D. Y. Abebe 1, J. W. Kim 2, and J. H. Choi 3

Similar documents
Finite Element Analysis of Thin Steel Plate Shear Walls

Cyclic Loading Tests Of Steel Dampers Utilizing Flexure-Analogy of Deformation

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS

TABLE OF CONTENTS FINITE ELEMENT MODELING OF CONCRETE FILLED DOUBLE SKIN

Effect of Geometry of Vertical Rib Plate on Cyclic Behavior of Steel Beam to Built-up Box Column Moment Connection

Development of a New Type of Earthquake Energy-absorption Device

Seismic Performance of Flange Plate Connections to Built-up Box Columns

Mechanical behavior and design method of weld-free steel structure with knee brace damper using square tube column

INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD. Guangfeng Zhang 1, Shigeki Unjoh 2

ULTIMATE EARTHQUAKE RESISTANT CAPACITY OF CFT-FRAME

The Effect of Axial Force on the Behavior of Flush End-Plate Moment Connections

SHEAR PANEL COMPONENT IN THE VICINITY OF BEAM-COLUMN CONNECTIONS IN FIRE

NON-LINEAR FEM ANALYSIS FOR CES SHEAR WALLS

Study on the in-elastic performance of mid-span gusset plate used in concentrically braced frames

Heriot-Watt University

EXPERIMENTAL STUDY ON HYSTERETIC DAMPER WITH LOW YIELD STRENGTH STEEL UNDER DYNAMIC LOADING

Finite Element Analysis of Concrete Filled Steel Tube Flexural Model

NUMERICAL MODELING OF BUCKLING OF THE LONGITUDINAL REINFORCEMENT IN BRIDGE COLUMNS

THE STUDY OF THE OVER STRENGTH FACTOR OF STEEL PLATE SHEAR WALLS BY FINITE ELEMENT METHOD

Seismic Retrofitting of Moment-Resisting Connections Using Beam Web Opening

FINITE ELEMENT MODELING OF CONCENTRICALLY BRACED FRAMES FOR EARTHQUAKES

Hysteretic Behaviour of Square Tubular T-joint With and Without Collar-Plate Reinforcement under Axial Cyclic Loading

EFFECTS OF AXIAL FORCE ON DEFORMATION CAPACITY OF STEEL ENCASED REINFORCED CONCRETE BEAM-COLUMNS

Seismic Behavior of Composite Shear Wall Systems and Application of Smart Structures Technology

RELIABILITY OF SEISMIC LINKS IN ECCENTRICALLY BRACED STEEL FRAMES

Effect of beam dimensions on structural performance of wide beam-column joints

Nonlinear Finite Element Analysis of the Steel-concrete Composite Beam to Concrete-filled Steel Tubular Column Joints

Experimental research on reduced beam section to concrete-filled steel tubular column joints with RC slab

Seismic Performance of WUF-W Moment Connections According to Access Hole Geometries

Three Dimensional Modeling of Masonry Structures and Interaction of In- Plane and Out-of-Plane Deformation of Masonry Walls

Lateral Force-Resisting Capacities of Reduced Web-Section Beams: FEM Simulations

Wire-rope Bracing System with Central Cylinder,

Investigation of the behavior of stiffened steel plate shear walls with Finite element method

Performance based Displacement Limits for Reinforced Concrete Columns under Flexure

SEISMIC BEHAVIOR OF STEEL RIGID FRAME WITH IMPERFECT BRACE MEMBERS

Experimental and numerical validation of the technical solution of a brace with pinned connections for seismic-resistant multi-story structures

ELASTO-PLASTIC BEHAVIOR OF HORIZONTAL HAUNCHED BEAM-TO- COLUMN CONNECTION

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011

A simple computational tool for the verification of concrete walls reinforced by embedded steel profiles.

Finite element analysis of eccentrically braced frames with a new type of bolted replaceable active link

SEISMIC BEHAVIOUR OF RING SHAPED STEEL PLATE SHEAR WALL

STUDY OF SEISMIC BEHAVIOR OF SCBF WITH BALANCED BRACING

Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing

Seismic test and finite element analysis of a high-performance dualcore self-centering brace with a friction gusset connection

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section

Behavior of Steel Beam to Concrete Filled Tubular Steel Joints after Exposure to Fire

Finite Element Analysis of Failure Modes for Cellular Steel Beams

Effect of Annular Damper Thickness and Diameter on Knee Brace Ductility

Bi-axial Bending Behavior of RHS-columns Including Post-buckling and Deterioration Range

Upgrading ductility of RC beam-column connection with high performance FRP laminates

Improved Student Understanding of Materials and Structures through Non-Traditional Laboratory Project

Dual earthquake resistant frames

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION

EVALUATION OF LAMINATED HOLLOW CIRCULAR ELASTOMERIC RUBBER BEARING

Seismic performance of dual frames with composite CF-RHS high strength steel columns

USING ACCORDION THIN-WALLED TUBE AS A HYSTERETIC METALLIC DAMPER

MOMENT RESISTING CONNECTION WITH SIDEPLATE (GEOMETRIC ASPECTS)

ASSESSMENT OF SEISMIC BEHAVIOR OF ECCENTRICALLY BRACED FRAME WITH DOUBLE VERTICAL LINK (DV-EBF) ABSTRACT

Seismic Performance and Application of Sandwiched Buckling-Restrained Braces and Dual-Core Self-Centering Braces

Seismic design of braced frame gusset plate connections

EFFECT OF LOCAL WALL THINNING ON FRACTURE BEHAVIOR OF STRAIGHT PIPE

CTBUH Technical Paper

Overview of Presentation. SCBFs are Conceptually Truss Structures

DUCTILITY OF THIN STEEL PLATE SHEAR WALLS

ASIAN JOURNAL OF CIVIL ENGINEERING (BUILDING AND HOUSING) VOL. 9, NO. 2 (2008) PAGES DUCTILITY OF THIN STEEL PLATE SHEAR WALLS

SHAKING TABLE TEST USING MULTIPURPOSE TEST BED

Elasto-plastic behavior of steel frame structures taking into account buckling damage

FINITE ELEMENT ANALYSIS OF CES COMPOSITE COLUMNS

Numerical and Experimental Behaviour of Moment Resisting Connections using Blind Bolts within CFSHS columns

THE REDUCED BEAM SECTION MOMENT CONNECTION WITHOUT CONTINUITY PLATES

COLD FORMING HOT-ROLLED WIDE FLANGE BEAMS INTO ARCHES Preliminary finite element simulations

Seismic performance of New Steel Concrete Composite Beam-Columns

Effect of Steel Core Bending on the Seismic Performance of Buckling-Restrained Braces Using Steel-and-Mortar Planks for Buckling-Restraining System

1514. Structural behavior of concrete filled carbon fiber reinforced polymer sheet tube column

Structural Analysis of Pylon Head for Cable Stayed Bridge Using Non-Linear Finite Element Method

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF REINFORCED CONCRETE CORE WALL

CYCLIC BEHAVIOR OF AN INNOVATIVE STEEL SHEAR WALL SYSTEM

CYCLIC TESTING OF BOLTED CONTINUOUS I-BEAM-TO-HOLLOW SECTION COLUMN CONNECTIONS

SEISMIC ENERGY DISSIPATION SYSTEM OF 12-STOREY COUPLED SHEAR WALLS

RETROFITTING METHOD OF EXISTING REINFORCED CONCRETE BUILDINGS USING ELASTO-PLASTIC STEEL DAMPERS

PRECAST PRESTRESSED PORTAL FRAMES WITH CORRUGATED STEEL PANEL DAMPERS

CAUSES OF ELONGATION IN REINFORCED CONCRETE BEAMS SUBJECTED TO CYCLIC LOADING

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING

Diagonal Tension Field Inclination Angle in Steel Plate Shear Walls

Effects of Circular Opening Dimensions on the Behavior of Steel Plate Shear Walls (SPSWs)

New approach to improving distortional strength of intermediate length thin-walled open section columns

Journal of Asian Scientific Research EVALUATION OF RECTANGULAR CONCRETE-FILLED STEEL-HOLLOW SECTION BEAM-COLUMNS

Hybrid System Using Precast Prestressed Frame with Corrugated Steel Panel Damper

AN INVESTIGATION OF SEISMIC RETROFIT OF COLUMNS IN BUILDINGS USING CONCRETE JACKET

Analysis of Seismic Performance of Steel Moment Connection with Welded Haunch and Cover Plate

Nonlinear Behavior and Dissipated Energy of Knee Braced Frames Based on Cyclic Analysis

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011

INELASTIC SEISMIC PERFORMANCE OF RC TALL PIERS WITH HOLLOW SECTION

Journal of Constructional Steel Research. The effect of stiffeners on the strain patterns of the welded connection zone

Chapter 7. Finite Elements Model and Results

1337. Seismic response of beam-column joints rehabilitated with FRP sheets and buckling restrained braces

Experimental and theoretical study on softening and pinching effects of bridge column

Finite Element Modelling of Cyclic Behaviour of Cold-Formed Steel Bolted Moment-Resisting Connections

DE-BONDED DIAGONALLY REINFORCED BEAM FOR GOOD REPAIRABILITY

CHAPTER 4 CORRELATION OF FINITE ELEMENT RESULTS WITH EXPERIMENTAL VALUES OBTAINED FROM THE SAC STEEL PROJECT SPECIMENS 4.

Transcription:

Steel Innovations Conference 213 Christchurch, New Zealand 21-22 February 213 HYSTERESIS CHARACTERSTICS OF CIRCULAR PIPE STEEL DAMPER USING LYP225 D. Y. Abebe 1, J. W. Kim 2, and J. H. Choi 3 ABSTRACT This study aims to identify the hysteresis characteristics of circular pipe steel damper (CPD) with low yield point steel (LYP225). CPD is used to dissipate energy by metallic deformation due to the geometrical elasticity of circular shape and fatigue resistance around connection part. Steel dampers are a widely used energy dissipating device as they are easy to install, maintain and inexpensive. CPD is among these steel dampers, so its hysteresis characteristics and deformation behavior need to be predicted accurately for controlling the seismic performance of structures in which it is used. Nonlinear explicit FE analysis has been carried out to evaluate the structural performance of CPD using LYP225 in this study. The analysis specimen was modeled after the effective size, at which both bending and shear stress are occurred simultaneously, are determined by simple engineering mechanics which is found to be aspect ratio (height to diameter ratio) of 3. In addition, cyclic loading test was carried out to verify the FE analysis results. Furthermore, to investigate the advantage of using low yield point steel over conventional steel (SS4) as damping material, both analysis and test was also conducted for (SS4) to compare the deformation and hysteresis characteristics with LYP225. After comparison of the two results it is noted that the explicit FE analysis was accurately determine the large deformation and stress-strain relationship as well as can calculate the cumulative energy from to cyclic loading. Keyword: low-yield point steel, circular pipe damper, cyclic loading, large deformation, FE analysis, Introduction Recently structural control has paid much attention to seismic design, with the premise that such control can improve ultimate resisting capacity of structures and reduce damage during earthquake. A hysteretic damper is a type of passive control device which uses the hysteresis of the material of the damper as the source of energy dissipation. A disadvantage of such dampers is that they absorb seismic energy only when they go through inelastic deformation. The circular pipe dampers are also dissipate seismic energy through inelastic deformation and fatigue resistance of the welded part. To overcome this restriction of hysteretic dampers, low yield strength steel is used as the material for hysteretic damper [Nakashima, 1995 and Shimokawa, 1998]. Low yield point steel preferred over the conventional steel to be used as seismic energy dissipating device is because it has high elongation capacity though the yield strength is low. The CPD with low yield point steel is excellent ductility performance. That is why the use of low yield point steel as energy dissipating device became a significantly important as low yield point steel has a capacity of high deformation. The action force during earthquake is CPD is so multi-dimensional, the CPD in the practical situation can resist load in all directions. In order to evaluate the load resisting capacity and hysteresis behavior of CPD both experimental and nonlinear finite element analysis were carried out in this study. For further investigation CPD of the same size that composed of conventional steel compared with low yield point steel damper. Both the chemical and mechanical properties of specimen are presented in table 1 and 2 respectively. The mechanical properties of specimen are measured through coupon test and the stress-strain relationship is drawn as shown in fig. 1. 1 Graduate Student, Dept. of Architectural Engineering, University of Chosun, Gwangju, Korea, 51-759 2 Senior Researcher, Development of Smart Green Construction Technology, University of Chosun, Gwangju, Korea, 51-759 3 Associate Professor, School of Architectural Engineering, University of Chosun, Gwangju, Korea, 51-759

Table 1. Chemical composition of steels used Material C Si Mn P S N LYP225.1.3.2.25.15.6 SS4.13.1.47.11.9 - Table 2. Summary mechanical properties Material Yield strength σ y (N/mm 2 ) Ultimate Strength σ u (N/mm 2 ) Elongation (%) LYP225 22.6 265.4 - SS4 369 411 13.1 5 4 σ u =411 (N/mm 2 ) SS4 LYP225 σ (N/mm 2 ) 3 2 1 σ y =369 (N/mm 2 ) σ y =22.6(N/mm 2 ) σ u =265.4(N/mm 2 ) 1 2 3 4 5 6 ε (%) Fig. 1. Stress-strain curve of material Before start investigation of hysteresis behavior, it needs to identify the effective size of CPD, the size at which the developed stresses, both bending and shear stresses are resisted equally. The important parameter in fixing the size is the aspect ratio (diameter to height ratio). Theoretically the whole system of CPD is considered as a fixed ended beam as presented in fig. 2. The corresponding bending stress and shear stress distribution on the cross-section is shown in fig. 3(a), (b) respectively. Fig. 2. Loading condition and bending moment diagram

Compression Neutral Axis r q y Tension t Bending Stress distribution Cross Section Shear Stress distribution Fig. 3. Bending and Shear stress distribution By taking infinitesimal length, as shown in fig. 4, the bending stress is given by: Fig. 4. Stress distribution on the infinitesimal length σ θ = M I y (1) where: M: bending moment y: the distance of the area from the neutral axis and is given by y = r sin θ I: second moment area given by I = πr t Substituting y and I in equation (1), the bending will be σ = for θ =, sin θ; the bending stress is maximum σ = whereas the shear stress (τ) is defined as: τ = cos θ substituting for I = πr t and Q = shear stress will be: τ = cos θ (2) then the (3) Shear stress is maximum for θ = o, at which the cosθ = 1, then τ = (4) The uni-axial and shear yield stresses for the von Mises criterion [7] are related by σ = 3τ (5) Substituting equation (2) and (4) to equation (5) we can have: = = 3 (6)

This size of section is considered as the effective and optimum size as the stresses are developed equally or it satisfies the von Mise s yield stress criteria. The detail of specimen is presented on fig. 5. 25 13 8 25 3 7 7 3 2 Top view Fig. 5. Specimen detail Non-linear finite Element Analysis Material Model A three dimensional finite element analysis model has been created using the ABAQUS package to conduct the hysteresis behavior of circular pipe damper. A meshed analysis model of circular pipe damper is shown in Fig, 6. The end plates are modeled as a rigid body. Material nonlinearity was included in the finite element model by specifying a stress strain curve in terms of the true stress and plastic strain. The engineering stresses and strains obtained from the coupon tests were converted into true stresses and strains for this purpose. Both solid and shell element model have been tried in order to choose the suitable element to simulate the hysteresis behavior. 3-D solid continuum elements are found to be more efficient in modeling CPD. The structural steel components are modeled as an elastic plastic material. With elastic and plastic options, the yield and ultimate tensile strength obtained firstly from the results of the coupon tests and then converted into the true stress and plastic strain with appropriate input format for ABAQUS. In the plastic range the important behavior of structural steel to be considered is strain hardening behavior of material. Thus, a bilinear isotropic hardening model was used for LYP225 and combined hardening model was implemented for conventional steel. Different mesh sizes have been examined as well to determine a reasonable mesh that provides both accurate results with less computational time. The exam results show that, if the mesh is too coarse, a convergence problem will be caused as the contact element was used between the column flange and the endplate surface. However, if the mesh is too fine, the computational time is excessive. The mesh selected is shown in Fig. 6 for the CPD with continuous hexahedral solid elements suitable for linear and nonlinear stress/displacement analysis. The type of element is called C3D8R by ABAQUS (Fig 6b). For better accuracy the ends of the model is meshed differently relative to the body. Each ends of the components are created a more refined mesh as that is where most stresses are concentrated and is the area exposed to direct compression and tension forces. The model created has 2184elements. Constraint and Loading Condition In the interaction, the reference point is created to control the constraint and loading condition at the center of both end plates. The boundary condition and method of loading adopted in the finite element analysis followed closely those used in the tests. The lower end plate (at reference point) is constraint both translation and rotation in all direction. The upper end plate (at reference point) allows translation only in the direction of loading and all the other direction is constraint. There are two ways of applying loads: the constant stress loading and the constant strain loading. In this study, the constant strain loading is used; that the loading is applied by controlling the displacement. Fig. 8 shows the displacement protocol used for both experiment and analysis.

(a) (b) C8D8R Fig. 6. (a) 3-D FE- mesh of circular pipe damper, (b) C8D8R element Test Process The hysteresis behavior has also been evaluated experimentally. The loading experiment equipment system is shown in fig. 7. In this system, to avoid rotation angle on the top of specimen pantograph was installed and counter weight installed using a principle of a pair of scale was arranged to protect axial force application to experiment specimen. Displacement meters for measuring displacement of circular pipe dampers were installed at the top end plate and the bottom end plate of the experiment specimen. Average value of the right and left side displacement devices was evaluated as displacement value of the experiment specimen. In addition, horizontal force on the experiment specimen was measured by installing load cell on the actuator. Fig. 7. Loading equipment system Experimentally the both hysteresis behavior as well as maximum load resisting capacity is measured through cyclic and monotonic loading respectively. The load is applied by controlling the displacement. The displacement protocol used for experiment is the same as that used on the analysis is shown in Fig. 7.

Rotation (rad).2.15.1.5 -.5 -.1 -.15 -.2 2 4 6 8 1 12 14 Cycle Fig. 8 Displacement protocol Result and Discussion After carrying out both analytical and loading test the relationship between shear force and inelastic rotation is compared. Fig. 9 (a and b) presents the hysteresis loops comparison of analysis and loading test result for LYP225 and conventional steel (SS4) respectively. In the plotted graph, the black solid line represents experimental result and the dotted line shows the analysis result. The experimental result has larger strength in the last few cycle and smaller strength in the initial yield strength relative to numerical result in the LYP225 hysteresis loops. As it has been reported above the ductility capacity of low yield point steel is high and so that high cyclic load resistance capacity. Fig 9 presents the deformation shape of experimental and equivalent stress distribution of analysis result. The failure of the CPD is predicted by the failure index defined by the triaxiality of the stress field and the accumulated plastic strain in tension and compression. The objective function is the dissipated energy before failure of the damper. The ductility capacity of the damper is defined using failure index as follows. The variables, which are functions of pseudo-time, such as stresses and strains are evaluated at integrated maximum possible point. Let ε p (t) denote the equivalent plastic strain defined as ε (t) = ε (τ)ε (τ)dτ (7) where ε (t) is the plastic strain tensor, ( ) is the derivative with respect to time, and the summation convention is used. The equivalent plastic strain represents amount of plastic deformation in material level, and is evaluated at each integration point. Many fracture criteria have been presented using ε p (t). In the following, the argument t is omitted for brevity. We use an extended version of the SMCS criterion that was developed for simulating ductile fracture of metals due to void growth. The critical plastic strain ε cr is first defined as ε = α exp 1.5 σ σ (8) where σ m is the mean stress, and σ e is the von Mises equivalent stress given by eqs. (9 and 1) respectively. The parameter α is dependent on material. Eq. (8) indicates that the critical plastic strain for ductile fracture depends on the stress triaxiality σ m /σ e. Then the failure index for monotonic loading is defined as in eq. (11). σ = σ + σ + σ 3 (9) σ = 1 2 {(σ σ ) + (σ σ ) + (σ σ ) } (1) I = ε ε (11) The material is assumed to fracture when I f reaches 1.. Fig. 9 shows failure index versus cycle relationship of analysis result. From the fig. the LYP fractured at the 11cycle and SS4 was fractured at the cycle of 9.

(a) Analysis result of LYP225 (b) Test result of LYP225 (c) Analysis result SS4 (d) Test result of SS4 Fig. 9. Von Mises stress distribution and deformation mode of loading test 6 Analysis Result Test Result 8 Analysis Result Test Result 4 6 4 Shear Force (kn) 2-2 Shear Force (kn) 2-2 -4-4 -6-6 -.2 -.15 -.1 -.5.5.1.15.2 Inelastic Rotation (rad) (a) -8 -.15 -.1 -.5.5.1.15 Inelastic Rotation (rad) (b) Fig. 1. Comparison of hysteresis loops of analysis and test results, (a) LYP225 and (b) SS4

Failure Index 1.2 1.8.6.4.2 LYP225 SS4 2 4 6 8 1 12 Cycle Fig. 11. Failure Index of FE-analysis model Energy(kN cm) 14 12 1 8 6 4 2 Analysis Result, LYP225 Test Result, LYP225 Analysis Result, SS4 Test Result, SS4 3 6 9 12 Cycle Fig. 12. Comparison of cumulative energy From the hysteresis loops it is possible to calculate the cumulative energy absorbed, fig. 12 presents the comparison of the loading test and analysis result of LYP and conventional steel. Conclusion The hysteresis behavior of circular pipe damper was evaluated with both experimental and analytical approaches after identifying the effective size found to be aspect ratio of 3. Unlike SS4, that governs combined isotropic and kinematic strain hardening, low yield point steel behaves isotropic strain hardening behavior. Thus, both FE-analysis and test result of hysteresis loops shows an expansion in each cycle before failure. The cyclic load resistance of LYP is good relative to SS4 as it fails at 11 th cycle but SS4 steel fails at 9 th cycle. Though the resisting capacity of LYP is less that SS4, the cumulative energy dissipated by LYP steel circular pipe damper is higher because LYP is more ductile compared to conventional steel. Therefore, low yield point steel is good material to be used as hysteresis of the material damper as a source of seismic energy dissipating device. Acknowledgements This work was financially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No.212-8837, No.212-469) References N. Yasui, 21, "Cyclic Loading test using plastic deformation for evaluation of performance of cold-formed circular steel pipe columns," Journal of Japanese society of steel construction, Vol.17, No.68, pp1~12. D. Y. Abebe, J. H. Choi, 212. Structural Performance Evaluation of Circular Pipe Steel Hysteresis Damper, Proceeding of IUMRS-ICA212. C. S. Oh, N. H. Kim, Y. J. Kim, J. H. Baek, Y. P. Kim, W. S. Kim, 211, A finite element ductile failure simulation method using stress-modified fracture strain model Engineering Fracture Mechanics 78 (211) 124 137 D. Y. Abebe, 212. A Study on Nonlinear Inelastic Buckling and Response Behavior of Steel Members Under Axial Loading. Master Thesis, Chosun University, Gwangju, Korea. ABAQUS ver. 6.1-1, 211. User manual and documentation Dassault Systems,