AS BIOLOGY (7401/1) Paper 1. Specimen 2014 Session Time allowed: 1 hour 30 minutes SPECIMEN MATERIAL

Similar documents
A-level BIOLOGY (7402/1)

Thursday 26 May 2016 Afternoon Time allowed: 1 hour 30 minutes

AS BIOLOGY BIOL2. Unit 2 The variety of living organisms. Afternoon. (JUN16BIOL201) WMP/Jun16/E5

A mutation can lead to the production of a non-functional enzyme. Explain how.

Putting bee honey on a cut kills bacteria. Honey contains a high concentration of sugar

BIOL2. General Certificate of Education Advanced Subsidiary Examination June The variety of living organisms. (JUN10BIOL201) WMP/Jun10/BIOL2 PMT

ASSESSMENT AND QUALIFICATIONS ALLIANCE. TIME ALLOWED 1 hour 45 minutes plus your additional time allowance

A-level BIOLOGY. Paper 3. Monday 26 June 2017 Morning Time allowed: 2 hours. *Jun *

2. Not (associated) with proteins / histones; Accept does not form chromosomes / chromatin

A-level BIOLOGY 7402/2. Paper 2. SPECIMEN MATERIAL v1.0

A Level. A Level Biology. Cells, Microscopes, Cell Cycle and Immunity Questions. AQA, OCR, Edexcel. Name: Total Marks: Page 1

BYA3. General Certificate of Education June 2006 Advanced Subsidiary Examination. HUMAN BIOLOGY (SPECIFICATION A) Unit 3 Pathogens and Disease

BIOL2 (JUN14BIOL201) General Certificate of Education Advanced Subsidiary Examination June Unit 2 The variety of living organisms

Biology BIOL5 Unit 5 Control in cells and in organisms Friday 25 June pm to 3.45 pm For this paper you must have: Time allowed

Science: Double Award

BYA3. HUMAN BIOLOGY (SPECIFICATION A) Unit 3 Pathogens and Disease. General Certificate of Education June 2005 Advanced Subsidiary Examination

BIOLOGY Component 1 Basic Biochemistry and Cell Organisation

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

Biology Assessment Unit AS 1

BIOLOGY/HUMAN BIOLOGY BY1

BYA2. BIOLOGY (SPECIFICATION A) Unit 2 Making Use of Biology. General Certificate of Education January 2005 Advanced Subsidiary Examination

*GBY22* *36GBY2201* Biology. Unit 2 Higher Tier [GBY22] FRIDAY 17 JUNE, MORNING *GBY22* TIME 1 hour 45 minutes.

Molecular Genetics Quiz #1 SBI4U K T/I A C TOTAL

STUDY GUIDE SECTION 10-1 Discovery of DNA

13.1 RNA Lesson Objectives Contrast RNA and DNA. Explain the process of transcription.

Name Class Date. Practice Test

Surname. Number OXFORD CAMBRIDGE AND RSA EXAMINATIONS ADVANCED SUBSIDIARY GCE F211 BIOLOGY. Cells, Exchange and Transport

BIOL5. General Certificate of Education Advanced Level Examination June Unit 5 Control in cells and in organisms PMT

BIOL2. General Certificate of Education Advanced Subsidiary Examination January Unit 2 The variety of living organisms

Animal and plant cells have several parts. Each part has a different function.

Chapter 13 - Concept Mapping

Additional Applied Science

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Lecture Series 10 The Genetics of Viruses and Prokaryotes

Double Award Science: Biology Unit B2 Higher Tier

3.1.5 Nucleic Acids Structure of DNA and RNA

Name 10 Molecular Biology of the Gene Test Date Study Guide You must know: The structure of DNA. The major steps to replication.

Big Idea 3C Basic Review

Name: Period: Date: BIOLOGY HONORS DNA REVIEW GUIDE (extremely in detail) by Trung Pham. 5. What two bases are classified as purines? pyrimidine?

Surname Other Names Centre Number Candidate Number Candidate Signature. General Certificate of Secondary Education Higher Tier June 2014

amino acid nucleic acid nucleotide DNA/RNA enzymes lock and key model catalyst carbohydrate monosaccharide glucose

Name: Period: Date: DNA Structure MCAS Questions

Sections 12.3, 13.1, 13.2

Complete the table by giving the letter labelling the organelle that matches the function. Function of organelle

1. An alteration of genetic information is shown below. 5. Part of a molecule found in cells is represented below.

DNA, Replication and RNA

What is DNA? DEOXYRIBONUCLEIC ACID

HUMAN BIOLOGY (SPECIFICATION A) Unit 3 Pathogens and Disease

DNA. translation. base pairing rules for DNA Replication. thymine. cytosine. amino acids. The building blocks of proteins are?

General Certificate of Secondary Education Double Award Science: Biology Unit B2 Higher Tier [GSD42] FRIDAY 6 JUNE 2014, AFTERNOON

Specimen Paper. Science B (Science in Context) Unit 2 My Family and Home. General Certificate of Secondary Education Higher Tier.

The study of the structure, function, and interaction of cellular proteins is called. A) bioinformatics B) haplotypics C) genomics D) proteomics

UNIT 3 GENETICS LESSON #41: Transcription

Multiple choice questions (numbers in brackets indicate the number of correct answers)

2018 Midterm Exam Review KEY

Directed Reading. Section: Identifying the Genetic Material. was DNA? Skills Worksheet

Tuesday 17 May 2016 Afternoon

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

BIOL5 (JUN14BIOL501) General Certificate of Education Advanced Level Examination June Unit 5 Control in cells and in organisms

Human Biology HBIO4. General Certificate of Education Advanced Level Examination January Bodies and cells in and out of control (JAN11HBI0401)

Lesson Overview DNA Replication

THIS IS A NEW SPECIFICATION

TWENTY FIRST CENTURY SCIENCE BIOLOGY A TUESDAY 17 JUNE 2008 GENERAL CERTIFICATE OF SECONDARY EDUCATION A222/02. UNIT 2 Modules B4 B5 B6 (Higher Tier)

GCSE (9 1) Biology B (Twenty First Century Science) J257/04 Depth in biology (Higher Tier) Sample Question Paper SPECIMEN

Specimen Paper. Biology 2H. General Certificate of Secondary Education Higher Tier. Unit Biology B2. Unit Biology B2 TOTAL. Time allowed 60 minutes

I. To understand Genetics - A. Chemical nature of genes had to be discovered B. Allow us to understand how genes control inherited characteristics

Biology BL1FP. (Jun15BL1FP01) General Certificate of Secondary Education Foundation Tier June Unit Biology B1. Unit Biology B1 PMT TOTAL

Specimen Paper. Biology. - Specialists in Science and Maths Education. Time allowed! 90 minutes

Essential Question. What is the structure of DNA, and how does it function in genetic inheritance?

DNA and RNA Structure Guided Notes

Biology A: Chapter 9 Annotating Notes Protein Synthesis

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

Gene Expression. Student:

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

Time allowed: 1 hour 30 minutes

8.1. KEY CONCEPT DNA was identified as the genetic material through a series of experiments. 64 Reinforcement Unit 3 Resource Book

Surname. Number OXFORD CAMBRIDGE AND RSA EXAMINATIONS ADVANCED SUBSIDIARY GCE G623 APPLIED SCIENCE. Cells and Molecules

Bio 101 Sample questions: Chapter 10

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Bundle 5 Test Review

Surname. Number OXFORD CAMBRIDGE AND RSA EXAMINATIONS ADVANCED SUBSIDIARY GCE F221 HUMAN BIOLOGY. Molecules, Blood and Gas Exchange

Prentice Hall Biology (Miller/Levine) 2006 Correlated to: Illinois Science Assessment Framework PSAE (Grade 11)

1 Read through the following passage on the structure of DNA, then fill in the most appropriate word or words to complete the passage.

F211. BIOLOGY Cells, Exchange and Transport ADVANCED SUBSIDIARY GCE. Tuesday 11 January 2011 Morning PMT

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

Candidate number. Centre number

BIOLOGY Unit 1 Basic Biochemistry and Cell Organisation

National 5 Unit 1: Cell Biology Topic 1.1 Cell Structure. Which part of the cell is composed of cellulose? 1

Name Class Date. Information and Heredity, Cellular Basis of Life Q: What is the structure of DNA, and how does it function in genetic inheritance?

BYA5. General Certificate of Education January 2007 Advanced Level Examination

11/17/14. Why would scientist want to make a mouse glow?

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

Living Environment. Directions: Use Aim # (Unit 4) to complete this study guide.

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning


12 1 DNA. Slide 1 of 37. End Show. Copyright Pearson Prentice Hall:

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Level

GCSE SCIENCE A PHYSICS

GCE A level 1074/01 BIOLOGY BY4

Transcription:

SPECIMEN MATERIAL AS BIOLOGY (7401/1) Paper 1 Specimen 2014 Session Time allowed: 1 hour 30 minutes Materials For this paper you must have: a ruler with millimetre measurements a calculator. Instructions Use black ink or black ball-point pen. Fill in the boxes at the bottom of this page. Answer all questions. Information The marks for questions are shown in brackets. The maximum mark for this paper is 75. Please write clearly, in block capitals, to allow character computer recognition. Centre number Candidate number Surname Forename(s) Candidate signature

2 Answer all questions in the spaces provided. 0 1. 1 Describe how you could use cell fractionation to isolate chloroplasts from leaf tissue. [3 marks] [Extra space] Figure 1 shows a photograph of a chloroplast taken with an electron microscope. Figure 1 A B 1μm

3 0 1. 2 Name the parts of the chloroplast labelled A and B. Name of A Name of B 0 1. 3 Calculate the length of the chloroplast shown in Figure 1. Answer = 0 1. 4 Name two structures in a eukaryotic cell that cannot be identified using an optical microscope. 1 2 Turn over for the next question Turn over

4 2 A technician investigated the effect of temperature on the rate of an enzyme-controlled reaction. At each temperature, he started the reaction using the same volume of substrate solution and the same volume of enzyme solution. Figure 2 shows his results. 0 2. 1 Give one other factor the technician would have controlled. 0 2. 2 Calculate the rate of reaction at 25 C. Answer =

5 0 2. 3 Describe and explain the differences between the two curves. [5 marks] [Extra space] Turn over for the next question Turn over

6 3 Figure 3 summarises the process of meiosis. The circles represent cells and the structures within each cell represent chromosomes. 0 3. 1 Describe and explain the appearance of one of the chromosomes in cell X. [3 marks] [Extra space]

7 0 3. 2 Describe what has happened during division 1 in Figure 3. 0 3. 3 Identify one event that occurred during division 2 but not during division 1. 0 3. 4 Name two ways in which meiosis produces genetic variation. 1 2 Turn over for the next question Turn over

8 4 Figure 4 shows one base pair of a DNA molecule. Figure 4 0 4. 1 Name part F of each nucleotide. 0 4. 2 Scientists determined that a sample of DNA contained 18% adenine. What were the percentages of thymine and guanine in this sample of DNA? Percentage of thymine Percentage of guanine

9 During replication, the two strands of a DNA molecule separate and each acts as a template for the production of a new strand. Figure 5 represents DNA replication. 0 4. 3 Name the enzyme shown in Figure 5. The arrows in Figure 5 show the directions in which each new DNA strand is being produced. 0 4. 4 Use Figure 4, Figure 5 and your knowledge of enzyme action to explain why the arrows point in opposite directions. [4 marks] Turn over

10 5 Table 1 shows the taxons and the names of the taxons used to classify one species of otter. They are not in the correct order. Table 1 Taxon Name of taxon J Family Mustelidae K Kingdom Animalia L Genus Lutra M Class Mammalia N Order Carnivora O Phylum Chordata P Domain Eukarya Q Species lutra 0 5. 1 Put letters from Table 1 into the boxes in the correct order. Some boxes have been completed for you. O M L Q 0 5. 2 Give the scientific name of this otter. Scientists investigated the effect of hunting on the genetic diversity of otters. Otters are animals that were killed in very large numbers for their fur in the past. The scientists obtained DNA from otters alive today and otters that were alive before hunting started. For each sample of DNA, they recorded the number of base pairs in alleles of the same gene. Mutations change the numbers of base pairs over time. Figure 6 shows the scientists results.

11 0 5. 3 The scientists obtained DNA from otters that were alive before hunting started. Suggest one source of this DNA. 0 5. 4 What can you conclude about the effect of hunting on genetic diversity in otters? Use data from Figure 6 to support your answer. Question 5 continues on the next page Turn over

12 0 5. 5 Some populations of animals that have never been hunted show very low levels of genetic diversity. Other than hunting, suggest two reasons why populations might show very low levels of genetic diversity. 1 2

13 6 Figure 7 represents a capillary surrounded by tissue fluid. The values of the hydrostatic pressure are shown. Figure 7 Arteriole Venule end direction of blood flow end Hydrostatic pressure = 4.3 kpa Hydrostatic pressure = 1.6 kpa Tissue fluid Hydrostatic pressure = 1.1 kpa 0 6. 1 Use the information in Figure 7 to explain how tissue fluid is formed. 0 6. 2 The hydrostatic pressure falls from the arteriole end of the capillary to the venule end of the capillary. Explain why. Question 6 continues on the next page Turn over

14 0 6. 3 High blood pressure leads to an accumulation of tissue fluid. Explain how. [3 marks] [Extra space] 0 6. 4 The water potential of the blood plasma is more negative at the venule end of the capillary than at the arteriole end of the capillary. Explain why. [3 marks] [Extra space]

15 Turn over for the next question DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Turn over

16 0 7. 1 Describe how you would test a piece of food for the presence of lipid. Figure 8 shows a phospholipid. Figure 8

17 0 7. 2 The part of the phospholipid in Figure 8 labelled A is formed from a particular molecule. Name this molecule. 0 7. 3 Name the type of bond between A and fatty acid X. 0 7. 4 Which of the fatty acids, X or Y, in Figure 8 is unsaturated? Explain your answer. Question 7 continues on the next page Turn over

18 Scientists investigated the percentages of different types of lipid in plasma membranes from different types of cell. Table 2 shows some of their results. Table 2 Type of lipid Percentage of lipid in plasma membrane by mass Cell lining ileum of mammal Red blood cell of mammal The bacterium Escherichia coli Cholesterol 17 23 0 Glycolipid 7 3 0 Phospholipid 54 60 70 Others 22 14 30 0 7. 5 The scientists expressed their results as Percentage of lipid in plasma membrane by mass. Explain how they would find these values. Cholesterol increases the stability of plasma membranes. Cholesterol does this by making membranes less flexible. 0 7. 6 Suggest one advantage of the different percentage of cholesterol in red blood cells compared with cells lining the ileum.

19 0 7. 7 E. coli has no cholesterol in its cell-surface membrane. Despite this, the cell maintains a constant shape. Explain why. Turn over for the next question Turn over

20 8 A group of students carried out an investigation to find the water potential of potato tissue. The students were each given a potato and 50 cm 3 of a 1.0 mol dm 3 solution of sucrose. They used the 1.0 mol dm 3 solution of sucrose to make a series of different concentrations. They cut and weighed discs of potato tissue and left them in the sucrose solutions for a set time. They then removed the discs of potato tissue and reweighed them. Table 3 shows how one student presented his processed results. Table 3 Concentration of sucrose solution / mol dm 3 Percentage change in mass of potato tissue 0.15 +4.7 0.20 +4.1 0.25 +3.0 0.30 +1.9 0.35 0.9 0.40 3.8 0 8. 1 Explain why the data in Table 3 are described as processed results.

21 0 8. 2 Describe how you would use a 1.0 mol dm 3 solution of sucrose to produce 30 cm 3 of a 0.15 mol dm 3 solution of sucrose. 0 8. 3 Explain the change in mass of potato tissue in the 0.40 mol dm 3 solution of sucrose. 0 8. 4 Describe how you would use the student s results in Table 3 to find the water potential of the potato tissue. [3 marks] [Extra space] Turn over

22 9 Read the following passage. Herpes simplex virus (HSV) infects nerve cells in the face, including some near the lips. Like many other viruses, HSV can remain inactive inside the body for years. When HSV becomes active, it causes cold sores around the mouth. Human cells infected with a virus may undergo programmed cell death. While HSV is inactive inside the body, only one of its genes is transcribed. This gene is the latency-associated transcript (LAT) gene that prevents programmed cell death of an infected nerve cell. Scientists have found that transcription of the LAT gene produces a microrna. This microrna binds to some of the nerve cell s own mrna molecules. These mrna molecules are involved in programmed cell death of nerve cells. The scientists concluded that production of this microrna allows HSV to remain in the body for years. 5 10 Use information from the passage and your own knowledge to answer the following questions. 0 9. 1 HSV infects nerve cells in the face (line 1). Explain why it infects only nerve cells. [3 marks] [Extra space]

23 0 9. 2 HSV can remain inactive inside the body for years (lines 2 3). Explain why this virus can be described as inactive. 0 9. 3 Suggest one advantage of programmed cell death (line 4). 0 9. 4 The scientists concluded that production of this microrna allows HSV to remain in the body for years (lines 10 12). Explain how this microrna allows HSV to remain in the body for years. [4 marks] [Extra space] END OF QUESTIONS Turn over

24 There are no questions printed on this page DO NOT WRITE ON THIS PAGE ANSWER IN THE SPACES PROVIDED Acknowledgement of copyright holders and publishers Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements in future papers if notified. Figure 1: Dr Jeremy Burgess/Science Photo Library Copyright 2014 AQA and its licensors. All rights reserved.