Chapter 15: Characteristics, Applications & Processing of Polymers

Similar documents
Chapter 15: Characteristics, Applications & Processing of Polymers (1)

Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS

Chapter 15: Characteristics, Applications & Processing of Polymers

Chapter 15: Characteristics, Applications & Processing of Polymers

CHAPTER 14: POLYMER STRUCTURES

Chapter 15 Part 2. Mechanical Behavior of Polymers. Deformation Mechanisms. Mechanical Behavior of Thermoplastics. Properties of Polymers

Chapter 14 Polymers CHAPTER 7 POLYMERIC MATERIALS. Ancient Polymer History. Rubber balls used by Incas Noah used pitch (a natural polymer) for the ark

Crystallinity in Polymers. Polymers. Polymer Crystallinity. Outline. Crystallinity in Polymers. Introduction. % crystallinity 100

Dr. M. Medraj Mech. Eng. Dept. - Concordia University Mech 421/6511 lecture 14/2

Chapter 10 Polymer Characteristics. Dr. Feras Fraige

Stress-Strain Behavior

BFF1113 Engineering Materials DR. NOOR MAZNI ISMAIL FACULTY OF MANUFACTURING ENGINEERING

Chapter 8: Deformation & Strengthening Mechanisms. School of Mechanical Engineering Choi, Hae-Jin ISSUES TO ADDRESS

3rd Chapter Characteristics, Applications & Processing. Billiard balls made of phenol formaldehyde

MatSE 259 Exam 4 Review Session

C C C C C C C C C C C C C C C C C C CH 3 CH 3 H. Polyethylene (PE) Polypropylene (PP) Polyvinyl chloride (PVC) repeat unit. repeat unit.

Photograph of several billiard balls that are made of phenol-formaldehyde (Bakelite). The Materials

EGN 3365 Review on Metals, Ceramics, & Polymers, and Composites by Zhe Cheng

Introduction to polymers

PROCESSING OF POLYMERS. Chapter 7

ISSUES TO ADDRESS...

Chapter 15-2: Processing of Polymers

Why are dislocations observed primarily in metals CHAPTER 8: DEFORMATION AND STRENGTHENING MECHANISMS

Introduction to Dynamic Mechanical Testing for Rubbers and Elastomers. Mackenzie Geiger Applications Scientist September 6, 2017

PLMSE 406 Practice Test A polymer chain in the melt or in the rubbery state has an average end-to-end distance that is proportional to

ISSUES TO ADDRESS...

Polymers. Historical Classification

Chapter 7: Mechanical Properties

Chapter 8 Deformation and Strengthening Mechanisms. Question: Which of the following is the slip system for the simple cubic crystal structure?

Introduction to Engineering Materials ENGR2000 Chapter 19: Thermal Properties. Dr. Coates

Materials Science and Engineering: An Introduction

MECHANICAL PROPERTIES OF MATERIALS

Today s Topics. Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

CHAPTER 8 DEFORMATION AND STRENGTHENING MECHANISMS PROBLEM SOLUTIONS

Chapter 7. Mechanical properties 7.1. Introduction 7.2. Stress-strain concepts and behaviour 7.3. Mechanical behaviour of metals 7.4.

CHAPTER 7: MECHANICAL PROPERTIES

How do we find ultimate properties?

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties

Chapter 6: Mechanical Properties

The Mechanical Properties of Polymers

بسم الله الرحمن الرحیم. Materials Science. Chapter 7 Mechanical Properties

The Glass Transition in Polymers

AERO 214. Introduction to Aerospace Mechanics of Materials. Lecture 2

L Manufacturing of Polymer Composites FS 17 Exercise 2. Exercise 2: Solution

2. Definition of Environmental Stress Cracking (ESC)

Chapter 6: Mechanical Properties

Plastic stress-strain behaviour of metals Energy of mechanical ldeformation Hardness testing Design/safety factors

Issues to address. Why Mechanical Test?? Mechanical Properties. Why mechanical properties?

CHAPTER 3 OUTLINE PROPERTIES OF MATERIALS PART 1

MATERIALS: Clarifications and More on Stress Strain Curves

When non-branched linear polymers such as polyethylene (PE) crystallizes from the melt,

Chapter 6: Mechanical Properties

Captains Tryouts Materials Science. Written by Araneesh Pratap (Chattahoochee High School GA)

MECHANICAL PROPERTIES. (for metals)

Multiple choices (3 points each): 1. Shown on the right is A. an ethylene mer B. an ethylene monomer C. a vinyl monomer D.

CE205 MATERIALS SCIENCE PART_6 MECHANICAL PROPERTIES

Chapter 8: Mechanical Properties of Metals. Elastic Deformation

Polypropylene or polypropene (PP) is a thermoplastic polymer, made from the monomer propylene (propene):

Materials of Engineering ENGR 151 CHARACTERISTICS, APPLICATIONS AND PROCESSING OF POLYMERS

a. 50% fine pearlite, 12.5% bainite, 37.5% martensite. 590 C for 5 seconds, 350 C for 50 seconds, cool to room temperature.

Contents. Definition Structure Manufacturing Proses Applications Properties Recycling

AS TOPIC-3B Solid Materials B1-Investigating Materials B2-Engineering Materials

ENGINEERING MATERIAL 100

Material HDT Continuous Use Temp. Radal (Polyphenylsulfone) 400 F 300 F

DSC - Differential Scanning Calorimetry. Investigation of the Thermal Properties of Polymers

Problem 1 (10 points): Mark True (T) or False (F) for the following statements.

Temperature Stability of RF Components R. Akre 4/21/2005

TI Typical HDPE raw material and pipe test methods EDITION 0607 PAGE 1/10

Experiment 7: Characterization of uncrosslinked natural rubber from rubber tree latex and of crosslinked natural rubber.

Review of Test Methods for Determination of Low-Temperature Properties of Elastomers

Lecture Outline. Mechanical Properties of Ceramics. Mechanical properties of ceramics. Mechanical properties of ceramics

Polymers - Macromolecules. Proteins polyamides, enzymes, muscles, tissue, Hair, wool, silk. Nucleic Acids - DNA, RNA

Structure, Properties and Processing of Plastics and Reinforced Plastics. (Chap10 in Kalpakjian and Schmid)

Creep behaviour of long fiber PP based composites for the automotive industry

DRAWN FIBER: POLYMERS, PROCESS, AND PROPERTIES PRIMER

Chapter 6: Mechanical Properties: Part One

Metals are generally ductile because the structure consists of close-packed layers of

STRENGTH OF POLYMERS

CHAPTER 6: MECHANICAL PROPERTIES ISSUES TO ADDRESS...

Manufacturing of Composites Prof. J. Ramkumar Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Lecture - 02 Matrices

Chapter 19: Thermal Properties

Concepts of stress and strain

Turn off all electronic devices

Tensile Testing BACKGROUND INFORMATION. Harper, A., and Nickels, K Queensland University of Technology.

Overview of Polymers

Solidification Process(2) - Polymer Processing (Chapter 8, 12)

Performance of Plastic in Automotive Interiors Rajkumar Gadvi 1 Prof S.V.Chaitanya 2

RESEARCH ARTICLE CREEP AND RECOVERY OF BITUMEN-ACACIA SAP COMPOSITES

Creep failure Strain-time curve Effect of temperature and applied stress Factors reducing creep rate High-temperature alloys

MECHANICS OF MATERIALS. Mechanical Properties of Materials

5.1 Essentials of Polymer Composites

CE 221: MECHANICS OF SOLIDS I CHAPTER 3: MECHANICAL PROPERTIES OF MATERIALS

Dr. R. Scott Archibald Dr. Raimondo Baldassarri Dr. Andrea Donghi 8 May 2017

Lecture 5. Chapter 7. Range of Mechanical Properties for Polymers. The University of New Mexico. The University of New Mexico TABLE 7.

Introduction: Standard Plastic Terminology Plastic Program Analysis and Development p. 1 Selecting the Design Team for Success p. 3 Using Checklists

Chapter 7: Mechanical Properties 1- Load 2- Deformation 3- Stress 4- Strain 5- Elastic behavior

Polymer MS/PhD Qualifying Exam

Chapter 12: Structures & Properties of Ceramics

Analysis and design of composite structures

Transcription:

Chapter 15: Characteristics, Applications & Processing of Polymers ISSUES TO ADDRESS... What are the tensile properties of polymers and how are they affected by basic microstructural features? Hardening, anisotropy, and annealing in polymers. How does the elevated temperature mechanical response of polymers compare to ceramics and metals? What are the primary polymer processing methods? Chapter 15-1 Mechanical Properties of Polymers Stress-Strain Behavior brittle polymer plastic elastomer elastic moduli less than for metals Adapted from Fig. 15.1, Callister & Rethwisch 8e. Chapter 15-2

Mechanisms of Deformation Brittle Crosslinked and Network Polymers Initial Near Failure (MPa) brittle failure Initial Near Failure plastic failure aligned, crosslinked polymer Stress-strain curves adapted from Fig. 15.1, Callister & Rethwisch 8e. network polymer Chapter 15-3 Mechanisms of Deformation Semicrystalline (Plastic) Polymers Stress-strain curves adapted from Fig. 15.1, Callister & Rethwisch 8e. Inset figures along plastic response curve adapted from Figs. 15.12 & 15.13, Callister & Rethwisch 8e. (15.12 & 15.13 are from J.M. Schultz, Polymer Materials Science, Prentice- Hall, Inc., 1974, pp. 500-501.) (MPa) brittle failure onset of necking unload/reload plastic failure fibrillar structure near failure undeformed structure amorphous regions elongate crystalline regions align crystalline block segments separate Chapter 15-4

Mechanisms of Deformation Semicrystalline (Plastic) Polymers Elastic Deformation two adjacent chain-folded lamemllae and the interlamellar amorphous material Stage 1 : chain molecules in amorphous regions elongating in the direction of the applied tensile stress Stage 2 : amorphous chains continue to align and become elongated; bending and stretching of the strong chain covalent bonds within the lamellar crystallites. slight, reversible increase in the lamellar crystallite thickness ( t) Chapter 15-5 Mechanisms of Deformation Semicrystalline (Plastic) Polymers Plastic Deformation Stage 3 : adjacent chains in the lamellae slide past one another tilting of the lamellae so that the chain folds become more aligned Stage 4 : crystalline block segments separate from the lamella, with the segments attached to one another by tie chains. Stage 5 : the blocks and tie chains become oriented in the direction of the tensile ais highly oriented structure by drawing. Chapter 15-6

Mechanical Properties of Polymers Stress-Strain Behavior Tensile stress-strain curve for a semicrystalline polymer Chapter 15-7 Predeformation by Drawing Drawing (e: monofilament fishline) -- stretches the polymer prior to use -- aligns chains in the stretching direction Results of drawing: -- increases the elastic modulus (E) in the stretching direction -- increases the tensile strength (TS) in the stretching direction -- decreases ductility (%EL) Annealing after drawing... -- decreases chain alignment -- reverses effects of drawing (reduces E and TS, enhances %EL) Adapted from Fig. 15.13, Callister & Rethwisch 8e. (Fig. 15.13 is from J.M. Schultz, Polymer Materials Science, Prentice-Hall, Inc., 1974, pp. 500-501.) Chapter 15-8

Degree of Crystallinity Influence of degree of crystallinity and molecular weight on the physical characteristics of polyethylene Increasing the crystallinity of a polymer enhances its strength; however, the material tends to become more brittle Chapter 15-9 Heat-treating of semicrystalline polymers - Heat-treating(annealing) can lead to an increase in the percent crystallinity, and crystallite size and perfection, as well as modifications of the spherulite structure - Heat treatment of undrawn materials; increasing temp. leads to 1) an increase in tensile modulus 2) an increase in yield strength 3) a reduction in ductility - Heat treatment of drawn polymers (e. fibers), Modulus decreases with increased annealing temp. because of a loss of chain orientation and strain-induced crystallinty Chapter 15-10

Mechanisms of Deformation Elastomers (MPa) initial: amorphous chains are kinked, cross-linked. brittle failure plastic failure elastomer deformation is reversible (elastic)! final: chains are straighter, still cross-linked Stress-strain curves adapted from Fig. 15.1, Callister & Rethwisch 8e. Inset figures along elastomer curve (green) adapted from Fig. 15.15, Callister & Rethwisch 8e. (Fig. 15.15 is from Z.D. Jastrzebski, The Nature and Properties of Engineering Materials, 3rd ed., John Wiley and Sons, 1987.) - Moduli of elasticity are quite small and vary with strain; non-linear S-S - Elastic deformation, upon application of a tensile load, is the partial uncoiling, untwisting, and straightening Chapter 15-11 Mechanisms of Deformation Elastomers the crosslinks act as anchor points between the chains and prevent chain slippage. Entropy is the part of the driving force for elastic deformation. Requirement for elastomers - Must not easily crystallize; amorphous, having molecular chains that are naturally coiled and kinked in the unstressed state. - Chain bond rotations must be relatively free for the coiled chains to readily respond to an applied force - Restricting the motions of chains past one another by crosslinking delay the onset of plastic deformation Chapter 15-12

Mechanisms of Deformation Elastomers Vulcanization - Crosslinking process in elastomers - Achieved by a nonreversible chemical reaction at an elevated temp. - Sulfur compounds are added to the heated elastomer Chapter 15-13 Mechanisms of Deformation Elastomers Vulcanization - Unvulcanized rubber contains very few crosslinks: soft, tacky and has poor resistance to abrasion - Modulus of elasticity, tensile strength, and resistance to degradation by oidation are all enhanced by vulcanization - To produce a rubber that is capable of large etensions without rupture of the primary chain bonds, there must be relatively few crosslinks, and these must be widely seprated. - Increasing the sulfur content further hardens the rubber and reduces the etensibility. Chapter 15-14

Crystallization, Melting, and Glasstransition in polymers - Crystallization : the process by which, upon cooling, an ordered (i.e. crystalline) solid phase is produced from a liquid melt having a highly random molecular structure. - Melting : the reverse process that occurs when a polymer is heated. - Glass-transition : when cooled from a liquid melt, amororhpous or noncrystallizable polymer become rigid solids yet retain the disordered molecular structure; named because glass changes from a rigid sheet to a fleible plastic-like material at its transition point. - For semicrystalline polymers, crystalline regions will eperience melting (and crystallization), whereas noncrystalline area pass through the glass transition. Chapter 15-15 Melting & Glass Transition Temps. - Crystalline material(c): Discontinuous change in specific volume at T m. - Totally amorphous material(a): continuous but eperiences a slight decrease in slope at T g Specific volume versus temp., upon cooling from the liquid melt - Semicrystalline material(b): both T m and T g are observed. Adapted from Fig. 15.18, Callister & Rethwisch 8e. Chapter 15-16

Melting & Glass Transition Temps. What factors affect T m and T g? Both T m and T g increase with increasing chain stiffness Chain stiffness increased by presence of 1. Bulky side groups 2. Polar groups or side groups 3. Chain double bonds and aromatic chain groups Regularity of repeat unit arrangements affects T m only Chapter 15-17 Melting & Glass Transition Temps. Chapter 15-18

Melting & Glass Transition Temps. Dependence of polymer properties as well as melting and glass transition temp. on molecular weight T mobile liquid viscous liquid Callister, rubber Fig. 16.9 tough plastic T m T g T g = 0.5~0.8T m crystalline solid partially crystalline solid Molecular weight Adapted from Fig. 15.19, Callister & Rethwisch 8e. (Fig. 15.19 is from F.W. Billmeyer, Jr., Tetbook of Polymer Science, 3rd ed., John Wiley and Sons, Inc., 1984.) Chapter 15-19 Thermoplastics vs. Thermosets Thermoplastics: -- little crosslinking -- ductile -- soften w/ heating -- polyethylene, polypropylene, polycarbonate, polystyrene Thermosets: -- significant crosslinking (10 to 50% of repeat units) -- hard and brittle -- do NOT soften w/ heating -- vulcanized rubber, epoies, polyester resin, phenolic resin Chapter 15-20

Influence of T and Strain Rate on Thermoplastics Decreasing T... -- increases E -- increases TS -- decreases %EL Increasing strain rate... -- same effects as decreasing T. For intermediate temp., the polymer is rubbery solid that ehibits the combined mechanical characteristics of elastic and viscous behaviors viscoelasticity (MPa) 80 60 40 20 4ºC 20ºC 40ºC Plots for semicrystalline PMMA (Pleiglas) 60ºC 0 0 0.1 0.2 0.3 to 1.3 Adapted from Fig. 15.3, Callister & Rethwisch 8e. (Fig. 15.3 is from T.S. Carswell and J.K. Nason, 'Effect of Environmental Conditions on the Mechanical Properties of Organic Plastics", Symposium on Plastics, American Society for Testing and Materials, Philadelphia, PA, 1944.) Chapter 15-21 Viscoelastic Materials An amorphous polymer may behave like a glass at low temp.(t<t g ), a viscous liquid at high temp.(t>t g ), and a rubbery solid at intermediate temp.(t T g ) Viscoelasticity Chapter 15-22