manufacture of Pig Iron Concentration Calcination Smelting Blast furnace Chemistry of reactions in Blast furnace. 15CY101: Chemistry SRM University 2

RECOVERY OF COPPER, NICKEL AND COBALT FROM MANGANESE NODULES BY ARC FURNACE SMELTING

Effect of South African Reductants on Ferrochrome Production

Chromium research at SINTEF and NTNU Eli Ringdalen, SINTEF

Heat Balance in Pyrometallurgical Processes

Thermodynamic determination of low melting area in CaO-Al 2 O 3 -SiO 2 -MgO-MnO system inclusion and its control in spring steel

FUNDAMENTALS, THEORY METALLURGICAL ACADEMY OF UKRAINE.

PYROMETALLURGICAL RECOVERY OF CHROMIUM FROM SLAGS

The determination of rational technological parameters of ferrosilicon manganese melting based on the process electrical characteristics

Lecture 17 Alternative Charge Materials in EAF

THE PERFORMANCE OF A RESISTANCE-BASED FURNACE CONTROL SYSTEM ON A SUBl\fERGED-ARC FURNACE

Part III: Slag Practices and Oxygen/Carbon Injection when Melting Direct Reduced Iron

DIRECT SMELTING OF STAINLESS STEEL PLANT DUST

STUDY ON SLAG RESISTANCE OF REFRACTORIES IN SUBMERGED ARC FURNACES MELTING FERRONICKEL

Optimization of Process Parameter for Smelting and Reduction of Ferrochrome

PRETREATMENT UNIT IN FERROMANGANESE PRODUCTION

Thermodynamic modeling of the Mn and Cr reduction from slag

Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide

NIN 890: Dissertation 890

THEORY AND APPLICATION OF MAGNESIA RAMMING MATERIAL IN FERROALLOY REFINING FURNACES

Energy consumption during HCFeCr-production at Ferbasa

BEHAVIOR OF AGGLOMERATES IN FERROMANGANESE PRODUCTION

Can Fluorspar be replaced in steelmaking? Eugene Pretorius Baker Refractories

Effect of basicity and reductant amount in the nickel pig iron (NPI) production from Indonesian limonite ore in submerged electric arc furnace (SAF)

Optimization of Conditions to Produce Manganese and Iron Carbides from Denizli-Tavas Manganese Ore by Solid State Reduction

Metallurgy and lining life in basic oxygen converters

CHAPTER-6: SUMMARY AND CONCLUSIONS

THE EFFECT OF QUALITY OF FERROUS BURDEN MATERIALS ON THE QUALITY OF PIG IRON

Ferronickel Smelting. The Twelfth International Ferroalloys Congress Sustainable Future. June 6 9, 2010 Helsinki, Finland

Briquette Smelting in Electric Arc Furnace to Recycle Wastes from Stainless Steel Production

Manganese concentrate usage in steelmaking

Development of Slag Flowability Prediction Formula for Blast Furnace Operation and Its Application

Acta Metallurgica Slovaca - Conference, Vol. 4, 2014, p Acta Metall. Slovaca Conf. 138

Influence of TiC on the Viscosity of CaO MgO Al 2 O 3 SiO 2 TiC Suspension System

Optimized, zero waste pyrometallurgical processing of polymetallic nodules from the German CCZ license

MANGANESE FUNDAMENTALS METHOD OF COMPLEX ESTIMATION OF MANGANESE RAW MATERIALS

Chrome Ores on Ferrochrome Smelting

LOW-SILICON FERROSILICON PRODUCTION FROM IRON ORE MATERIALS IN AN OXYGEN REACTOR

Sulphur Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka. Today s Topics

The Two-stage Production of High-carbon Ferromanganese in a Blast Furnace: A Method for the Treatment of a Lean Manganese Ore

Decomposition of Li 2 CO 3 in existence of SiO 2 in mould flux of steel casting

MELTING PHENOMENA IN FERROMANGANESE PRODUCTION

Computer Modeling of Refractory/Slag/Metal Interactions

CHROMIUM ALLOYS PRODUCTION AND OPERATION FERRO CHROME PRODUCTION IN ALBANIA

Chromium distribution between slag and non-carbon saturated metal phases under changing partial pressure of carbon monoxide

THE BEHAVIOUR OF COKE IN SUBMERGED ARC FURNACE SMELTING OF FERROMANGANESE

RECYCLING PRACTICES OF SPENT MgO-C REFRACTORIES

Secondary Steelmaking 1 Synthetic slag practice, injection ladle metallurgy, deoxidation

The development of fine manganese concentrate lumping technology at PJSC Nikopol Ferroalloy Plant

Use of Direct Reduced Iron in the Electric Furnace P CaO + MgO... o. 20. Mn Cr... <o.o05

Research Article Conversion of Mill Scale Waste into Valuable Products via Carbothermic Reduction

Importance and Effect of Foaming Slag on Energy Efficiency

AN OVERVIEW OF TREATMENT OF STEEL- MAKING SLAG FOR RECOVERY OF LIME AND PHOSPHORUS VALUES

Innovations in refining process technique Combined blowing vacuum converter with CO2

MODELLING CR CONTAINING SLAGS FOR PGM SMELTING

FUNDAMENTALS OF EAF AND LADLE SLAGS AND LADLE REFINING PRINCIPLES. Eugene Pretorius Baker Refractories

PRODUCTION OF MANGANESE ALLOYS WITH ORE FROM CARAJAS. BRUNO V. GORINI*, METAL. AND MINING ENGINEER LUCIANO T. CASTRO*, ~ETALLUr.GICAL ENGnlEEF.

CFD MODELLING OF THE STEEL BELT SINTERING PROCESS

The economics of electric arc furnace (EAF) technology

OXYFINES TM TECHNOLOGY FOR THE RE-MELTING OF FINES, DUST AND SLUDGE

Dr. Joseph J Poveromo, Raw Materials & Ironmaking Global Consulting DR Pellet Quality & MENA Applications

Phosphorous Problem. AkMB Rashid Professor, Department of MME BUET, Dhaka

Development of a CaO-CaF 2 -slag system for high rare earth contents

EXTRACTION OF SILICOMANGANESE FROM MARINE AND LOW GRADE MINERAL RESOURCES

Reductive Smelting for the Recovery of Nickel in a DC Arc Furnace

Calcium Silicide - Methods of production and their technological consideration

Thermodynamic Considerations in the. Production of Bulk Ferro Alloys (Fe-Mn, Fe-Cr and Fe-Si)

ENERGY MAPPING OF INDUSTRIAL FERROALLOY PLANTS

SOLUBILITY OF MgO IN CaO-BASED SLAGS

Thermodynamics and Mechanism of Silicon Reduction by Carbon in a Crucible Reaction

GENERAL PRINCIPLES AND PROCE ISOLATION ISOL ELEMENTS

THE ALUMINOTHERMIC PRODUCTION OF EXTRA LOW CARBON FERROCHROMIUM FROM LOW GRADE CHROMITE ORE

OPTIMUM PROCESS CONDITIONS FOR THE PRODUCTION OF PIG IRON BY COREX PROCESS. Abstract

Complexity (Reactions & Phase Changes) in Blast

A Novel Green Technique to Recovery Valued Nonferrous-metal Compounds from Molten Slags

REDUCTION OF CHROMITE FINES IN SOLID STATE USING A MIXTURE OF GASES CONTAINING NATURAL GAS, HYDROGEN AND NITROGEN

EAF burdening How can EAF burdening best utilise DRI? Rutger Gyllenram Kobolde & Partners

RECOVERY OF IRON FROM COPPER FLASH SMELTING SLAGS

Mechanisms of Pig-iron Making from Magnetite Ore Pellets Containing Coal at Low Temperature

PROCESSING OF MANGANESE FURNACE DUST: DRYING AND ZINC OXIDE REDUCTION

Environment General. The Twelfth International Ferroalloys Congress Sustainable Future. June 6 9, 2010 Helsinki, Finland

Transcription:

The Proceedings of INFACON 8 Industrial Trials on Basic Fluxes in SiMn Smelting Shu Li and Dai Wei Jilin Ferroalloys Corp., Jilin 1322, China Abstract SiMn is produced in a mechanism of smelting reduction. The properties of the slag, such as melting temperature, conductivity, fluid ability, surface tension and the ability of superheating, affects on the process greatly. Generally speaking, the slag properties depend on the addition of fluxes. The production practice indicates, however, that the slag behavior is also related to the mineralogy of the Mn ores and operation parameters. One can not make furnace operation well merely by adjusting the basicity or the constituents of the slag. High MgO slag is acceptable for small furnaces, as a certain amount of MgO in slag improves Si reduction. The measurement of the running slag indicates that hearth temperature of larger furnaces is higher than that in smaller ones. The slag may often get superheated in large furnaces, which promotes the reduction process. Therefore, the slag behavior in furnaces is much more important than its chemical constitutions. In order to improve furnace operations, it is essential to balance the constituents of the slag, melting and reduction behaviors of the ores according to the furnace characteristics. Introduction Basic oxides play an important role in improving slag behaviors, such as conductivity, fluidity, and surface tension in metallurgical process. MC FeMn slag, dolomite, limestone, magnesite and other industrial waste slag with high basic oxides content are often taken as fluxes in SiMn smelting. The term of basicity is defined to evaluate slag function and properties. The definitions of the slag basicity, depending on the practices and the amounts of the constituents, are as the following: Binary basicity B 2 == (%Ca)/(%Si 2 ) ( 1) Ternary basicity B 3 == (%Ca + % Mg)/(%Si 2 ) (2) Since the molar weight of CaO is 1.4 times of MgO a unit weight of MgO almost plays a role as 1.4 times of that as CaO. Therefore, the ternary basicity is sometimes defined as the following: BM ==(%Cao+ 1.4%Mg)/( %Si 2 ) (3) Many people believe that.5-.7 of the binary basicity or.6-.8 of the ternary is preferable in SiMn smelting. Due to. Si 2 reduction in smelting, B 2 or B 3 of the tapped slag differs from the initial slag. It is common that Alz 3 input in the charge varies substantially in the operation. High Alz 3 content makes slag viscous and deteriorate furnace operation. In the case of high Al 2 3 input, the operator has to adjust slag constituent by charging basic fluxes. Regarding no Al 2 3 loss occurs during smelting, it is reasonable to define the term of slag basicity as1 1 2 1: It is certain that BA 1 keeps constant during smelting. Ful 1 l recommended that the charge proportioning be made based on the input Al 2 3 in the. charge. He named it as "low slag volume operation", in which the addition of fluxes is controlled at the value of B' ==.8(%Ca + 1.4%Mg)/(% Al 2 3 ) == 1.5 As the constituent of the raw materials changes time by time, it is found that the concept of basicity could not explain all what happens in the process sometimes. It is obviously necessary to investigate the relations between furnace characteristics and slag behaviors, to study the effects of the slag constituents on furnace operation. Industrial Trials It has been found that suitable chemistry of SiMn slag (4) -232-

The Proceedings of INFACON 8 varies greatly with furnace rating, parameters and raw materials. A complete contrary operation was resulted in as the same charge proportion was applied in two furnaces with different ratings. Table 1 shows that the operating parameters of the furnaces in JFC vary with the rating and furnace geometry data. Tab.1 Typical Parameters of SiMn Furnaces in JFC Rating Electrode P. C.D. Operating Diameter Resistance MW mm mm m.flm 8. 95 29 1.69 1.5 1 28 1.29 14.2 115 3.94 14.5 13 34.77 The fluxes used in the tests were limestone, dolomite, magnesite, MC slag, MgO rich waste slags. The trials were divided into 3 groups, CaO-based, MgO-based and composite fluxes. Tab. 2 shows some production results as MC FeMn slag was charged in the trials of CaO-based fluxes during smelting SiMn with 18% silicon. It is reasonable to use MC FeMn slag not only because of its high CaO-content but also because of its low phosphor content. In the case of deficiency of MC FeMn slag, dolomite, magnisite and other MgO containing materials were used in the production. The results of monthly trials of MgObased fluxes are shown in Table 3. In the trials at a 1.5 MW furnace Mn content in the input were controlled at 42% and 32% respectively. In order to investigate the best flux composite for SiMn Tab. 2 Trails Results in SiMn Smelting with Flux of MC FeMn Slag Rating Mn Si2 Cao MgO Al23 Mn yield Si yield Power Consumption 82 8M MW % in Slag % % kwh/t 8.5 12.3 42. 24.8 4.3 9.8 8 37.9 4631.69.73 1.5 9.4 43. 27.9 4.7 1.9 8 45.I 473.76.8 14. 11.8 43.6 2.4 4.8 12.4 82.3 53.3 3836.58.62 14.5 7. 43. 26.7 7.5 14.I 82 55 385.8.87 Note: the results were monthly average. Tab. 3 Trial Results on MgO fluxes in SiMn Production No Rating Mn Si2 Cao MgO Al23 Mn yield Si yield Power Consumption 82 8M MW % in Slag % % kwh/t I 3.5 7.1 44.2 3.6 12.9 17.4 82 45 37.37.49 2 8. 13.I 43. 5.8 13.9 16.6 82 51.7 3888.46.58 3 1.5 12.8 42. 6.1 17.6 16.6 82.2 48.8 4122.56.73 4 1.5 12.2 41.2 9.5 13.6 17.3 8. 5. 4566.56.69 Note: Trails of No. 3 and 4 were at the same furnace with 4% and 32% of Mn in the input ore. Tab. 4 Trail Results on fluxes at a 1.5 MW furnace Fluxes Mn Si2 Cao MgO Al23 Mn yield Si yield Power Consumption 82 8M % in Slag % % kwh/t D+LS 8.4 42.3 19.9 9.9 12.6 84 49.2 421.7.8 D 1.7 42. 17. 7. 13.4 8.2 42.2 4413.57.63 M 9.7 43.8 12.6 13.9 11.7 8.7 48.8 4562.61.73 LS 9.9 42.5 21.9 5.1 12.8 7. 37.2 5567.64.68 MnS 9.4 43. 27.9 4.7 1.9 8. 45.1 477.76.8 Note: D- Dolomite, LS- Limestone, M- Magnesite, Mn Slag- MC FeMn Slag. -233-

production, several fluxes were chosen in the trails. Table 4 gives the monthly results of trials with composite fluxes. The melting points of. industrial slag with high MgO content were measured with high temperature microscope. The result as well as sectional curves of diagram of Ca-Mg-Si 2 -Al 2 3 systeml3 1 with certain CaO/MgO ratio are shown in Fig. l. a.u c:... :... u :s "t).15.1 FeO.27 / / /o Mn7:/I> -234 - It is essential to high light the characteristics of FeMn smelting process in submerged arc furnaces. ( 1) Smelting reduction takes place in the process and manganese is extracted from manganese containing slag. The final slag chemistry is completely different from that of the initial slag. (2) The reduction rate, the slag behavior and slag superheating are greatly affected by the hearth temperature. The hearth temperature, however, is controlled by the distribution of electric current inside the hearth and by furnace parameters. (3) The power distribution in the hearth is related to the slag behavior and coke bed volume. Discussion In order to invetigate the effects of MnO content on slag conductivity, four electrodes cell method was applied in a previous measurement at JFC. The result is given in Fig. 2. CaO/MgO Fig. 1 Melting Temperature of Ca-Mg-Si 2 -Al 2 3 system via. CaO/Mgo Ratio.5 1. 2. 3. 12 Samples of Trial 1 15 :s fj) 14 E-< 13 j. Samples of Trial 2 16 MgO, CaO remained The Proceedings of INFACON 8 14 16 18 2 Temperature, K Fig. 3 Free Energy of Silicate Formation Silicate Stability Figure 3 shows the free energy of some silicate formationl 4 1, which described the chemical stability of these silicates. Compared with Cao, the bond force of Si 2 with MgO is much weaker. Consequently, MgO presence in the slag is favorab!e to silicon reductionl 5 1. It is found from Tab. 3 that Si yield is increased as MgO fluxes were used in the trials. In practice it is easier to get higher silicon content as the final slag contains higher MgO. 13 14 15 Temperature, c 16 Fig. 2 Effect ofmno Content on Conductivity of the Melt i:: u.5 b... / /I> Mn3.87%....2...-----------------, Master Slag: Si 2 Cao % 42.5 21.87 MgO 4.76

Experience shows that increasing temperature promote the reduction of silicon oxides. It has the same function as to vary melt chemistry in reducing the free energy of the reaction. Tapped slag temperature at the furnaces with different rating is given in Tab. 5. The Proceedings of JNFACON 8 furnace, extra MgO addition or increase slag basicity seems needless. Some reports even recommended slag basicity of.39 in a 48 MVA furnace as appropriate one 151. It was found that the tapping temperature at bigger furnaces is usually higher than that at smaller ones. Practically, the power density and the heat efficiency in bigger furnace are higher. Therefore, as the slag chemistry is similar the tapped slag from the bigger furnace has been much superheated. This is confirmed by silicon yields indicated in Tab. 2. Obviously, the higher temperature of the hearth is more favorable to silicon formation both in thermodynamics and in kinetics of reduction process. Slag superheating usually depends upon melting behavior of raw materials, power density and the operation. The higher melting temperature of the slag is, the hotter furnace hearth will be. Increase of 1 % MgO ii). slag brings 1 C increase of tapped slagpi. Fig. 1 shows that melting temperature of the slag varies with CaO/MgO. The replacement of MgO with CaO may increase the melting temperature of the slag as high as 5 - l C. One must keep in mind, however, that SiMn smelting requires a suitable temperature range in the hearth. Overheating the slag will lead the evaporation ol manganese and reduce Mn yield. The relation of Mn vapor pressure an!'.! temperature is as following: lg P (mm Hg)= -12548/T + 1.483 Mn vapor pressure increases twice as temperature growth in the scale of 1 C at 14-16 C. The descending burden may absorb certain amount of Mn vapor and partly recover the Mn loss. If electrodes exceed normal operating position, however, Mn yield will drop dramatically. It is unnecessary to make the slag much superheated. As appropriately hearth temperature is easily attained in big Rating,MVA Temperature C Melting Range, C Superheating, C 25 16.5 12.5-16 -155-15 116-125 35 3 25 9. 145 2 Table 5 Temperature of Tapped Slag in SiMn Production The molecular weight of MgO is less thari. CaO. The application of MgO fluxes reduces slag volume in the production. As a result, the electricity consumption and metal loss in the slag should be reduced. Both CaO and MgO increase MnO activities in silicate melt. CaO function is greater than MgOl 6 1. Hearth Temperature and Furnace Rating - 235 -- Basic oxides improve slag conductivity and reduce its viscosity. Fig. 4 shows the viscosity of melts with the same content of Si 2 and Al 2 3 but various CaO and MgO contentspi. It is evident that the replacement of QaO with MgO decreases slag vi.scosity. The comparison of the conductivity of Si 2 - MgO - Ali 3 system and Si 2 - CaO - Ali 3 system indicates that MgO improves melt conductivity better than CaO. It seems that the basicity extent does not affect on furnace operation much as the.hearth temperature and slag fluidity are kept in appropriate range. MnO in slag affcts slag conductivity considerably. Fig. 2 shows the changes of slag conductivity with MnO content in slag. As the other oxide ratios keep constant, Fig. 4 Effect of CaO and MgO Contents on Viscosity of Ca-Mg-Si 2 -Al23 Melt at 15 C Cao 1 2 wt.% 3 4 MgO 2 Si2 5%, AI23 1% <I) 8 s rjl p...... 6 ;; > 4 () rjl Si2 45% Al23 JS% 1 Cao, MgO Remained Influence of Basic Oxide on Slag Properties The conductivity of the burden varies as the slag chemistry changes. The addition of basic oxides in the slag increases the electric current passing through the burden. The results of trials 2 and 3 indicate that the hearth temperature in a 7.5MW furnace increased as CaO-based fluxes were replaced by MgO-based fluxes and silicon yield Wllli increased subsequently. The addition of MgO fluxes in the charge of a 14.5 MW furnace seemed no positive reaction at all. On the contrary, Mn yield was reduced in some extent.

the higher MnO content in slag is, the bigger the conductivity of the slag will be. The high grade of MnO in a batch of the charge will result in an initial slag with high MnO content and high conductivity. In addition more coke is required to proceed the reduction of rich Mn slag. The conductivity of the burden in this case would be much higher than that in normal production. Unsuitable flux addition will lead to unstable electrode immersion. Initial Slag in the Process In submerged arc furnace, initial slag forms at the upper part of the hearth and the reduction of silicon and manganese completes in the molten state of the oxides. -236- The basicity is an indication of slag properties in some extent. The behavior of a slag during its descending in the hearth, however, may be more important. The optimum behavior of a slag may be achieved by carefully adjusting its constituents, coke volume and operation parameters. Therefore, adjusting the behavior of the initial slag according to the characteristics of furnaces and raw materials is the most important in SiMn smelting. Fig. 5 shows the relationship between silicon yield and the calculated basicity of initial slag. Though the chemistry of the initial slag may be carefully composed, the final slag varies much with the silicon yield. In normal production, the basicity of initial slag is so low that silicon is saturate in the slag. The presence of solid Si 2 in slag keeps high Si 2 activity. It is certainly favorable to silicon reduction. Fig. 5 Relationship of Silicon yield and B 3 oflnitial Slag 3 4 5 6 Silicon Yield, %!"">.4 Cl5 ]... 2 ::::.3 "() ;;; "'.2 Nlultiphasa Slag ---- ------ -.4.5 The Proceedings of INFACON 8 Reference I.Fu W.: On Proportioning of Raw Materials in SiMn Smelting with Low Volume Slag Operation. Ferroalloys, 1(1988), 13-15. 2.Wang, J.; Zhu, Z.: A Study on the Ratio of (CaO + MgO)/ Al 2 3 in SiMn Slag. Ferroalloys, 2(199) 15-19. 3.Zhang, J.: Phase Diagrams and Slag Properties. Beijing: Metallurgy Press, 199, China. 4. Barin I. ; Knack. : Thermochemical Properties of Inorganic Substanc;e. Berlin: Springer-Verlag, 1973. 5.Bezemer, K.: The SiMn Production Process at Translalloys. INFACON 7 Proceedings,1995, Trondheim, 573-58. 6.Cengizler H.; Eric, R. H.: Thermodynamic Activity of. Manganese Oxide in Mn Slag and the distribution of Manganese between Metal and slag phase. INF ACON 6 Proceedings, 1992, Cape Town, 167-175. 7.Zhang, H.: The Economic Practice of HC FeMn Production in Blast Furnace. Ferroalloys, 1982(2), 1-6. ( 4) It is suggested that the melting temperature of the initial slag be controlled at a reasonable level. Over superheating slag will make Mn evaporation and increase Mn loss in vapor form. Conclusions ( 1) SiMn formation proceeds in smelting reduction. The variation of physical and chemical properties of slag directly affects silicon and manganese reduction. (2) Substitution of Cab with MgO in the fluxes may increase Si 2 activity and the fluidity of the slag. It is favorable to silicon reduction. The practice in some furnaces of small and middle sizes shows both silicon yield and Si content has been improved by adjusting slag constituents. (3) Solid silica presented in the initial slag with low bisicity improves Si reduction in smelting.