GEODE Spring Seminar

Similar documents
Transcription:

03.05.2012 GEODE Spring Seminar Integration of renewable energy: Gas as P!mary Energy for Generation of Elect!city Dr. Götz Brühl 1

Overview 1. Heat is and remains important 2. Biomass is decisive for the proportion of renewable energy 3. Electricity storage facilities are not available in the near future 4. Key task: integration of wind- and solar power 5. Wind- und solar power needs high efficient complementation 6. Energy concept Rosenheim: CO2 neutral until 2025 7. Summary 2

Starting point 2012+: Wind- and solar power increase significantly

Energy related CO2 emissions in Germany Ref.: CO2 emissions (energy related) per gross electricity consumption in to/mwh 1,8 1,5 1,2 0,9 0,6 0,3 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 4

1 Heat is and remains important All kind of energy is important, but the proportion of heat is bigger, than all others combined

Total final energy consumption in Germany 2010 Illumination 3 % ICT 2 % House heating 31 % Mechanical energy 37 % Water heating 4 % Other process heating 21 % Other process cooling 2 % Ref.: 6

Total domestic energy consumption 2008 10 % 11 % 2 % 2020 2030 2040 2008: 13 % Electricity 87 % Heat 77 % 11 % 12 % 2 % 75 % 12 % 12 % 2 % 74 % 14 % 13 % 2 % 71 % 2050 14 % 2 % House heating Water heating Cooking Electrical devices 2050: 16 % Electricity 84 % Heat 16 % 68 % 7 Ref.: Studie Energieszenarien für ein Energiekonzept der Bundesregierung 2010

Sankey Diagram for Germany 2008 Ref.: BMWi 8

2 Biomass is decisive for the proportion of renewable energy

Contribution of renewable energies to the primary energy source PJ/a Ref.: contribution of renewable energies to the PES - in PJ 1400 1200 1000 800 600 400 200 solar power, geothermal power, heat pump sewage gas incl. biogas waste, landfill gas biodiesel, other liquid fuels wood, straw, other ligneous materials photovoltaic wind power hydro power of public interest biomass and residual material of public interest wind 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 water 10

3 Cold period February 2012

Electricity demand Germany and France 2011 Ref.: ENTSO-E 100000 95000 90000 85000 80000 75000 70000 Germany capacity in MW 65000 60000 55000 50000 45000 40000 35000 30000 France 25000 20000 15000 10000 5000 0 2011-01-31 2011-03-03 2011-04-02 2011-05-03 2011-06-02 2011-07-02 2011-08-02 2011-09-01 2011-10-02 2011-11-01 2011-12-02 12

Market reaction to the cold period Febr. 2012 Electricity more expensive in France, than in Germany Gas Electricity 13

3 Power storage facilities are not available in the near future

Wind and solar power feed-in in Germany 30000 25000 Wind+PV Wind-Summe Comparison: Largest Batteriestorage plant in Germany (14 MWh, Bewag, Anlage shut down) [to smal to show] Ref.: TSOs Leistung in MW 20000 15000 Comparison: Capacity of all pump storage plants in Germany (40 GWh) [~ 4 Mio. E-vehicles] Demand ~ 1000-times 10000 5000 0 15.01 18.01 21.01 24.01 27.01 30.01 02.02 05.02 08.02 11.02 15

Grid load per 100 GW inst. wind and solar power capacity 80000 Ref.: BMWi, TSOs, ENTSO-E 70000 60000 50000 Leistung in MW 40000 30000 20000 10000 0 2011-01-31 2011-03-03 2011-04-02 2011-05-03 2011-06-02 2011-07-02 2011-08-02 2011-09-01 2011-10-02 2011-11-01 2011-12-02 2012-01-01 16

Grid load per 100 GW inst. wind and solar power capacity (2) 80000 Ref.: BMWi, TSOs, ENTSO-E 70000 60000 50000 Leistung in MW 40000 30000 20000 10000 0 30.09 03.10 06.10 09.10 12.10 15.10 18.10 21.10 24.10 27.10 30.10 02.11 05.11 08.11 11.11 14.11 17

Annual duration curve of Wind- a. Solar power production 30000 25000 Wind 2011 PV 2011 Wind+PV 2011 Offshore Wind 11 300 250 Leistung Wind- und PV-Strom in MW 20000 15000 10000 200 150 100 Leistung Offshore Windstrom in MW 5000 50 0 0 1000 2000 3000 4000 5000 6000 7000 8000 Stunden pro Jahr 0 18

Power to Gas ( is a Schmarrn?) Wind- und PV-Stromerzeugung Überschußstrom H2O Elektrolyse Nennwirkungsgrad: 70 % CO2- Quelle:?? CO2 H2 O2 Methanisierung 4 H₂ + CO₂ => CH₄ + 2 H₂O Wärmeverlust: 22,6 % Wirkungsgrad: 70 % Gasnetz CH4 252,8 kj/kmol H2O Gaskraftwerk Wirkungsgrad: 55 % Stromnetz "Ausgespeicherter" Strom Gesamtwirkungsgrad: 26,9 % (ohne Netzverluste) 19 Stromkosten bei 2000 Vollbenutzungsstunden p. a. ca. 1000 /MWh (Ref.: RWE)

Share of renewable electricity in Germany Anteil des Stroms aus regenerativen Energiequellen* Ziele im Energiekonzept der Bundesregierung 80% 65% 50% 35% 4% 4% 5% 5% 7% 7% 8% 8% 9% 10% 12% 14% 15% 16% 17% 20%** 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2020 2030 2040 2050 * bezogen auf den Brutto-Inlandsstromverbrauch Deutschlands ** vorläufig Quelle: BDEW 20

4 Key Task: Integration of wind- and solar power Is it possible to earn money by beeing energy efficient (by chp and district heating) and by balancing the grid (by completing wind and solar electricity)? 21

Future Electricity Production of Residual Load Must be s: reliable at any time fast switching fast load changing high efficient operationg with renewable fuels Solution (at least one solution): CHP (fastest switching: Gas Engines) with Biogas, Wood gas and Natural gas, + Heat Storage + Distict Heating Operation CHP runs (only) in completion of wind and solar power this is also price driven due to low electricity price by strong wind or blue sky Heat is stored between electricity production (in CHP) and heat demand 22

Effects of the EEG EEG facility distribution grid transmission grid conventional power plant power generation take in possible? yes take in possible? yes declines production no no renewable shut down pays acc. EEG PP-operation becomes uneconomic pays for shut down sells in el. market for every price PP capacity declines consumer pays via grid electricity market declines el. price residual load price rises pays via EEG pays via el. price Electricity export 23

Annual new capacity of renewables in electricity prod. Quelle: BMU Leitstudie 2010 24

Market simulation: annual PV, Wind u. Residual prod. 4E+08 JA Res.Last JA PV JA Wind 3E+08 Generation in MWh/a 2E+08 1E+08 Bei Abschaltung von Wind + PV-Leistung bei Überproduktion 0E+00 2000 2005 2010 2015 2020 2025 2030 25

Markt simulation: Overproduction of PV and Wind Cut-off of Wind and PV in % of possible production 9 % 8 % 7 % 6 % 5 % 4 % 3 % 2 % 1 % rel. PV-cut-off w/o frequency-reserve rel. Wind-cut-off w/o frequency-reserve rel. PV-cut-off w. 7 GW frequency-reserve rel. Wind-cut-off w. 7 GW frequency-reserve 0 % 2000 2005 2010 2015 2020 2025 2030 26 Bei Abschaltung von Wind + PV-Leistung bei Überproduktion

Market simulation: annual duration curve of residual power production 60000 50000 Res.Last-00 Res.Last-11 Res.Last-15 Res.Last-20 Res.Last-25 Res.Last-30 40000 Residuallast in MW 30000 20000 10000 27 0 0 1000 2000 3000 4000 5000 6000 7000 8000 Stunden pro Jahr If wind- and solar power are determined in case of overproduction

Market simulation: annual duration curve of electricity prices 100 80 60 Preis-00 Preis-11 Preis-15 Preis-20 Preis-25 Preis-30 Preis in /MWh 40 20 0 0 1000 2000 3000 4000 5000 6000 7000 8000-20 28-40 If wind- and solar power are determined in case of overproduction Stunden pro Jahr

Market simulation: average spot market prices 50 45 Average spot market prices 40 35 30 25 Reduction of powerplant capacity Reduction of conventional power plants in % of inst. wind- and solar power capacity 0 % 10 % 20 % 30 % 20 2000 2005 2010 2015 2020 2025 2030 29

Market simulation: CHP electricity revenue with heat storage 70 Average CHP spot market revenue in /MWh 60 50 40 Reduction of PP capacities Reduction of conventional power plants in % of installed wind- and solar power capacity 0 % 10 % 20 % 30 % 30 2000 2005 2010 2015 2020 2025 2030 30

Market simulation: electricity prices (value of electrical power) 70 In case of reduction of conventional power plants about 20 % of inst. wind- and solar power capacitiy 60 elecrical power price in /MWh 50 40 Heat storage size 30 spot price solar power price wind CHP osp. 20 CHP -mtagessp. CHP-bSp. KWK- Sp. price residual load 2000 2005 2010 2015 2020 2025 2030 31

Market simulation: CHP additional electricity revenue due to heat storage 1000 In case of reduction of conventional power plants about 20 % of inst. wind- and solar power capacitiy 900 32 Annual benefit of storage in k /a (2020) 800 700 600 500 400 300 200 100 0 10 100 1000 10000 100000 heat storage size in MWh income 2020 in k /a Ertrag -Annu. Speicheinv.

5 Energy concept Rosenheim: highefficient complementaion of wind - and solar power generation

Gas engine Jenbacher J620 34

Heat storage 35

District heating customer capacity 120.000 Fernwärme Anschlußleistungen in kw 110.000 100.000 90.000 80.000 70.000 + 30% in 3 years 60.000 28.04.07 28.10.07 28.04.08 28.10.08 29.04.09 29.10.09 30.04.10 30.10.10 01.05.11 31.10.11 36

New gas engine Jenbacher J920 for our location Schoenfeldstrasse 37

Wood gasification testing plant # 7 (29. Dez. 2011) 38

6 Energy concept Rosenheim: CO2 neutral until 2025

CO2 balance Rosenheim: electricity- and heat supply 400.000 100 % 100 % 300.000 75 % CO2 emissions in to/a 200.000 34 % 50 % CO2 savings 100.000 25 % 2 % 10 % goal: 0 0 ohne Stw. 1990 2000 2009 2013 2025 0 % CO2 without traffic decrease against 1990 40

7 Summary

List of solutions Gas Gas Gas Waste of energy reduced by cogeneration efficient fuel use (*) complementation of wind- and solar power: power generation in case of loss; combined with big heat storages (*) use of bio- and wood gas CHPs (*) ethical promotion of biomass power generation biogas production without food and feed (bad example E10: cereals and maize) wood gasification (*) algae production (efficient oil- and feed production with CO 2 consumption) (*) storage expansion pumped storage plant for daily balance (*) addition of hydrogen in CHPs for daily and weekly balance (*) heat storage for weekly balance (*) gas storages for annual balance (already existing) DC-Supergrid in Europa (projecting first test line starts in Germany) (*) our actual themes large-scale (larger than high- and low pressure systems) load balancing between production and consumption free-market incentive to energy- and CO2 saving 42

#ank y$ for y$r a%ention! 43