Contents. Preface. A. Overview and Outlook

Similar documents
Transcription:

Preface xv A. Overview and Outlook 1. The Route of Anaerobic Waste (Water) Treatment toward Global Acceptance 1 G. Lettinga 1 Introduction... 1 2 Roots of Modern High Rate AnWT... 3 2.1 Historical aspects of PuSan with AnDi system (e.g., McCarty, 2001).. 3 2.2 Historical aspects of high-rate AnWT... 4 3 Development of Anaerobic Upflow Sludge Bed Systems... 5 3.1 Conventional UASB (Lettinga 1995)... 5 3.2 The EGSB system... 8 3.3 Other high rate reactor designs... 9 4 Place of AnWT in EP... 9 5 What Could the Future Bring?... 11 References... 12 B. Full-Scale Applications 2. Developments of New Anaerobic Treatment Technology in France 17 R. Moletta 1 Introduction... 17 2 New Anaerobic Treatment Technologies... 18 2.1 Anaerobic moving bed biofilm reactor (AMBBR)... 18 2.2 Floating anaerobic filter reactor PROVEO... 19 2.3 Anaerobic membrane bioreactor... 23 2.4 Organic solid waste digestion: the ERGENIUM TM technology... 25 2.5 Control of biogas quality... 29 References... 33 v

vi Contents 3. Applications and New Developments of Biogas Technology in Japan 35 Yu-You Li and Takuro Kobayashi 1 Introduction... 35 2 Applications of Biogas Technology in Japan... 36 2.1 Sewage sludge... 36 2.2 Night soil (human waste)... 38 2.3 Livestock waste... 40 2.4 Municipal solid wastes... 46 2.5 Wastewater treatment... 51 3 New Developments in Biogas Technology in Japan... 52 3.1 Anaerobic membrane reactor... 52 3.2 Two-phase fermentation for hydrogen and methane production... 54 3.3 Biological desulfurization of biogas... 55 References... 57 4. Anaerobic Sewage Treatment using UASB Reactors: Engineering and Operational Aspects 59 J. B. Van Lier et al. 1 Introduction... 59 2 Reactor Size and Shape... 66 2.1 Size... 67 2.2 Basic shape... 67 3 Influent Distribution System... 68 3.1 Final distribution box... 68 3.2 Blockages to inlet pipes... 70 3.3 Inlet pipes diameter... 72 4 Gas Liquid Solid (GLS) Separator... 73 4.1 GLS separator designs... 74 4.2 Materials of construction... 75 4.3 Deflector type... 76 5 Effluent Collection... 77 6 Sludge Withdrawal and Sludge Sampling... 78 6.1 Sludge withdrawal... 78 6.2 Sludge sampling... 79 7 Scum Removal... 80 7.1 Scum in the settler section... 81 7.2 Scum in the gas hood... 82 8 Reactor Covers and Emission Prevention... 82 9 Future Outlook: Treatment of Concentrated Sewage... 84 10 Concluding Remarks... 86 References... 87

vii 5. Application of UASB Technology for Sewage Treatment with a Novel Post-treatment Process 91 S. Uemura and H. Harada 1 Introduction... 91 2 Treatment of Sewage by the UASB Process... 93 2.1 Performance of full-scale UASB reactors under moderate to tropical conditions... 93 2.2 Application of UASB to sewage treatment under psychrophilic conditions... 95 2.3 State-of-the-art of sewage treatment by UASB in India... 97 2.4 Post-treatment for UASB-treated sewage... 100 3 Down-Flow Hanging Sponge Process... 103 3.1 Basic concept of DHS... 103 3.2 History of DHS evolution... 104 3.3 Characteristics of DHS sludge yield... 105 3.4 Performance of a full-scale DHS G2 plant in India... 107 4 Conclusion... 109 References... 109 C. Emerging Technologies 6. Anaerobic Granulation and Granular Sludge Reactor Systems 113 J.-H. Tay et al. 1 Introduction... 113 2 Granulation... 114 2.1 Granulation with methane production... 114 2.2 Granulation with hydrogen production... 117 3 Granular Sludge Reactors... 123 3.1 Upflow anaerobic sludge blanket (UASB) reactor... 123 3.2 Expanded granular sludge bed (EGSB) reactor... 126 3.3 Hybrid anaerobic reactors... 127 3.4 Anaerobic continuous stirred tank reactor (CSTR)... 127 3.5 Anaerobic baffled reactor (ABR)... 129 3.6 Internal circulation (IC) reactor... 129 3.7 Anaerobic sequencing batch reactor (ASBR)... 129 3.8 Anaerobic migrating blanket reactor (AMBR)... 130 4 Future Trends... 130 References... 131 7. Anaerobic Membrane Reactors 137 D. C. Stuckey 1 Introduction... 137 2 History... 138

viii Contents 3 Membrane Configuration... 138 3.1 Pressure-driven external cross-flow membrane... 138 3.2 Vacuum-driven submerged membrane immersed directly into the reactor 141 4 Membrane Pore Size and Composition... 141 5 Membrane Fouling and Flux... 143 5.1 Soluble organics... 145 5.2 Colloidal particles... 145 5.3 Inorganic fouling... 146 5.4 Measures to manage membrane fouling... 146 6 Effect of Operating Parameters... 149 6.1 Operating temperature... 149 6.2 Hydraulic retention time and solids retention time... 151 6.3 Microbial ecology of anaerobic membrane reactors... 152 7 Application to Synthetic and Industrial Wastewaters... 153 8 Potential Application for Anaerobic Membrane Reactors... 154 9 Research Needs and Conclusions... 154 References... 156 8. Anaerobic Baffled Reactor (ABR) for Wastewater Treatment 163 D. C. Stuckey 1 Introduction... 163 2 Reactor Development... 164 3 Reactor Hydrodynamics... 165 3.1 Flow patterns... 165 3.2 Effect of effluent recycle... 166 4 Reactor Performance... 167 4.1 Start-up... 167 4.2 Treatment applications... 168 5 Biomass Characteristics and Retention Capabilities... 172 5.1 Bacterial populations... 172 5.2 Granulation and floc sizes... 173 6 Soluble Microbial Products (SMPs)... 174 7 Modelling... 176 8 Full-scale Experience... 178 9 Conclusions... 179 References... 180 9. Anaerobic Treatment of Phenolic Wastewaters 185 D. Liang and H.H.P. Fang 1 Introduction... 185 2 Phenols Inhibition Effect on the Anaerobes and Restoration of the Bioactivity... 186 2.1 Phenols inhibition effect... 186 2.2 The tolerance of anaerobes to phenolic toxicity... 186 2.3 Recovery of bioactivity after inhibition... 187

ix 3 Reactors Treatment of Phenolic Wastewater... 187 3.1 UASB... 188 3.2 Hybrid UASB... 188 3.3 EGSB... 188 3.4 Granular activated carbon (GAC)-fluidized bed reactor... 192 3.5 Fixed-film reactor (anaerobic filter)... 192 3.6 Other types of reactor... 192 4 Affecting Factors for the Anaerobic Wastewater Treatment of Phenols... 193 4.1 Hydraulic retention time (HRT)... 193 4.2 Loading shock... 193 4.3 Temperature... 194 4.4 Effluent recirculation... 195 4.5 Co-substrate... 195 4.6 Degradation of mixed phenols... 197 5 Phenols-degrading Granular Sludge... 198 6 Anaerobic Phenols-degrading Microorganisms... 199 7 Anaerobic Degradation Pathway of Phenols... 200 References... 201 10. Application of Molecular Methods for Anaerobic Technology 207 T. Zhang 1 Introduction... 207 2 Extraction of Nucleic Acids... 209 3 Selection of Biomarker... 211 4 Polymerase Chain Reaction (PCR)... 212 5 Characterization of Microbial Community... 213 5.1 Cloning... 213 5.2 Diversity estimation... 215 5.3 Metagenome... 215 6 Fingerprint Methods... 216 6.1 DGGE... 216 6.2 T-RFLP... 217 7 FISH... 218 7.1 Introduction... 218 7.2 Quantification using FISH... 219 7.3 Variation of FISH... 219 7.4 Advantages and disadvantages of FISH... 220 8 Microbial Quantification Using qpcr... 221 9 Applications of Molecular Techniques in Anaerobic Technology Studies... 224 9.1 Identification of new species... 224 9.2 Characterization of microbial compositions... 224 9.3 Visualization of structure of granular sludge... 227 9.4 Quantification of various microbial groups... 227 9.5 Evaluation of degradation of refractory compounds... 229

x Contents 9.6 Investigation of microbial communities in anaerobic digestion of special wastewater... 230 10 Perspectives... 232 References... 233 11. Application of Mathematical Models to Anaerobic Digestion Process 241 H. Yasui and R. Goel 1 Classification of Mathematical Models... 241 2 Essentials of Mechanistic Models... 243 2.1 State Variables... 243 2.2 Formulation of conservation equations... 243 2.3 Selection of model units... 244 2.4 Development of model structure... 245 2.5 Model definition using Petersen matrix... 246 3 Considerations in Model Application... 249 3.1 Stoichiometric and kinetics parameters... 250 3.2 Integration of ASM and ADM1 models... 255 References... 256 D. New Developments 12. Anaerobic Digestion of Lignocellulosic Wastes by Rumen Microorganisms: Chemical and Kinetic Analyses 259 Z.-H. Hu et al. 1 Introduction... 259 2 Composition of Lignocelluloses... 260 3 Chemical Analyses... 261 3.1 AFM analysis... 261 3.2 FTIR analysis... 262 3.3 XPS analysis... 263 3.4 GC/MS analysis... 264 3.5 XRD analysis... 264 4 Chemical Analysis on Anaerobic Digestion of Wheat Straw by Rumen Microorganisms... 264 4.1 Materials and methods... 264 4.2 Results of chemical analysis... 265 4.3 Discussion... 270 5 Kinetics Analysis... 272 5.1 Gompertz model... 273 5.2 Monod model... 274 6 Conclusions... 275 References... 275

xi 13. Enzymatic Treatment of Lignocellulosic Wastes for Anaerobic Digestion and Bioenergy Production 279 G. D. Saratale et al. 1 Introduction... 279 2 Structure and Composition of Plant Cell Wall... 281 2.1 The cellulose component... 282 2.2 The hemicellulose component... 282 2.3 The lignin component... 283 2.4 Other cell wall components... 283 3 Lignocellulose-Degrading Microorganisms... 283 3.1 Cellulose-degrading fungi... 283 3.2 Cellulose-degrading bacteria... 284 3.3 Bacterial cellulosome... 285 4 Cellulolytic Enzymes... 286 4.1 Cellulose-degrading enzymes... 286 4.2 Hemicellulose-degrading enzymes... 290 4.3 Lignin-degrading enzymes... 291 4.4 Pectin-degrading enzymes... 292 5 Production and Utilization of Cellulolytic Enzymes... 292 5.1 Recent development in the productions of cellulolytic enzymes... 292 5.2 Immobilization of cellulolytic enzymes for repeated uses... 295 6 Enzymatic Pretreatment of Cellulosic Materials... 296 6.1 Direct application of cellulolytic enzymes... 297 6.2 Microbial hydrolysis of cellulosic materials... 297 7 Anaerobic Treatment and Bioenergy Production from Lignocellulosic Wastes... 298 7.1 Cellulosic hydrogen production... 299 7.2 Cellulosic ethanol production... 300 8 Conclusion... 301 References... 302 14. Biohydrogen Production by Fermentation and Microbial Electrolysis Cells 309 N. Q. Ren et al. 1 Introduction... 309 2 Dark-fermentative Hydrogen Production Process and Controlling Factors... 310 2.1 Dark-fermentative hydrogen production process... 310 2.2 Startup and controlling factors of dark-fermentative hydrogen production... 311 2.3 Pilot and full-scale hydrogen production from wastewater... 313 2.4 Biohydrogen production from complex organic wastes... 314 2.5 Hydrogen production coupling with methane production... 314 3 Photo-fermentative Hydrogen Production Process and Controlling Factors... 316 3.1 Photo-fermentative hydrogen production... 317 3.2 Controlling factors of photo hydrogen production... 317

xii Contents 3.3 Combination of dark- and photo-fermentation... 319 4 Microbial Electrolysis Cells for Hydrogen Production... 320 4.1 Principle and architecture of microbial electrolysis cells... 320 4.2 MEC operation... 321 4.3 Hydrogen production by coupling dark-fermentation and MEC... 323 5 Perspective... 324 References... 325 15. Research and Development of Biohydrogen Production in Taiwan 331 C.-Y. Lin and C.-H. Lay 1 Introduction... 331 2 Anaerobic Hydrogen Fermentation... 332 3 High-Rate Biohydrogen Production Technology... 332 3.1 Culture enrichment technology... 333 3.2 High-rate hydrogen fermentation system... 335 4 Integration of Hydrogen Production and Fuel Cell for on-line Electricity Generation... 337 5 Pilot-Scale Hydrogen Fermentation System... 338 6 Microbial Community... 340 6.1 Bench-scale bioreactor with glucose, xylose, and starch as carbon source 340 6.2 Pilot plant reactor... 341 6.3 Bacterial community analysis by real-time PCR... 341 7 Conclusions... 342 References... 342 16. A Two-Stage Fermentation Process Converting Waste and Wastewater to Hydrogen and Methane 345 H.-S. Shin and D.-H. Kim 1 Introduction... 345 1.1 Climate change, clean energy, and biomass... 345 1.2 Hydrogen energy... 346 2 Fermentative Hydrogen Production... 347 2.1 Photo-driven process... 348 2.2 Fermentation... 348 2.3 Biomass sources for FHP and their feasibility... 350 3 Two-stage Fermentation System... 355 4 Future Research... 357 References... 358 17. Bio-productions of Hydrogen and Ethanol from Sugarcane 365 A. Reungsang and P. Plangklang 1 Introduction... 365 2 Composition of Sugarcane Juice... 366

xiii 3 Composition of Sugarcane Bagasse... 366 4 Hydrogen Production... 366 4.1 Hydrogen production from sugarcane juice... 366 4.2 Hydrogen production from sugarcane bagasse hydrolysate... 368 5 Ethanol Production... 368 5.1 Ethanol production from sugarcane bagasse... 370 References... 374 18. Synthesis Gas Fermentation 379 S. Sung and P.-H. Lee 1 Introduction... 379 2 Microbiology of Anaerobic Microorganisms Capable of Converting Syngas to Biofuels and Chemicals... 381 2.1 Mesophiles for organic acids production... 381 2.2 Mesophiles for alcohols production with the by-products of organic acids... 381 2.3 Mesophiles for hydrogen and poly-β-hydroxyalkanoate (PHA) production... 382 2.4 Thermophiles for hydrogen and organic acid production... 383 3 Metabolic Pathways of Syngas Fermentation... 383 3.1 Acetyl-CoA pathway of bacteria for the formation of organic acids and alcohols... 383 3.2 Acetyl-CoA pathway of bacteria for the formation of hydrogen... 384 4 Carbon Monoxide Gas Liquid Mass Transfer... 385 4.1 Determination of CO gas liquid mass transfer... 385 4.2 Stirred tank rector... 385 4.3 Other fermenters... 385 4.4 Hollow fiber membrane fermenter... 386 5 Gas Liquid Mass Transfer Rates in Syngas Fermentation... 386 6 Performances of Syngas Fermentation for Fuels and Chemicals... 388 6.1 Syngas fermentation for ethanol production... 388 6.2 Syngas fermentation for butanol production... 390 References... 390 Index 393