Harnessing biogas plants for the production of value-added products

Similar documents
Transcription:

Harnessing biogas plants for the production of value-added products Elina Tampio, Satu Ervasti, Erika Winquist, Saija Rasi

Content Introduction Volatile fatty acid (VFA) production in biogas plants Materials and Methods Reactor experiments and analyses Results Methane and VFA production Conclusions 2 Tampio, E. / 2nd Bioeconomy Congress

Introduction Anaerobic digestion Biogas Digestate Biomass Amino acids, sugars Fatty acids VFAs Acetate CO 2, H 2 CH 4, CO 2 3 Tampio, E. / 2nd Bioeconomy Congress

Introduction Volatile Fatty Acid fermentation VFAs Digestate CO 2, H 2 Biomass Amino acids, sugars VFAs Fatty acids Acetate CO 2, H 2 CH 4, CO 2 4 Tampio, E. / 2nd Bioeconomy Congress

Introduction Start-up of VFA production in anaerobic digester using biogas inoculum Inactivation/inhibition of CH 4 producing methanogens Chemical inactivation 2-bromoethanesulfonate (BES, C 2 H 4 BrO 3 SNa) Thermal treatment Optimization of process conditions Change of ph Organic loading rate (OLR), hydraulic retention time (HRT) 5 Tampio, E. / 2nd Bioeconomy Congress

Introduction Biomasses for biogas plants: From municipalities Biowaste Sewage sludge Industry wastes From agriculture Manure Plant biomass From forestry Sludge Ligno-cellulosic waste PROCESSES BIOMASSES PRODUCTS 6 Tampio, E. / 2nd Bioeconomy Congress

Introduction Biogas process Biogas process with valueadded products VFA fermentation = Carboxylate Platform = Targeting bio-production of VFAs PROCESSES BIOMASSES PRODUCTS 7 Tampio, E. / 2nd Bioeconomy Congress

Introduction Biogas/Methane gas 0,3 $/m 3 (NG) 1 1,45 /kg (CBG) 2 Volatile fatty acids (VFAs) short chain carboxylic acids substrates for various organic compounds including alcohols, biohydrogen, bioplastics, microalgal lipids, bioelectricity 600-4250 $/t 3 PROCESSES BIOMASSES PRODUCTS 1 U.S. Energy Information Administration (EIA) 2017. https://www.eia.gov/dnav/ng/ng_pri_sum_dcu_nus_m.htm 2 Gasum Finland 2017. https://www.gasum.com/yksityisille/tankkaa-kaasua/tankkaushinnat/ 3 Calt 2015. Products produced from organic waste using managed ecosystem fermentation. Journal of Sustainable Development 8. 8 Tampio, E. / 2nd Bioeconomy Congress

Aim of the study Start-up of VFA fermentation in continuous anaerobic digester Use of robust and low-cost inactivation of methanogens OLR, HRT Biowaste as feedstock 2 experiments with different process parameters Experiment A Experiment B 9 Tampio, E. / 2nd Bioeconomy Congress

Materials & Methods Biowaste feedstock Feed material to a full-scale digester Mixture of biowaste + circulation water Biowaste TS (%) 10.6 ± 0.17 VS (%) 8.3 ± 1.13 VFAtot (g/l) 15.0 ± 2.5 scod (g/l) 62.2 ± 4.7 NH4-N (g/l) 2.1 ± 0.66 BMP (m 3 CH4/t VS ) 670 ± 10 Inoculum Obtained from a biogas plant treating municipal biowaste One week acclimation prior to experiments HRT 30 d OLR 2-3 kgvs/m 3 d 10 Tampio, E. / 2nd Bioeconomy Congress

Materials & Methods Continuous mesophilic reactor experiments Experiment A 2 * 11 L reactors Experiment B 2 * 6 L reactors Photos: Satu Ervasti Experiment A Experiment B HRT (d) 6 1 9 OLR (kgvs/m 3 d) 7 1 9.2 Days 1-18 1-33 1 Distilled water added to adjust parameters. 11 Tampio, E. / 2nd Bioeconomy Congress

Materials & Methods Gas analyses Gas analyses Biowaste Digestate sampling Digestate analyses: Biowaste ph VFAs (C2-C6) scod TS, VS Gas analyses: A Digestate overflow CH 4 CO 2 H 2 Digestate sampling and removal B 12 Tampio, E. / 2nd Bioeconomy Congress

CH4 (m3/kgvs) Results Daily methane yield during tests 1.00 0.90 0.80 0.70 0.60 0.50 Experiment A (HRT 6, OLR 7) Experiment B (HRT 9, OLR 9.2) 0.40 0.30 0 5 10 15 20 25 30 Days (d) 13 Tampio, E. / 2nd Bioeconomy Congress

CH4 (m3/kgvs) Results Weekly methane yield during tests 0.8 Methane content 65% 0.7 0.6 0.5 Experiment A (HRT 6, OLR 7) Experiment B (HRT 9, OLR 9.2) 0.4 0.3 0 5 10 15 20 25 30 Days (d) 14 Tampio, E. / 2nd Bioeconomy Congress

ph Results ph evolution during tests 8 7.8 7.6 7.4 7.2 Experiment A (HRT 6, OLR 7) Experiment B (HRT 9, OLR 9.2) 7 6.8 0 5 10 15 20 25 30 Days (d) 15 Tampio, E. / 2nd Bioeconomy Congress

VFAtot (g/l) Results VFA evolution during tests 14.0 VFA yield of <2 g/l in Experiment B 3 gcod/l 0.2 gcod/gscod 0.06 gcod/gvs 12.0 10.0 8.0 6.0 VFA, Experiment A (HRT 6, OLR 7) VFA, Experiment B (HRT 9, OLR 9.2) 4.0 2.0 0.0 0 5 10 15 20 25 30 Days (d) 16 Tampio, E. / 2nd Bioeconomy Congress

VFAtot, scod (g/l) Results VFA and scod evolution during tests 14.0 12.0 10.0 8.0 6.0 4.0 2.0 VFA, Experiment A (HRT 6, OLR 7) VFA, Experiment B (HRT 9, OLR 9.2) scod, Experiment A (HRT 6, OLR 7) scod, Experiment B (HRT 9, OLR 9.2) 0.0 0 5 10 15 20 25 30 Days (d) 17 Tampio, E. / 2nd Bioeconomy Congress

Conclusions VFA fermentation start-up with biogas plant inoculum was not successful in 18 and 33 days continuous experiments HRT decrease and OLR increase as inactivation method for methanogens High methane content in biogas (65%) High methane yield (0.5-0.55 m 3 /kgvs) Low VFA production (< 2 g/l) -> Feed: mixture of biowaste and circulation water -> Methanogens in the feed 18 Tampio, E. / 2nd Bioeconomy Congress

Conclusions How to manage start-up of VFA fermentation Use of other means to inactivate methanogens ph control Inoculum treatment Longer start-up time needed ph decrease was observed during 33 days experiment 19 Tampio, E. / 2nd Bioeconomy Congress

Research group and project funding Research group Elina Tampio Satu Ervasti Mari Kukkola Erika Winquist Saija Rasi Project funding Natural Resources Institute Finland (Luke) Travel grant Oskar Öflunds Stiftelse sr 20 Tampio, E. / 2nd Bioeconomy Congress

Thank you! Elina Tampio Research Scientist, PhD Natural Resources Institute Finland (Luke) Bio-based Business and Industry e-mail: elina.tampio@luke.fi tel +358 29 532 6573 21 Tampio, E. / 2nd Bioeconomy Congress

22 Tampio, E. / 2nd Bioeconomy Congress