Instruction Manual 384-Well Bioprinting Kit (clear plates)

Similar documents
6-Well Bio-Assembler TM Kit Instruction Manual

96-Well Bioprinting Kit Instruction Manual

6-Well Bio-Assembler TM Kit Instruction Manual

384-Well BiO Assay TM Kit Instruction Manual

Instructions For Use. 384-Well Bioprinting Kit (clear plates) REF Greiner Bio-One GmbH Maybachstr Frickenhausen Germany

Instructions For Use 6-Well Bio-Assembler Kit REF

Instructions For Use 24-Well Bio-Assembler Kit REF

3D Endothelial Pericyte Coculturing Kit Product Description Kit Components

Your Power for Health. Magnetic cell culturing. The n3d approach

Kit Components (Included) Cat # # of vials Product Name Quantity Storage Human Renal Cortical Epithelial Cells (HRCEpiC)

Thermo Scientific DharmaFECT Transfection Reagents sirna Transfection Protocol

User Manual. OriCell TM Rabbit Mesenchymal Stem Cells (MSCs) Cat. No. RBXMX-01001

User Manual. OriCell TM Dog Adipose-Derived Mesenchymal. Stem Cells (ADSCs) Cat. No. CAXMD-01001

Culture of Human ipsc-derived Neural Stem Cells in a 96-Well Plate Format

Accumax Cell Dissociation Solution

Mesenchymal Stem Cells

Product Size Catalog Number. 500,000 cryopreserved cells 500,000 proliferating cells 500,000 cryopreserved cells 500,000 proliferating cells

Human Dermal Fibroblast Manual

User Manual. OriCell TM C57BL/6 Mouse Adipose-derived Mesenchymal Stem Cells With GFP (ADSCs/GFP) Cat. No. MUBMD-01

Your Power for Health. 3D Cell Culture. 3D in a fast and easy 2D workflow with products from Greiner Bio-One.

Smooth Muscle Cells. Product Size Catalog Number

User Manual. OriCell TM Human Umbilical Cord Blood Mesenchymal Stem Cells. Cat. No. HUXUB-01001

Section of Morphological and Behavioral Neuroscience Protocol for low density primary neuron cultures

Human Bone Marrow Derived Mesenchymal Stem Cell (MSC) Care Manual

Validation of High-Throughput Wound Healing Assay using 3D Cell Patterning and Automated, Kinetic Imaging

HiMesoXL TM Mesenchymal Stem Cell Expansion Medium

Human Skeletal Muscle Myoblast Care Manual: Maintenance and Differentiation from Myoblasts to Myocytes

Protocol Reprogramming Human Fibroblasts into ips Cells using the Stemgent VSVg Retrovirus Reprogramming Set: Human OKSM

Copyright 2017 by PeproTech, Inc.

Product Size Catalog Number

User Manual. OriCell TM Mesenchymal Stem Cell Osteogenic Differentiation Medium. Cat. No. GUXMX-90021

Human Adult Mammary Fibroblast Care Manual

Cellartis MSC Xeno-Free Culture Medium

T ECHNICAL MANUAL. Culture of Human Mesenchymal Stem Cells Using MesenCult -XF Medium

3D Cell Culture. Your Power for Health. With Products from Greiner Bio-One and Nano3D Biosciences. HUBERLAB. AG Industriestrasse Aesch

BioMag SelectaPure mrna Purification System

Amaxa 4D-Nucleofector Protocol for Undifferentiated Human Mesenchymal Stem Cells [MSC] For 4D-Nucleofector X Unit Transfection in suspension

Protocol for the Co-culture of ipsc-derived Microglia with ipsc-derived Cerebral Cortical Neural Culture

XIT Genomic DNA from Cells

Mag-Bind FFPE DNA 96 Kit. M x 96 preps M x 96 preps

Luminescent Viability Assays in Magnetically Bioprinted 3D Cultures

In vitro Human Umbilical Vein Endothelial Cells (HUVEC) Tube-formation Assay. Josephine MY Ko and Maria Li Lung *

User Manual. OriCell TM Human Umbilical Cord Blood Mesenchymal Stem Cells. Cat. No. HUXUB-01001

Osteogenic Differentiation and Analysis of MSC

CARE MANUAL INSTRUCTIONAL MANUAL ZBM SHIPPING CONDITIONS STORAGE CONDITIONS ORDERING INFORMATION AND TECHNICAL SERVICES

User Manual. OriCell TM Human Umbilical Cord Mesenchymal Stem Cells. Cat. No. HUXUC-01001

User Manual. OriCell TM Human Umbilical Cord Mesenchymal Stem Cells. Cat. No. HUXUC-01001

Using the xcelligence RTCA SP Instrument to Perform Cytotoxicity Assays

Storage on Arrival. Aliquot and store at -20 C for up to 6 months. Store at -20 C. Aliquot and store at -80 C for up to 6 months

Product Size Catalog Number. 500,000 proliferating cells

Amaxa 96-well Shuttle Basic Protocol for Primary Mammalian Smooth Muscle Cells (SMC)

Cells and Tissue DNA Isolation Kit (Magnetic Bead System) 50 Preps Product # 59100

Protocol Using a Dox-Inducible Polycistronic m4f2a Lentivirus to Reprogram MEFs into ips Cells

Human ipsc-derived Sensory Neuron Progenitors. For the generation of ipsc-derived sensory neurons

Human ipsc-derived Sensory Neuron Progenitors. For the generation of ipsc-derived sensory neurons

EZ-10 SPIN COLUMN GENOMIC DNA MINIPREPS KIT HANDBOOK

Protocols for Neural Progenitor Cell Expansion and Dopaminergic Neuron Differentiation

Protocol: Stemgent StemRNA -NM Reprogramming Kit for Reprogramming Adult and Neonatal Human Fibroblasts

Preparation of Mouse Bone Marrow Stromal Cells

Clonetics Skeletal Muscle Myoblast Cell Systems HSMM Instructions for Use

User Manual. OriCell TM Balb/c Mouse Mesenchymal Stem Cells with GFP(MSCs/GFP) Cat. No. MUCMX-01101

Human ipsc-derived Renal Proximal Tubular Cells. Protocol version 1.0

Poietics Rat Mesenchymal Stem Cells Instructions for Use

User Manual. OriCellTM Strain C57BL/6 Mouse Mesenchymal Stem Cells with RFP(MSCs/RFP) Cat. No. MUBMX-01201

Peri.4U TM Application Protocol Multiwell-MEA

ScienCell. Human Epidermal Keratinocytes-adult (HEK-a) Catalog Number: Research Laboratories

Take your research one step closer to in vivo

Cells and Tissue DNA Isolation 96-Well Kit (Magnetic Bead System) Product # 62500

For simultaneous purification of genomic DNA and total RNA from the same animal cells or tissues

Immunofluorescence Staining Protocol for 3 Well Chamber, removable

All quality control test results are reported on a lot specific Certificate of Analysis which is available at or upon request.

Convoy TM Transfection Reagent

Clonetics Normal Human Epidermal Keratinocyte Cell Systems

RNAsimple Total RNA Kit

DeliverX and DeliverX Plus sirna Transfection Kits

BD IMag. Streptavidin Particles Plus - DM. Technical Data Sheet. Product Information

ab BrdU Immunohistochemistry Kit

Generation Capture Column Handbook

EPC Derivation from Whole Blood

MiraCell Endothelial Cells (from ChiPSC12) Kit

DeliverX and DeliverX Plus sirna Transfection Kits

ab Nuclear Extract Kit

Application Note. Developed for: Aerius, Odyssey Classic, Odyssey CLx, and Odyssey Sa Infrared Imaging Systems

Protocol Using the Reprogramming Ecotropic Retrovirus Set: Mouse OSKM to Reprogram MEFs into ips Cells

Amaxa Cell Line Nucleofector Kit L

Protocol Reprogramming MEFs using the Dox Inducible Reprogramming Lentivirus Set: Mouse OKSM

Normal Human Bronchial/Tracheal Epithelial Cells (NHBE)

User Manual. OriCell TM Strain C57BL/6 Mouse Mesenchymal Stem Cells with GFP (MSCs/GFP) Cat. No. MUBMX-01101

Maintenance of Novus Cerebral Cortical Neurons

All quality control test results are reported on a lot specific Certificate of Analysis which is available at or upon request.

Clonetics Endothelial Cell Systems Instructions for Use

Instructions For Research Use Only. Not For Use In Diagnostic Procedures. Rat Mesenchymal Stem Cell Starter Kit. Rat Mesenchymal Stem Cell Starter Kit

BD Ratiometric Calcium Assay Kit

Guide to Induced Pluripotent Stem Cell Culture

HiYield TM Genomic DNA Extraction Kit Reagent

Using the xcelligence RTCA SP Instrument to Perform GPCR Assays

E.Z.N.A. DNA/RNA Kit. R preps R preps

Cortical Neural Induction Kit. Protocol version 1.0

2 x 0.5ml. STORAGE CONDITIONS The kit is shipped at ambient temperature. Upon arrival, store the kit components as recommended on the reagent label.

Transcription:

Instruction Manual 384-Well Bioprinting Kit (clear plates) (Cat. No. 781 840) Revision: 11/2015

Introduction 1. Introduction... 2 2. Materials and Supplies... 3 3. Instructions a. Treating Cells with NanoShuttle TM -PL... 4 b. Cell Detachment... 5 c. Spheroid Printing... 6 d. Post-Culture Handling... 7 4. Troubleshooting... 8 5. Cell Types... 9 6. References... 9 7. Contact Information... 10 384-Well Bioprinting Kit Instruction Manual Thank you for purchasing our product for 3D cell culturing. The 384-Well Bioprinting Kit uses NanoShuttle TM -PL, a nanoparticle assembly consisting of gold, iron oxide, and poly-l-lysine to magnetize cells, at which point they can be magnetically directed. In this kit, cells in a 384-well plate are printed into spheroids using a magnetic drive to aggregate cells at the bottom of the well. NanoShuttle TM -PL should be stored at 4ºC. Caution The magnets in this kit are strong, can damage electronics, and cause injury if not handled correctly. DO NOT remove the magnets from the protective covers. DO NOT autoclave. DO NOT store near metal surfaces. Read the attached instructions carefully on how to handle the magnets. Product Use The 384-Well Bioprinting Kit is for research use only. It is not approved for human or animal use. 2

Materials and Supplies Materials and Supplies Needed to Make Spheroids 384-Well Bioprinting Kit, which includes: NanoShuttle TM -PL (2 600 µl vials); 384-Well Spheroid Drive (1); 384-Well Holding Drive (1); Cell-Repellent 384-Well Plates, clear (2). Other Materials Provided by User: 70% Ethanol Phosphate Buffered Saline (PBS, Calcium and Magnesium free) 0.25% Trypsin/EDTA Solution or the recommended detaching solution for your cell type Pipettes, flasks, other general tissue culture supplies and tools Cells (in suspension or monolayer) Medium (use typical media for 2D culture, if serum-free, use trypsin neutralization solution to inactivate trypsin) Microscope Any additional supplies for the specific cell type and application Fig. 1: 384-Well Bioprinting Kit 3

Instructions Instructions for forming spheroids in the 384-Well Bioprinting Kit Overview: 600 µl of NanoShuttle TM -PL will treat one T-75 flask of cells at 80% confluence (approximately 6 million cells). At 5,000 cells/ spheroid, this is enough to form 1,200 spheroids. Spheroids to be paraffin-embedded may require more cells per spheroid. The 384-well Bioprinting Kit works best with CELLSTAR Cell-Repellent 384- Well Plates, clear (781 970, Greiner Bio-One, included in the kit). Optimization may be required for different cell types or specific experimental aims. Treating Cells with NanoShuttle TM -PL 1. Culture cells to 80% confluence in a T-25, T-75, or T-150 culture flask using standard procedures in your laboratory for your specific cell type. 2. Treat cells with NanoShuttle TM -PL as follows: a) Remove NanoShuttle TM -PL from refrigeration and let it stand at room temperature for at least 15 minutes. b) Homogenize NanoShuttle TM -PL in its vial by pipetting it up and down at least 10 times. c) For a T-25 flask add 200 µl NanoShuttle TM -PL, or for a T-75 flask add 600 µl NanoShuttle TM -PL, or for a T-150 flask add 1200 µl Nanoshuttle TM -PL directly to the media. d) Incubate cells with NanoShuttle TM -PL overnight. Note: The amount of NanoShuttle TM -PL added can be optimized to use more or less volume for specific cell types. Optimize the volume before experimentation by forming spheroids with more or less Nanoshuttle TM -PL added. A benchmark concentration is 1 µl/10,000 cells. Note: NanoShuttle TM -PL is brown in color. After incubation, the cells will appear peppered with the brown NanoShuttle TM -PL (Fig. 2). 4

Instructions Fig. 2: After incubation with NanoShuttle TM -PL, cells will appear peppered with the brown nanoparticles, as demonstrated by primary human pulmonary fibroblasts. Scale bar = 100 µm. 1 Cell Detachment 3. After incubation, warm/thaw Trypsin/ EDTA solution, PBS, and media in a water bath to 37ºC. 4. In a sterile hood, aspirate all media (including excess NanoShuttle TM -PL) from the flask. 5. Wash cells to remove any remaining media and excess NanoShuttle TM -PL by adding PBS to the flask and gently agitating. We recommend 2 ml of PBS for a T-25 flask, 5 ml for a T-75 flask, and 10 ml for a T-150 flask. 6. Aspirate PBS and add Trypsin/EDTA solution to the flask. Add enough Trypsin/EDTA solution to cover the cell monolayer, about 1 ml to a T-25 flask, 2 ml to a T-75 flask, or 4 ml to a T-150 flask. Follow your laboratory s cell-specific detachment protocols. 7. Place the flask in an incubator for approximately 3-5 minutes or for a time prescribed by your standard protocol for detaching cells. Check for detachment under a microscope. 8. While waiting for cells to detach, clean the magnetic drives that you will use by wiping them with 70 % ethanol. Keep the magnetic drives sterile. Note: Do not soak drives in ethanol, lightly spray and wipe to sterilize. 9. Remove flask from incubator and check under a microscope that the cells are detached from the surface. Excess exposure to Trypsin/EDTA will adversely affect cell health, so proceed to the next step quickly. 5

Instructions 10. Deactivate Trypsin/EDTA by adding 37 C media with serum. The amount of media with serum added should at least match the original volume of Trypsin/EDTA added. If cells are sensitive to serum, either use trypsin neutralizing solution, or immediately centrifuge cells (at least 100 G for 5 min) and aspirate the trypsin. 11. Count the cells using a hemacytometer or Coulter counter. Centrifuge cells and resuspend them in the required amount of media (50 µl per spheroid). Note: We recommend forming spheroids with 5,000 cells each (100,000 cells/ml), but the number of cells per spheroid can be different. Cultures have successfully been formed with cell numbers from 50,000 to 50. Optimize the number of cells per spheroid by forming spheroids with more or less cells. Spheroid Printing 12. Place a cell-repellent 384-well plate atop the 384-well spheroid drive. 13. Dispense the cells into the plate with 50 µl of solution per well and close the plate. The cells within the solution will aggregate at the bottom of the well plate in the shape of the magnet. Leave the plate on the magnetic drive for 15 min to a few hours to yield a competent spheroid (Fig. 4). Note: Longer printing times, although possible, may not be necessary, as the magnet will aggregate cells very quickly. Optimize the printing time for your specific experiment so that the resulting spheroid can be removed from the magnet and still maintain its structure. a b c Fig. 3: Take a 384-well spheroid drive (a) and place a cell-repellent 384-well plate (b) atop the 384-well spheroid drive to print the cells into a spheroid (c). 6

Instructions 15. After printing, remove the plate off the drive and transfer it to an incubator for the length of the experiment. The spheroids can be cultured up to 3 weeks. If necessary, replace the media in the wells after 2-3 days of culture. Use the 384-well holding drive to hold the spheroids down while aspirating solutions to prevent unwanted cell loss (Fig. 4). Post-Culture Handling After culturing, standard tissue processing techniques can be performed, such as fixation, paraffin embedding for immunohistochemistry, or RNA isolation for qrt-pcr. Use the 384-well holding drive to hold cells down while adding and removing liquids (Fig. 4). Fig. 4: Use the 384-well holding drive to hold 3D cultures as you add and remove liquids 7

Troubleshooting Problem Probable Cause Solution NanoShuttle TM -PL appears separated NanoShuttle TM -PL do not appear to fully bind with cells, floating in medium Cells taking longer than usual to detach NanoShuttle TM -PL sparsely attached to cells Cells are sensitive to serum Magnetized cells attaching to bottom of the plate Spheroid appears spread out 3D cultures are lost or broken when removing liquids NanoShuttle TM -PL has settled at the bottom of the vial Binding with NanoShuttle TM -PL varies in efficiency among cell types Cells were incubated with NanoShuttle TM -PL too long Cells strongly adhered to substrate Too many cells Cells may undergo unwanted differentiation with serum Magnetized cells are weakly or not bound to NanoShuttle TM -PL Cells have not been printed for enough time 3D culture is not held down while liquids are transferred Homogenize the NanoShuttle TM -PL before use by pipetting up and down 10X NanoShuttle TM -PL will appear peppered on cells and some will float, but the cells are still magnetized. Add less NanoShuttle TM -PL if too excessive Incubate cells with NanoShuttle TM -PL overnight at most Before adding trypsin, wash flask with PBS 1-2X Increase NanoShuttle TM - PL volume added to each well to yield an ideal concentration of 1 µl/10,000 cells Use a trypsin-neutralizing solution in lieu of serumcontained media to stop trypsin activity. Centrifuge cells immediately after and remove trypsin solution Use cell-repellent plates to prevent cells from adhering and collect weakly magnetized cells Print the cells longer and carefully monitor the formation of the spheroid Use the 384-well holding drive to hold down spheroids while adding and removing liquids 8

Cell Types Some of the cell types that have been successfully cultured using the procedure include: Cell lines Murine Endothelial Murine Embryonic Fibroblasts, pre-adipocytes (3T3) Murine Adipocyte Murine Melanoma Murine Neural Stem Cells Rat Hepatoma Human Astrocytes Human Glioblastoma Multiforme (GBM) LN 229 Human Embryonic Kidney (HEK293) Rat Vascular Smooth Muscle (A10) Human Hepatocellular Carcinoma Cells (HepG2) Human Lung Adenocarcinoma Cells (A549) Human Colorectal Carcinoma Cells (HCT116) Human Pancreatic Epithelioid Carcinoma (PANC-1) Primary cells Human Pulmonary Microvascular Endothelial Cells (HPMEC) Human Tracheal Smooth Muscle Cells (HTSMC) Human Small Airway Epithelial Cells (HSAEpiC) Human Pulmonary Fibroblasts (HPF) Human Mesenchymal Stem Cells (HMSC) Human Bone Marrow Endothelial Cells (HBMEC) Human Umbilical Vein Endothelial Cells (HUVEC) Human Aortic Vascular Smooth Muscle (HASMC) Human Neonatal Dermal Fibroblasts (HDFn) Murine Chondrocytes References 1. Haisler, W. L. et al. Three-dimensional cell culturing by magnetic levitation. Nat. Protoc. 8, 1940 9 (2013). 9

Contact us: Greiner Bio-One GmbH Maybachstrasse 2 72636 Frickenhausen Germany E-Mail: info@de.gbo.com www.gbo.com/bioscience