Peak Irradiance & Energy Density

Similar documents
The State of UV LED Today Michael Beck Phoseon Technology

Controlling Ribonuclease (RNase) with High Irradiance UV LED Light Engines. Breakthrough UV-C Performance Enables Better Control for Lab Managers

UV-LED: Beyond the Early Adopters

UV-LED Curing for Industrial Printing

EFFICIENT UV TECHNOLOGY DESIGNS FOR METAL PACKAGING ASIA CAN TECH CONFERENCE. Kuala Lumpur, November , John Clark

Welcome to Today s Webinar

A Viable Alternative for UV Inkjet Applications

Light-emitting diodes for ultravioletcuring

White Paper Adhesives Sealants Tapes

UV LED Curing for Wood Coatings

Excelitas Technologies Utilizing deep-uv LED below 300nm to enhance curing

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Dr. Saad Ahmed XENON Corporation November 19, 2015

Optimizing an LED-Curing System. Virginia Read, Market Segment Manager Industrial Gary Zubricky, Product Line Manager Equipment

Advances in Intense Pulsed Light Solutions For Display Manufacturing. XENON Corporation Dr. Saad Ahmed Japan IDW 2016

While the current economic

UV/LED PHOTOINITIATOR AND CURE STUDY

Liquid bis-acylphosphine oxide (BAPO) photoinitiators. Author: Dr. Chingfan Chris Chiu Chitec Technology Co., Ltd. Taiwan

Formulating Goals of Energy Curable. Pressure Sensitive Adhesives

Paint and Lacquer Curing Infrared Emitters and UV Lamps Provide an Efficient Combination

VISION INNOVATE INSPIRE DELIVER

Impact of Zinc Oxide on the UV Absorbance and Mechanical Properties of UV Cured Films

SilFORT* UVHC3000. Technical Data Sheet. SilFORT* UVHC3000 weatherable abrasion-resistant hardcoat

High Efficiency UV LEDs Enabled by Next Generation Substrates. Whitepaper

Title. Adhesive lamination: new technology in Solvent Less lamination.

Sustainable packaging and the

ABSTRACT: ACKNOWLEDGEMENT. Erik Donhowe wrote a majority of this paper and allowed me to build on it for this presentations.

Radiation-curing technology

GLM General information. Technical Datasheet

Top tipsfor getting. UV curing. process. the best from your. info 1/11

MAKING IMPROVEMENTS IN ENERGY CURABLE PLASTIC SUBSTRATE ADHESION PERFORMANCE

Measurement data at orders of magnitude lower cost than other techniques BENEFITS Simple UVC source ideal for compact sensors

Fast processes are preferred in

ABSTRACT INTRODUCTION

Solid-State Devices Transforming UV Curing

Inks for Low Migration Applications February 2018

Your ideas. Our technologies.

Biofouling Control Using UVC LEDs

Cladding with High Power Diode Lasers

LOW TEMPERATURE PHOTONIC SINTERING FOR PRINTED ELECTRONICS. Saad Ahmed, PhD Manager-Engineering

HYBRID UV IS IT REALLY ALL UV-LED A C H I M H E R Z O G T H E I J C

Aquacure Hybrid Ink Technology for Digital Printing

SPECIALTY CARBON BLACKS SPECIALTY CARBON BLACKS FOR PRINTING INK APPLICATIONS PRODUCT SELECTION GUIDE

Safety Concerns with New

Measurement data at orders of magnitude lower cost than other techniques BENEFITS Simple UVC source ideal for compact sensors

PEC (Printed Electronic Circuit) process for LED interconnection

Introduction to Nanoscience and Nanotechnology

ABchimie526UV DS55 M Oct Conformal Coating (UV -Dual cure)

OPTAN BALL LENS. Data Sheet Updated December, 2018 BENEFITS

Excelitas Technologies Improved Surface Cure with UVC LED

Features. Benefits. Min Typical Max Min Max. OPTAN-250H-BL 245 nm 250 nm 255 nm 0.5 mw 1.0 mw. OPTAN-255H-BL 250 nm 255 nm 260 nm 0.5 mw 1.

due to inadequate curing. Whilst poor curing will cause adhesion failures, it must be noted that List of Contents

Photonic Drying Pulsed Light as a low Temperature Sintering Process

EE 527 MICROFABRICATION. Lecture 15 Tai-Chang Chen University of Washington EE-527 M4 MASK SET: NPN BJT. C (sub) A E = 40 µm x 40 µm

OmniCure Assembly Solutions

Klaran GD Series UVC LEDs

Klaran GD Series UVC LEDs

A Novel Approach to UV Curing for PVC and Wood Applications By Jon Marson and Paul Mills, Phoseon Technology

Better stick with UV-curing

Optimal Lighting Design Boosts Efficiency of Medical Diagnostic Instruments

Photolithography I ( Part 2 )

Abstract. Introduction

Elga Europe RS-2000 SERIES. PRODUCT DATA SHEET Edition June UL CERTIFICATE file n QMJU2.E PRODUCT DESCRIPTION

Well-thought-out details result in superior systems :

CO 2. and fiber laser product range. Laser Marking Solutions

INDUSTRIAL DIGITAL INKJET PRINTING SOLUTIONS

SilForce* SL7562S Solventless Coating

EFI Expands Inkjet TAM Acquires Reggiani and Matan. July 1, 2015

3M Contrast Enhancement Film

Keeping that shine on your automobile is important to you. Our products help you maintain it.

PulseForge TM. Curing Copper and other Thin-Film Materials. Stan Farnsworth, VP Marketing

TEGO RC Silicones It s all about knowing when to let go

ACRYL-FUNCTIONAL SURFACE ADDITIVES FOR RADIATION CURABLE COATINGS

Elga Europe ORDYL DRY FILM AM 100. PRODUCT DATA SHEET Edition November 2016 PRODUCT DESCRIPTION

NORIPHAN XMR Halogen Free Ink System for IMD/FIM-Technology (back molding of screen printed films)

Photonic Sintering of Silver for Roll-to-Roll Printed Electronics. Saad Ahmed, PhD Manager-Engineering

uv.eb West 2013 Formulating UV Products that Resist Corrosion 2/26/2013

UV Curable Putty for Automotive Repair

Test item Unit Test results Test method Remarks TS C 2/20 rpm

CO 2. and fiber laser product range. Laser Marking Solutions

micro resist technology

Greener production processes and continuous process improvement through the use of next generation coating thickness measurement methods

revolutionary flexibility

PROSPECTUS. Electrocoat

RADIATION CURABLE PRESSURE SENSITIVE ADHESIVES

Formulating to good effect

complete with pallet support bars, column guards, safety barriers, pallet back stopper painting

A FORMULATOR S GUIDE TO ENERGY CURABLE LAMINATING ADHESIVES

The Effect of Diode laser wavelength on the Clearweld Welding Process

Reliability of Precision Optical Performance AlInGaP LED Lamps in Traffic Signals and Variable Message Signs Introduction The Anatomy of a

Low frequency magnetic shielding: Nanocrystalline coating vs. ferromagnetic foils.

Dr. Christoph Timm - Novamelt GmbH - Germany

NOVEL POLYMER DESIGN FOR RADIATION CURABLE PSAS

Using UV Reflective Materials to Maximize Disinfection

Product Flyer MEDIUM PRESSURE UV LAMPS

Illuminating Innovations

Code2Carton: Tested marking quality for your cartons

A.D. Alobaidani, * D. Furniss, M.S. Johnson, Faculty of Engineering, University of Nottingham,

Photoresist Coat, Expose and Develop Laboratory Dr. Lynn Fuller

Flame retardant radiation curable coatings for parquet application

Transcription:

Peak Irradiance & Energy Density What They Are and How They Can Be Managed for UV Curing Applications A Phoseon Technology White Paper April 2018

Overview In the printing industry, professionals have used an array of techniques, including forced air, infrared heat, electron beam and UV light to dry inks, coatings, and adhesives on everything from newspapers and magazines, to flexible and rigid packaging, labels, and signage. For industrial applications, energy from conventional ultraviolet (UV) arc and microwave lamps is often used to cure adhesives, coatings, paints and varnishes. Historically, these methods have worked with various degrees of success, albeit with excessive heat and limited control of the final product, often resulting in less-than-perfect results and excessive scrappage. These drying methods are still widely used today. In some cases, non-uv processes are preferred. While many manufacturers continue to use a broad range of techniques for their curing applications, an increasing number are embracing UV LED due to its numerous benefits, including the ability to generate higher yields, reduced scrap, lower running and maintenance costs and precision control. Furthermore, the UV output from LED curing systems remains consistent over the life of the device and provides a more uniform result than arc and microwave lamps. That means tighter process control, less downtime, greater plant utilization and an overall better and more consistent product. 2 Phoseon Technology 2018

How UV LED Curing Works UV curing is a photopolymerization process that uses UV energy to change a formulation of non-crosslinked solids into a crosslinked solid. Upon absorption of the UV energy, photo initiators produce free radicals that initiate cross-linking with binders (monomers and oligomers) in a polymerization reaction to cure or solidify the ink, coating or adhesive. UV formulations also incorporate various additives such as stabilizers, wetting agents, adhesion promoters, defoamers and pigments to provide desirable characteristics or color of the cured material. What is a UV LED? UV Light Emitting Diodes (LEDs) are a solid-state device that produces light when an electrical current flows from the positive (p-type or anode) side of the circuit to the negative (n-type or cathode) side. This is called the p-n junction. Each LED is made to produce a specific narrow range of UV wavelength. UV curing technology is utilized for drying inks, coatings, adhesives and other UV-sensitive materials through polymerization. UV LED improves on that process by enabling the use of thinner, heatsensitive substrates, electronics and assemblies, while reducing harmful byproducts and improving workplace safety. Phoseon Technology 2018 3

UV Not One-Size-Fits-All UV curing refers to the unique way in which adhesives, coatings and inks are dried using photons from UV light sources rather than heat to drive evaporation of a solvent or water-based carrier. If you drive a car, use a smartphone, or drink single-serve beverages, there is a good chance that aspects of the product or packaging have been cured using UV light. There are two key parameters of an LED lamp that should be understood for the purposes of optimizing cure and establishing a process window. Identifying this process window will result in the most durable and desirable finish, as well as acceptable adhesion and surface cure: peak irradiance (Watts/cm 2 ) and energy density (Joules/cm 2 ). 4 Phoseon Technology 2018

Peak Irradiance and Energy Density Peak irradiance, also called intensity, is the radiant power arriving at a surface per-unit area. With UV curing, the surface is the cure surface of the substrate or part, and a square centimeter is the unit area. Irradiance is expressed in units of watts or milliwatts per square centimeter (W/cm 2 or mw/cm 2 ). Peak irradiance is instrumental in penetration and aiding surface cure. Peak irradiance is affected by the output of the engineered light source, the use of reflectors or optics to concentrate or contain the rays in a tighter surface impact area, and the distance of the source from the cure surface. The irradiance for UV LEDs at the cure surface decreases quickly as the distance between the source and the cure surface increases. The irradiance for UV LEDs at the cure surface decreases quickly as the distance between the source and the cure surface increases. Energy density, also called dose or radiant energy density, is the energy arriving at a surface per-unit-area during a defined period of time (dwell or exposure). A square centimeter is again the unit area and radiant energy density is expressed in units of joules or millijoules per square centimeter (J/cm 2 or mj/cm 2 ). Energy density is the integral of irradiance over time. A sufficient amount of energy density is necessary for full cure. Phoseon Technology 2018 5

Finding the Right Combination Conventional arc lamps typically emit peak irradiance in the range of 1 to 3 Watts/cm 2, while microwave lamps generally emit as much as 5 Watts/cm 2. Phoseon s UV LED curing systems currently emit peak irradiance up to 16 Watts/cm 2, for air-cooled heads and 24 Watts/cm 2 for liquid-cooled heads. Over the past 15 years, increasing UV LED peak irradiance has been instrumental for curing a growing number of formulations in a wide array of applications. Today, many UV formulations have been optimized for UV LED sources, and a higher peak irradiance often is no longer necessary. Research reveals that in many cases, excessive irradiance can negatively affect or hamper proper curing. Sometimes turning down the irradiance and providing more energy density is the way to improve cure for faster line speeds. The light source s proximity to the substrate is important because irradiance decreases with distance. Manufactures can use optics to manipulate a higher irradiance over a greater distance. With or without optics, vendors compensate for this with different LED arrays, optical elements, or a combination of both. Irradiance vs Working Distance From Understanding UV Output With Optics Without Optics Irradiance (%) 0 5 10 15 20 Working Distance 6 Phoseon Technology 2018

Energy density is a factor of the output of the engineered light source, the number of UV sources, and the exposure time. In other words, increasing the irradiance, slowing the line speed, or adding more or wider lamps will all increase energy density for a given installation. It is important to understand that not all products with the same irradiance deliver the same energy density. Energy density also is impacted by the speed at which the substrate or part passes under the lamp; or conversely the lamp passes over the substrate or part. Theoretically, if a material is curing sufficiently at 50m/min, then increasing the speed to 100m/ min while doubling the irradiance will result in delivery of twice the energy density, which should cure the material sufficiently. Increasing the irradiance of a given lamp will increase the energy density by the same percentage. The cure surface is subsequently exposed to the same amount of dose. Unfortunately, most real-world applications are never perfect, and the chemistry doesn t always scale up according to theoretical models of UV output. Some materials don t cure faster when additional irradiance is provided. Increasing the belt speed to 100m/min sometimes requires double the dwell time, not an increase in irradiance. Irradiance vs Position From Understanding UV Output Dose = Irradiance x Dwell Time Dose = 2W/cm 2 x 2 sec. Dose = 4 Joules/cm 2 Material Irradiance = 2W/cm 2 Phoseon Technology 2018 7

What is the expected lifetime of the UV LED light source? Because of Phoseon s rigorous reliability efforts, lifetime testing of light sources has now surpassed 70,000 hours of operational on-time, with light source irradiance being greater than 80% of its original output when the test first began five-plus years ago. For perspective, utilizing a single shift workweek of 2,000 hours per year, 70,000 hours equates to 30 years of UV LED operating on-time. Wavelength From Understanding UV Output As previously detailed, energy density is the integral of irradiance over time. In other words, it s the area under the irradiance cure. In the image above, the UV power under Area 1 and Area 2 of the respective curves is equal, but each curve provides different peak irradiance. A material may cure better scanning across Area 2 with lower peak irradiance and a longer dwell time. Another material may be more suitable to Area 1. Think of it like medication. A doctor may instruct a patient to take one 50mg tablet (irradiance) 4 times a day for 10 days (dwell time). The same dose can be delivered two alternate ways: Take four 50mg tablets (200mg) once per day for 10 days; Take one 50mg tablet twice a day for 20 days. Although the dose is the same for all three methods, according to the doctor, the two alternatives are not optimal. UV curing is similar in that the goal is to optimize the dose to properly cure the formulation. Another analogy is baking a cake. The recipe (dose) calls for an oven temperature (irradiance) over a period of time (dwell time). It instructs to heat the oven to 350 F and then bake the cake for 30 8 Phoseon Technology 2018

minutes, which results in a cake that is completely baked through, without burning. The cake experiences 350 F for 30 minutes. This is akin to the energy density, or dose, required to fully bake all the cake batter. If the cake is baked at twice the temperature for half the time, the cake burns. Conversely, if the cake is baked at half the temperature for double the time, it may not be baked in the center (not fully cured). 1 For an individual lamp, peak irradiance is not impacted by line speed. It is an absolute magnitude of output that does not vary. But don t assume a high irradiance lamp provides high energy density; it may or it may not. Phoseon Technology has developed a large portfolio of products with varying maximum peak irradiance levels and energy densities to fit most curing needs. The idea is to match the correct UV curing source to the needs of the application. Products Group by Irradiance from Understanding UV Output Irradiance 1 Special thanks to Paul Mills for guidance and analogies Phoseon Technology 2018 9

is beneficial, for others For some applications, a high peak irradiance it can diminish cure. What s More Important: Irradiance or Energy Density? In any curing situation, users often ask: What s more important, peak irradiance or energy density? Unfortunately, the answer depends on the implementation and both play an important role in cure. A minimum threshold irradiance is needed to start the polymerization process, and then a dwell time of dose is needed to finish the curing process. For some applications, a low dose is required. For others, a larger dose is needed. For some applications, a high peak irradiance is beneficial, for others it can diminish cure. The formulation and substrate also have a large impact on what is required as well as the material handling. 10 Phoseon Technology 2018

Considerations UV curing is application-specific. The substrate, formulation and UV energy must be combined to maximize each contribution and minimize each shortcoming. For instance, increasing material thickness from 10 µm to 20 µm drastically impacts the cure, as the photons have 2x the density to penetrate and polymerize the material. Increasing the belt speed from 50m/min to 100m/min requires double the irradiance for the same curing reaction and dose, all else being equal. But as with most things in life, doubling the speed may lead to other unknown or unforeseen challenges and may not be optimal. Each wavelength has unique properties and must be matched with the correct photo initiator to ensure proper cure. Each wavelength has unique properties and must be matched with the correct photo initiator to ensure proper cure. In general, longer wavelengths (UVA and UVV) result in deeper through-cure. Also, beware of marketing claims, such as highest irradiance. A product may have a higher peak irradiance compared with another product, but it may have drastically reduced energy density. Wavelength from Understanding UV Output Normalized Irradiance (%) 140% 120% 100% 80% 60% 40% 20% 0% 0 10 20 30 40 50 60 Position along emitting window (mm) A B The type of material being cured and what type of light source will best match the curing needs must be considered for each application. Working closely with the ink, coating or adhesive supplier, the light source supplier and the integrator or machine builder will result in a well-matched total solution. Phoseon Technology 2018 11

Which Lamp is Best for Me? What determines the proper lamp for a specific printing application? Ink suppliers provide cure parameter specifications, but each supplier typically derives those specifications from bench top lab testing using their own, established test methods. For example, two different inks from two different suppliers can have the same cure parameter specifications. However, those specifications likely are derived using two different test methods, including the use of different UV LED lamps. What if supplier A ink and supplier B ink have the same curing specifications: Peak wavelength = 395nm Irradiance = 6W/cm² Both inks require 6W/cm² to start the curing process and both are designed for lamps with a peak wavelength of 395nm. But, how much dose or dwell time is required to complete the cure? Unfortunately, it can be difficult to determine. Additional information on the specification sheet may help, especially if recommended belt speed and the lamp used in testing is known. To add one more bit of confusion, ink specification data sheets clarify their curing parameters as, your results may vary and they usually do. However, it is a starting point. Phoseon Lamp Output Profiles from Understanding UV Output With limited ink curing information, which Phoseon lamp is the best solution for supplier A and supplier B inks? Although all three lamps provide sufficient threshold irradiance, each of these lamps deliver different levels of energy density. Which one will work best? 12 Phoseon Technology 2018

Let Phoseon Help With all the variables, finding the UV LED curing technology to produce the proper peak irradiance and energy density for your specific digital inkjet, screen, web offset, flexography or industrial coating application may seem complicated. Phoseon Technology has the broadest range of UV LED curing systems available, each specifically designed for the various UV curing applications. FirePower, FireJet and FireEdge air- and water- cooled products are designed to provide superior process stability and consistency for an array of small and wide printing needs. Phoseon Technology s experienced sales staff and applications engineers are the most knowledgeable in the industry at matching its UV LED products to the intended applications and know how to adjust the configurations for more demanding applications that involve specialty chemistry, faster press speeds, tight spaces, and wide webs. Phoseon Technology 2018 13

The Phoseon Advantages In 2002, Phoseon Technology pioneered the use of LEDs for UV curing applications using the polymerization process to dry adhesives, coatings, inks and other UV sensitive materials. Today, Phoseon products are successfully curing UV applications worldwide and represent the largest installed base of an UV LED systems company. With more than 270 patents worldwide, Phoseon has earned the reputation for technological innovation, quality and reliability. As the market leader with the broadest portfolio of UV LED lighting offerings for our key markets, we welcome the opportunity to work jointly with you in developing further innovative solutions. 14 Phoseon Technology 2018

Author Joe Becker, Product Marketing Engineer, Phoseon Technologies For more information about Phoseon Technology products and services, please contact: Joe Becker, joe.becker@phoseon.com Phoseon Technology 2018 15

About Phoseon Technology The world leader since 2002, Phoseon Technology pioneered the use of LED technology for Life Science and Industrial Curing applications. Phoseon delivers innovative, highly engineered, patented LED solutions. The company is focused 100% on LED technology and provides worldwide support. Contacts For more information about Phoseon Technology suite of products, visit http://www.phoseon.com/ or call (503) 439-6446 Copyright 2018 by Phoseon Technology. All rights reserved. The information contained herein has been obtained by Phoseon Technology from sources believed to be reliable. However, because of the possibility of human or mechanical error by these sources, Phoseon Technology does not guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or for the results obtained from use of such information. This material is the property of Phoseon Technology or is licensed to Phoseon Technology. This material may only be reproduced, transmitted, excerpted, distributed, or commingled with other information, with the express written permission of Phoseon Technology. The user of this material shall not edit, modify, or alter any portion. Requests for use may be submitted in writing to www. phoseon.com/contact. Any material quoted from this publication must be attributed to UV Power or Irradiance? and Why Both Matter, published by Phoseon Technology, 2018 by Phoseon Technology. All Rights Reserved.