Z. Liu, R. Reents, F. Reinhardt, and K. Kuwan United Datasystems for Animal Production (VIT), Heideweg 1, D Verden, Germany

Size: px
Start display at page:

Download "Z. Liu, R. Reents, F. Reinhardt, and K. Kuwan United Datasystems for Animal Production (VIT), Heideweg 1, D Verden, Germany"

Transcription

1 Approaches to Estimating Daily Yield from Single Milk Testing Schemes and Use of a.m.-p.m. Records in Test-Day Model Genetic Evaluation in Dairy Cattle Z. Liu, R. Reents, F. Reinhardt, and K. Kuwan United Datasystems for Animal Production (VIT), Heideweg 1, D Verden, Germany ABSTRACT Statistical models were presented to estimate daily yields from either morning or evening test results. The 64,451 test-day records from 10,392 lactations of 8800 cows were available for analysis from experiments that were designed to investigate the accuracy of an alternate morning and evening four-weekly milk-testing scheme. The experiments were conducted in 152 herds from six German states and covered a span from 1994 to Milk yield, fat, and protein percentage were recorded for all of the morning and evening milkings. Seven statistical models were fitted to the data to derive formulas for estimating daily yields from morning or evening yields. In general, use of evening milkings less accurately estimated yields than did use of morning milkings. Among the three yield traits the lowest accuracy of estimation of daily yield was found for fat yield. Although the models do not differ much in the correlation between estimated and true daily yields, systematic under- and overestimation of daily yield at the beginning and end of lactation were observed in all models with the exception of model 6, which accounted for heterogeneous variances by parity class, milking interval class, and lactation stage by fitting separate regression formulas within each combination of the three factors. A study to validate the models showed that model 6 is also robust for the analyzed populations. Smoothing model 6 regression formulas across lactation stages caused a systematic pattern of estimation error, although loss in accuracy was minimal by fitting far fewer parameters in the regression formulas. Differences in the accuracy of alternate milking schemes to predict daily yields were found between traits, between morning and evening milkings, and between parity classes. Compared with true daily yields from different lactation stages, variances and correlations of the estimated yields were reduced, which must be accounted for in genetic evaluation. The use of estimated daily Received January 14, Accepted May 27, Corresponding author: Z. Liu; zliu@vit.du. yields from morning or evening milkings has a smaller impact on estimated breeding values of bulls than cows. As a result of lower heritability and repeatability of estimated daily yields than true daily yields, the weight on own test-day records for estimating cows breeding values is lower when cows are in a.m. p.m. than conventional monthly testing schemes. However, the difference in the weights between estimated and true daily yields decreases as lactation progresses. Use of estimated daily yields is less reliable for estimating breeding value than use of true daily yields. (Key words: alternate a.m. p.m. testing scheme, daily yield, genetic evaluation, test-day model) Abbreviation key: a.m. p.m. = supervised alternate a.m. p.m. testing scheme, A4 = supervised monthly testing scheme, MI = milking interval, MIC = milking interval class. INTRODUCTION Milk recording is essential for herd management and genetic improvement in dairy cattle. Under increasing pressure to reduce costs, numerous milk testing schemes have been developed in many countries in the last decades (5, 14, 21, 22) to supplement the standard supervised four-weekly testing scheme (A4). The alternate morning and evening (a.m. p.m.) testing scheme was designed to achieve reasonable accuracy in estimating daily yields at a lower cost. Between 1989 and 1999, milk testing schemes in Germany comprised 2.2% a.m. p.m. and 97.8% monthly testings. The proportion of a.m. p.m. testing increased to 17.8% in 1999 with variable popularity of a.m. p.m. scheme in different regions of Germany. Many studies have been conducted to investigate the accuracy of a.m. p.m. scheme in comparison with the conventional A4 scheme (1, 2, 3, 9, 11, 21, 22). For estimating daily yield from single milkings, DeLorenzo and Wiggans model (3) has been widely used, which takes heterogeneous means and variances between milking intervals (MI) into account by fitting separate regression models to each milking interval class (MIC). Additionally, a linear regression on DIM was fitted in 2000 J Dairy Sci 83:

2 ESTIMATING DAILY YIELDS 2673 the modified formulas to remove the effect of the shape of lactation curve from residuals. However, parity and lactation stages are not considered in this model. Most research work (2, 6, 12, 16) has been focused on estimating 305-d lactation yields from single milkings. Some systematic biases, e.g., underestimation of daily yield at the beginning and overestimation at the end of lactation, can be canceled out, to a large extent, in the calculation of 305-d lactation yields, except for short lactations. Thus, such systematic bias does not impose serious problems in the estimation of 305-d lactation yields. However, as genetic evaluations that use testday data become more popular in dairy industries (13, 17), a thorough examination of the impacts of various models on daily yield estimates and estimated breeding values is needed. The objectives of this study are 1) to compare statistical models for estimating daily yields, and 2) to investigate the impact of the use of a.m. p.m. data on testday model genetic evaluation. Data MATERIALS AND METHODS Data stem from milk recording experiments designed to assess the accuracy of the a.m. p.m. scheme in six German states: Meklenburg-Western Pomerania, Lower Saxony, Rhineland-Palatinate, Saxony-Anhalt, Schleswig-Holstein and Thuringia, from 1994 to The 64,451 test-day records of 10,392 lactations of 8800 cows were available from 1055 milk tests in 152 herds. After screening records for unreasonable calving date, DIM, MI, lactation number, and cow registration number, 62,459 test-day records of Holstein cows remained. The MI were grouped into four classes of 30-min intervals for both morning and evening milking records, because intervals shorter or longer than 30 min were considered to be impractical for recording the information. From the preliminary study, it was found that fat and protein yields from single milkings can be more accurately adjusted to a 24-h basis than can fat and protein content. Thus, we decided to estimate regression formulas only for yield traits that are subsequently used to compute fat and protein content on a daily basis. Table 1 shows structure and some descriptive statistics of the analyzed data. It is obvious that variable means and heterogeneous variances exist between MIC, which indicates the necessity of modeling the heterogeneity of MIC variances. Compared to first lactations, later-parity records have higher means and much larger variances. Thus it is also important to consider the variance difference among parity classes. Statistical models that neglect the effects of parity and lactation stages in the estimation of daily yields would lead to biased daily yield estimates. Higher means and large variances are observed for milk yield from morning milkings than evening milkings. Table 2 shows correlations among morning, evening, and daily yields for five production traits. Evening milkings have lower correlations with daily yields than morning milkings. Among all traits, fat content from single milkings are least correlated with its daily measurements, which decreases the accuracy of estimated daily records from single milkings for fat content and consequently for fat yield. The highest correlation among all the traits is observed between morning and evening protein yield. Statistical Models for Estimating Daily Yield from Single Milkings A few statistical models have been proposed to estimate daily yield (y A4 ) from partial yield (y AT ) from single milkings (2, 3, 4, 9). In this study, seven models have been applied to the same data set to compare their accuracy. These models were selected because they were, and some cases still are, used to estimate daily yields by milking recording agencies in various countries. A demonstration of the deficiency of some models is necessary, particularly for the purpose of genetic evaluation with test-day models. Model 0. Original DeLorenzo factors without consideration of DIM (3), which had been de facto the standard method for estimating daily yield in Germany. Heterogeneous means and variances of partial or daily yields from different MIC are modeled by fitting a separate regression line within each MIC. Model 1. Doubling method: y A4 = 2y AT [1] This model assumes that daily yield is expected to be twice the average of morning and evening milkings. No information from actual milk testing experiments is used in deriving conversion formulas from partial to daily yields. Model 2. Single regression: y A4 = b 0 + b 1 y AT [2] Daily yield is regressed on morning or evening partial yield. Only one regression formula is fitted to the whole data set. Model 3. Single regression plus MI as a covariate: y A4 = b 0 + b 1 y AT + b 2 MI [3]

3 2674 LIU ET AL. Table 1. Description of first (in the first row) and later (in the second row) parity data from the alternate milking testing scheme experiments. <13 h* or 13 h 13.5 h or 13.5 h 14hor 14hor 11.5 h 11 h 11.5 h 10.5 h 11 h <10 h Item + µ σ 2 µ σ 2 µ σ 2 µ σ 2 AM No. records 1,046 10,250 4,116 1,559 5,702 22,701 10,626 6,438 Milk, kg Fat 100, kg Protein 100 kg PM No. records 810 6,265 5,389 4,508 3,690 16,352 13,090 12,338 Milk, kg Fat 100, kg Protein 100, kg DMY No. records 16,975 45,469 µ σ 2 Milk, kg Fat 100, kg Protein 100, kg AM = a.m. milking, PM = p.m. milking, DMY = daily milking. *Length of preceding milking interval in hours for morning milkings. Length of preceding milking interval in hours for evening milkings. µ sample mean of trait. σ 2 sample variance of records. Variances have squared units of corresponding traits. Actual trait values of fat and protein yield multiplied by 100. Compared to model 2, an additional regression coefficient on MI is added. Thus the average effect of MI on daily yield is taken into account. Model 4. Separate regression for MIC i: y A4 [i] = b 0 [i] + b 1 [i] y AT [i] [4] A separate regression formula is fitted for each MIC to account for heterogeneous means and variances of partial or daily yields. Models 0 and 4 are equivalent Table 2. Correlations among morning, evening and daily records. Trait AM* PM AM DMY PM DMY Milk, kg Fat, kg Protein, kg Fat, % Protein, % *AM = a.m. milking, PM = p.m. milking, DMY = daily milking. if the intercept term for every MIC is equal to zero. Model 4 makes a less restrictive assumption on the regression formulas than model 0. Model 5. Modified DeLorenzo and Wiggans model: y A4 [i] = b 0 [i] + b 1 [i] y AT [i] + b 2 [i] (DIM 158) [5] Similar to model 4, each MIC i has one regression. Additionally, a regression on DIM is included to remove the effect of lactation stages on the residuals (3). The reference DIM is set to 158, representing the DIM at the middle point of lactation. Model 6. Separate regression for every combination of parity i, MIC j, and lactation stage k: y A4 [ijk] = b 0 [ijk] + b 1 [ijk] y AT [ijk] [6] Because different parity and lactation stages have variable means and heterogeneous variances for both partial and daily milking yields, the regression coeffi-

4 ESTIMATING DAILY YIELDS 2675 cients of daily yield on partial yield are likely to be heterogeneous among parity class or lactation stages. Therefore, a separate regression is fitted for each of the 96 levels (2 parity class 4 MIC 12 lactation stages). As models become complex, more information is utilized in analysis, and this results in improved accuracy in the estimation of daily yields. Assumptions Underlying the Widely Used DeLorenzo and Wiggans Model In contrast to other models, DeLorenzo and Wiggans model (3) uses the ratio of daily to partial yield from single milkings, instead of daily yield itself, as the dependent variable in regression analysis. Thus model 0 implicitly assumes that the regression lines go through point zero, y A4 = 0ify AT = 0, which may be unrealistic, because the lower limit of yields is always greater than zero. Because no regression factors for evening milkings were provided in DeLorenzo and Wiggans study, these factors are usually derived mathematically based on those for morning milkings without analyzing actual evening milking data. As shown later, such derived factors for evening milkings lead to large error in daily yield estimates. As models 1 to 5, model 0 does not consider the effect of parity. Due to lack of individual cow information on sample day fat or protein content as well as preceding MI for single milkings, the authors (3) had to use tank percentages for fat and protein and herd average MI to derive factors to estimate daily yield of fat and protein. As shown in a study by Averdunk et al. (1), using MI information on individual cows can improve the accuracy of estimation. Because of heterogeneous variances during the course of lactation for both partial and daily yields, fitting a single regression line to test day yields from various lactation stages in model 0 as well as models 1 to 5 may not be optimal. Smoothing Model 6 Regression Formulas of Different Lactation Stages For a given parity by MI class, 12 regression formulas are derived with model 6 over 12 mo of lactation. Because the intercept and slope of individual regression formulas are estimated by ignoring test-day record information from neighboring lactation stages, the resulting regression formulas may not look smooth across lactation stages. Because intercept and slope estimates of regression formula are correlated within as well as across lactation stages, it is inappropriate to smooth the intercept or slope estimates separately. We attempted to smooth the intercept and slope jointly by considering the correlations of yields between different lactation stages. Two possible approaches could be im- plemented for smoothing the regression formulas: one is an analogue to a covariance function (8) and the other to Schaeffer and Jamrozik s multiple trait prediction (16) or random regression test-day models (7, 17). The covariance function approach models regression coefficient estimates directly without analyzing actual testday records, but requires the knowledge of (co)variance matrix of intercept and slope estimates that can only be obtained with joint analyses of at least two lactation stages. Because covariances of regression coefficient estimates between lactation stages are unknown, the covariance function approach was not implemented in this study. Instead, the second approach was fitted to actual test-day data. For a given combination of parity class and MIC, the following model is fitted to the data: y A4 = c 0 + c 1 *l + c 2 *l 2 + c 3 *l 3 + c 4 *l*y AT [7] + c 5 *l 2 *y AT + c 6 *l 3 *y AT + c 7 *y AT + e where l is lactation stage in months (l = 1, 2,, 12) or weeks (l = 1, 2,, 52). The quadratic and cubic terms l 2 and l 3 allow that the relation between partial and daily yields during the course of lactation are nonmonotone, because the terms c 0, c 1, c 2, c 3 or c 4, c 5, c 6, c 7 can have different signs. The number of parameters to be estimated for a given combination of parity and MIC is reduced from 24, as in model 6, to 8. The model [7] is more parsimonious than model 6. Once the regression coefficients of the smoothing model [7] are estimated with actual data, regression formula for a given lactation stage, i, can be obtained: ŷ [i] A4 = [ĉ 0 + ĉ 1 *i + ĉ 2 *i 2 + ĉ 3 *i 3 ] + [ĉ 4 *i + ĉ 5 *i 2 [8] + ĉ 6 *i 3 + ĉ 7 ]*y AT = b 0 [i] + b 1 [i] *y AT To study the impact of the presented models on (co)- variance structure of daily yields, a fixed effects model is used to analyze both true and estimated daily yields: y ijk = HTDP i + b 1j DIM + b 2j DIM 2 + e ijk [9] where y ijk is true or estimated daily yield of cow k, HTDP i is the i-th herd-test-date-parity fixed effect, b 1j,b 2j are regression coefficients of daily yield from j- th class of calving season and parity on DIM, and e ijk is residual effect. Note that the above model contains the fixed effects of the test-day model proposed by Reents et al. (13). A separate lactation curve is fitted for each class of calving season parity effects. Instead of assuming a complex (co)variance structure as in Reents et al. (13), residual effects are assumed to be uncorrelated between records

5 2676 LIU ET AL. of the same lactation. Deviations of true as well as estimated daily yields were calculated: DEV ijk = y ijk HTDPˆ i + bˆ 1jDIM + bˆ 2jDIM 2 [10] Accuracy of a.m. p.m. Testing Scheme The accuracy of a.m. p.m. milk testing scheme for estimating daily yield is defined as (10): R 2 = σ 2 /(σ 2 + MSE) [11] Where σ 2 is phenotypic variance of true daily yield, and MSE is mean squared error that is equal to variance of the difference between true and estimated daily yields. For yields on 24-h basis, formula [11] gives R 2 = 1. Phenotypic variance of true daily yield (σ 2 ) was estimated using REML method (15) under the model [9] and results are presented in Table 3. The a.m. p.m. scheme for estimating lactation yield with multiple test-day records is expected to be more accurate than estimating daily yield because of the high repeatability of the yield traits. Use of Single Milking Data in Test-Day Model Genetic Evaluation Estimated and true daily yields could be treated as genetically different traits in genetic evaluations. This so-called multiple trait approach is theoretically optimal, but technically infeasible for routine genetic evaluation for large dairy populations, e.g., the German Holstein population, as a result of high computing cost of this approach. Therefore, the conventional approach (19, 20) is modified to jointly analyze estimated and true daily yields in test-day model genetic evaluation, in which estimated daily yields are assigned to larger error variance based on the accuracy of a.m. p.m. scheme than are true daily yields. This approach leads to a much smaller increase in computing costs than the aforementioned multiple-trait approach. Because estimated daily yields from single milkings have smaller phenotypic variance than true daily yields, the estimated yields are to be first expanded by dividing the estimated yields with R 2, so that the expanded estimated yields have equal genetic and permanent Table 3. REML estimates of phenotypic variances for daily yield traits. Trait First parity Later parities All parities Milk, kg Fat 100, kg Protein 100, kg environmental variances as true yields but larger error variance than true yields (18, 19, 20). Because no genetic (co)variance parameters for the estimated daily yields are available, this expansion method is based on phenotypic information only, and it assumes a genetic correlation of one between the expanded and true daily yields. The expanded yields contain exactly the same effects as the true yields plus an additional, independent error effects with variance being approximately MSE that was obtained from analyzing a.m. p.m. data. Compared to true daily yields, expanded daily yield estimates have lower heritability R 2 h 2 and repeatability R 2 t, where h 2 and t are heritability and repeatability of true daily yields, respectively. The ratio of error variances between true and expanded daily yields is (1 t)/ 1 R 2 t. For lactation with n monthly tests the accuracy of a.m. p.m. testing scheme for estimating lactation yield can be derived with the formula [12]: R 2 L = 1 + (n 1)t 1 + (n 1)tR 2R2 [12] Note that R 2 L > R 2 with n > 1. Depending on computational feasibility, it should be decided whether parity specific accuracy needs to be considered in genetic evaluation, in addition to different R 2 for each of the yield traits as well as for morning or evening milkings. RESULTS AND DISCUSSION Goodness of Fit of the Models Table 4 shows correlations between true and estimated daily yields (r ya4,ŷ A4 ), MSE, and standard deviations of daily yield estimates (σ ŷa4 ) from morning or evening milkings. The model with the smallest MSE and the highest correlation gives the best fit to the data. Standard deviation σ ŷa4 should be close to standard deviation of true daily yield, but it must not be greater. Though the correlations improve along with the complexity of the models, with model 6 achieving the highest correlations, differences between the models are small, except that model 0 leads to low correlation for evening milk yield. The poor fit of model 0 could be partially explained by the genetic and environmental differences between the US Holstein population, for which model 0 was developed (3), and the German Holstein population since the creation of Model 0. Relatively significant differences in the correlations were observed among the three production traits. The low

6 ESTIMATING DAILY YIELDS 2677 Table 4. Correlations (r ya4,ŷ ) between true and estimated daily yields, mean squared errors (MSE) and A4 standard deviations (σ ŷa4 ) of daily yield estimates from morning or evening milkings. Milk, kg Fat 100, kg Protein 100, kg Item + Model r ya4,ŷ A4 σ ŷa4 MSE r ya4,ŷ A4 σ ŷa4 MSE r ya4,ŷ A4 σ ŷa4 MSE AM * N/A PM AM = a.m. milking, PM = p.m. milking. Correlations multiplied by 100. *Standard deviations of daily yield estimates that are greater than those of true daily yield, 8.039, and for milk, fat and protein yield respectively, are underscored. As no estimates of Model 0 for protein yield were available for this study, no analysis was conducted. correlation for fat yield indicates that there may be factors influencing fat yield or content that were not accounted for in the models. Evening milkings give slightly lower correlations than morning ones. All models, except models 0 and 1, have smaller σ ŷa4 than the true value. Overestimation of σ ya4 indicates that models 0 and 1 are inappropriate for estimating daily yield. By definition, MSE measures both unbiasedness and variance of estimates, thus is the most appropriate statistic for ranking models. Based on MSE, model 6 achieves the best fit, whereas models 0 and 1 the worst. Figures 1 and 2 show averaged estimation errors: y A4 ŷ A4, in daily milk yield estimated from morning or evening milkings, respectively. Because model 6 fits an individual regression formula for each lactation stage, the average estimation error by lactation stage is expected to be zero. For the remaining models, daily milk yield is underestimated at the beginning of lactation and overestimated at the end of lactation. This indicates that the ratio of partial to daily yields varies over the course of lactation. This systematic pattern of estimation error does not have a significant effect on the estimation of 305-d lactation yields, except for short lactations, because the over- and underestimation are canceled out, to a large extent. However, for estimating yield on daily basis, this systematic pattern of estimation error cannot be eliminated by alternating morning and evening testings. The impacts of season of test or calving, herd production level, parity as well as MIC were also studied. All the models tend to overestimate daily yields from low producing test or calving seasons from morning milkings and to underestimate yields from low producing test or calving seasons from evening milkings. By alternating morning and evening testings, this estimation error in different test or calving seasons can be canceled out, to a great extent. This was also observed for parity and MIC. Because none of the seven models accounts for herd production level, which is partially confounding with MIC, yields from high producing herds were on Figure 1. Averaged error in estimated daily milk yield from morning milkings. Solid line with symbol for model 2, solid line with symbol for model 3, solid line with symbol for model 4, dotted line with symbol for model 5, dashed line with symbol for model 6, dashed line with symbol for model 0. Due to the large value of estimation errors, model 1 is not shown.

7 2678 LIU ET AL. of the validation of the models. In general, all of the models seem to be robust for different data sets in respect to the correlation between true and estimated daily yields. Because of the higher production level in the state from which the regression formulas were derived, daily milk yields from the rest of the states were slightly overestimated. The ranking of the models based on MSE remains very similar to the ranking based on data from all states. Model 6 is proven to be the best of all in this validation study. The regression formulas of all models were also used to analyze a data set of German Simmentals, and once again the superiority of model 6 was confirmed. Figure 2. Averaged error in estimated daily milk yield from evening milkings. Solid line with symbol for model 2, solid line with symbol for model 3, solid line with symbol for model 4, dotted line with symbol for model 5, dashed line with symbol for model 6, dashed line with symbol for model 0. Due to the large value of estimation errors, models 0 and 1 are not shown. average slightly underestimated, whereas yields from low producing herds were overestimated. As mentioned before, the estimation error by herd level can be partially removed by alternating morning and evening milkings. Because only model 6 allows for variable means and variances at different parities by fitting separate regression lines within parity, the remaining models tend to over- and underestimate daily yields from first and later parities, respectively, though the magnitude of the estimation error is small. Validation of the Models The robustness of the models was examined by applying regression formulas estimated from one subset to the rest of the data set. Table 5 shows the results Smoothing Methods The results of smoothing model 6 regression formulas are shown in Table 6 and in Figure 3. Based on r ya4,ŷ A4, σ ŷa4 and MSE, the four smoothing methods do not cause a significant loss in goodness of fit even with a much smaller number of fitted parameters. Changing the unit of lactation stage from months to weeks leads to small loss in goodness of fit, which may be explained by some inaccurate test or calving dates in the field data. In spite of the good agreement of r ya4,ŷ A4, σ ŷa4 and MSE between the original and smoothed model 6, there is an over- or underestimation of daily yield by the four smoothed models. Smoothed models with cubic function of lactation stages lead to smaller estimation error than those with quadratic function, but the regression formulas estimated using the models with cubic function do not look smooth, as is also the case for the original model 6. Therefore, it is not recommended to use smoothed regression formulas for estimating daily yields in practice. Table 5. Results of the validation study. Milk, kg Item + Model r ya4,ŷ A4 averaged error σ ŷa4 MSE AM PM AM = a.m. milking, PM = p.m. milking. Correlations multiplied by 100.

8 ESTIMATING DAILY YIELDS 2679 Besides the smallest MSE and no systematic bias during the course of lactation and robustness with respect to populations, model 6 is simple for milk recording agents to use. With the information of milking interval and parity and lactation stage, the original morning or evening yields can be retrieved using estimated daily yields, if needed. It may not be necessary to fit one regression line for every month of lactation. For example, the months at the middle of lactation might be clustered together to derive a joint regression formula for estimating daily yields, due to similar means and variances between the lactation months. However, the large amount of the analyzed data made it possible to derive reliable regression formulas for every month of lactation. As shown above, alternating morning and evening testing is essential to reduce the influences of some systematic effects, e.g., herd production levels, on estimation of daily yields; thus, it is important to check whether a.m. p.m. testings were properly alternated before being provided to routine genetic evaluations. Milk recording organizations should conduct new experiments on a regular basis to improve the regression formulas for estimating daily yields. Accuracy of the a.m. p.m. Scheme Results of a.m. p.m. scheme accuracy for estimating daily yield are summarized in Table 7. Model 6 has the highest accuracy for all traits. A difference of about 2% in R 2 exists between morning and evening milkings for the yield traits. Differences in R 2 were found among the traits, with milk yield reaching the highest R 2 value at 91%, and fat yield the lowest at 83%. The R 2 for later parities is about 2% higher than that for first parity. From formula [12], it is clear that the accuracy of a.m. p.m. scheme for estimating daily yield is lower than for estimating lactation yield as given by VanRaden (18). Figure 4 shows the increase in accuracy of the a.m. p.m. scheme for estimating lactation yield with an increasing number of effective test-day records. For completed lactations with more than five effective testday records, the accuracy of a.m. p.m. scheme shown in this figure is comparable to the values published by VanRaden (18). It can also be seen in Figure 4 that, as lactation progresses, the difference between the accuracies for estimating lactation milk and fat yields becomes smaller. Variances and Correlations of Test Day Yields by Lactation Stages The models for estimating daily yield should not only give minimum MSE but also keep (co)variance structure of true daily yields possibly unchanged. To examine the (co)variance structure changes, true and estimated milk yields from model 6 were analyzed using the same model [9]. The ratio of the variance of estimated yields to the variance of true yields is not dependent on the sample size, because the same data were used. Figure 5 shows the ratios from morning and evening milkings and their average by lactation stage. Morning milkings have a higher ratio than evening milkings, but their average is almost constant across all lactation stages. This suggests that there is no need to consider lactation stage specific reduction in phenotypic variance due to the use of estimated daily yields in genetic evaluations. The average ratio being less than one indicates that estimated daily yields need to be expanded with the factor 1/R 2 so that estimated daily yields have equal genetic as well as permanent environmental variances as true daily yields. In Figure 6, autocorrelations of true and estimated daily milk yields from single milkings are shown. The autocorrelations of daily yields decay as the time distance between two tests increases, which is an important characteristic of test-day data. The more distant two tests are, the less they are correlated. True daily yields have autocorrelation ranging from 0.14 for tests 9 mo apart to 0.83 for tests 1 mo apart. The autocorrelations of estimated daily yields show the same tendency as those of true yields, but there is a slight Table 6. Results of the smoothing model 6 regression formula. Model r ya4,ŷ A4 σ ŷa4 MSE Model Model 7 with quadratic function of lactation stage in months Model 7 with cubic function of lactation stage in months Model 7 with quadratic function of lactation stage in weeks Model 7 with cubic function lactation stage in weeks

9 2680 LIU ET AL. Figure 3. Averaged error in estimated daily milk yield using model 6 and four smoothing methods from morning milkings. Dashed line with symbol for model 6 without smoothing, dotted line with symbol for model 7 with quadratic function of lactation stage in weeks, dotted line with symbol for model 7 with quadratic function of lactation stage in months, solid line with symbol for model 7 with cubic function of lactation stage in weeks, solid line with symbol for model 7 with cubic function of lactation stage in months. average drop in correlation of 0.02 for morning milkings and 0.05 for evening milkings. The reduction in autocorrelation indicates that the (co)variance structure of estimated daily yields is slightly different than that of true daily yields. Impact of Single Milking Data on Estimated Breeding Values As mentioned above, estimated daily yields from single milkings are to be expanded in test-day model genetic evaluations, so that both true and expanded daily yields have equal genetic as well as permanent environ- Figure 4. Increase in the accuracy of a.m.-p.m. testing scheme for estimating lactation yields as lactation progresses. Dotted line for first lactation estimated milk yields from morning milkings, solid line for first lactation estimated fat yields from morning milkings. mental variances. This approach results in lower heritability and repeatability for expanded than true daily yields, and consequently the weights on data and pedigree index for estimating cow s breeding values are different between true and estimated daily yields. To illustrate the impact of using a.m. p.m. data on EBV, an example cow, instead of bull, is chosen, because cow EBV are more affected by the use of a.m. p.m. data than bull EBV. It is assumed that the EBV of the sire and dam of a cow have reliabilities of 0.85 and 0.50, respectively. The size of contemporary groups for this cow is set to be 10. Furthermore it is assumed that this cow is in first lactation and has no progeny. The parental contribution to cow s EBV is assumed to be constant throughout the lactation process. The changes in relative weights on test-day records and pedigree Table 7. Accuracy (R 2 in percent) of the alternate a.m. p.m. milk testing scheme for estimating daily yields. Milk yield from parity Fat yield from parity Protein yield from parity Item + Model 1 >1 All 1 >1 All 1 >1 All AM PM AM = a.m. milking, PM = p.m. milking.

10 ESTIMATING DAILY YIELDS 2681 Figure 5. Ratio of variance of estimated daily milk yields from morning and evening milkings using model 6 to variance of truly daily yields. Solid line with symbol for the ratio of variance of estimate daily yields from morning milkings using model 6 to variance of true daily yields, solid line with symbol for the ratio of variance of estimated daily yields from evening milkings using model 6 to variance of true daily yields, dotted line with symbol for average of the ratios from morning and evening milkings. index for estimating first lactation breeding value of fat yield for the cow are shown in Figure 7. The relative weights on test-day records and pedigree index sum to 1 at any point of lactation for both types of testing schemes. As the cow makes progress in lactation, the weight on pedigree index decreases, and in the mean time the weight on her records increases. For this particular example, pedigree index and test-day records receive equal weights for estimating cow breeding value when the cow has approximately 3.5 test-day records Figure 7. Relative weights on own test-day records and pedigree index for estimating cow s breeding value using true and estimated daily yields (trait: first lactation fat yield). Ascending thin line for relative weights on true daily fat yields of first lactation, descending thin line for relative weights on pedigree index of first lactation fat yield in case of standard A4 testing scheme, ascending thick line for relative weights on first lactation estimated daily fat yields from a.m. p.m. testing scheme, descending thick line for relative weights on pedigree index of first lactation estimated daily yields from a.m. p.m. testing scheme. from standard A4 scheme. Assuming that the very same cow was in a.m. p.m. testing program, instead of A4 scheme, the cow s own test-day records (pedigree index) receive less (more) weight for estimating her breeding value than the case for true daily yields due to lower heritability and repeatability of estimated daily fat yields. However, the differences in the weights between true and estimated daily yields diminish when the cow has undergone seven or more tests. The cow would need nearly one more test to have her own records receive a weight of 0.5 in case of a.m. p.m. than the A4 testing scheme. For traits with higher accuracy of a.m. p.m. scheme, the differences in weights on the two sources of information between estimated and true daily yields will be smaller than for fat yield. For the same amount of data information, in terms of number of lactations and number of tests per lactation, reliability of cow EBV will be lower when this cow is in a.m. p.m. than in standard A4 testing schemes. CONCLUSIONS Figure 6. Autocorrelations of true daily yields and of estimated daily yields from morning and evening milkings (trait: first lactation milk yield). Solid line with symbol for autocorrelation of true daily yields, solid line with symbol for autocorrelation of estimated daily yields from morning milkings, solid line with symbol for autocorrelation of estimated daily yields from evening milkings. Statistical models were presented for estimating daily yields from single milkings. Model 6, which accounts for heterogeneous variances due to parity, MIC, and lactation stages by fitting separate regression formula within each combination of the three factors gives the best fit to the data, in terms of MSE, correlation between estimated and true daily yields, and variance of the estimates. With a validation study, the regression

11 2682 LIU ET AL. formulas of model 6 were proven to be robust for different data sets. Daily yields estimated from evening milkings or first parity are less accurate than those from morning milkings or later parities, respectively. Alternating morning and evening milkings can partially remove the estimation errors caused by some factors, like test and calving seasons, MIC, herd production level or parity. However, the systematic under- or overestimation at the beginning and at the end of lactation observed for all models, except model 6, cannot be canceled out by the alternation of morning and evening milkings. Smoothing model 6 regression formulas across lactation stages results in a systematic pattern of estimation error, although there is nearly no loss in accuracy for estimating daily yields despite fitting much fewer parameters. DeLorenzo and Wiggans model, which was widely used in Germany, was shown to be less accurate than model 6, particularly for evening milking data. Because of its simplicity, model 6 is easy to implement. The accuracy of the a.m. p.m. testing scheme for estimating lactation yields increases with the progress of lactation. Because of the high repeatability of test-day records, the accuracy of a.m. p.m. scheme is higher for estimating lactation yields than for estimating daily yields. Estimated daily yields from single milkings are expanded in routine genetic evaluations, so that expanded daily yields have equal genetic and permanent environmental variances as true daily yields, but they are assigned to larger error variances than true daily yields. This approach leads to lower heritability and repeatability for expanded daily yields, and consequently for estimating cow breeding value her own records receive less weight when she is in a.m. p.m. than standard A4 testing program. Using estimated daily yields from a.m. p.m. results in a lower reliability of cow EBV than using true daily yields. Because daughters of bulls are likely to be distributed in different milk testing programs, the use of a.m. p.m. data has less influence on bull than on cow EBV. ACKNOWLEDGMENTS The milking recording agencies are thanked for supplying the data. Manuscript review by J. Szyda is appreciated. REFERENCES 1 Averdunk, G., J. Aumann, and J. Duda Performance recording of animals, state of the art: Tendencies in AM/PM recording in Germany and non-conventional recording methods in the future. Page 139 in Proc. 31st Biennial Session of ICAR, Rotorua, New Zealand. 2 Cassandro, M., P. Carnier, L. Gallo, R. Mantovni, B. Contiero, G. Bittante, and G. B. Jansen Bias and accuracy of single milk testing schemes to estimate daily and lactation milk yield. J. Dairy Sci. 78: DeLorenzo M. A., and G. R. Wiggans Factors for estimating daily yield of milk, fat, and protein from a single milking for herds milked twice a day. J. Dairy Sci. 69: Everett, R. W., and L. H. Wadell Sources of variation affecting ratio factors for estimating total daily yield from individual milkings. J. Dairy Sci. 53: Feddersen, E Performance recording of animals, state of the art: Proposal for the update of the pedigree document. Page 291 in Proc. 31st Biennial Session of ICAR, Rotorua, New Zealand. 6 Hargrove, G. L Bias in composite milk samples with unequal milking intervals. J. Dairy Sci. 77: Jamrozik, J., L. R. Schaeffer, Z. Liu, and G. Jansen Multiple trait random regression test day model for production traits. IN- TERBULL Open Mtg., Vienna, Austria. Pages in Bull. 16. Int. Bull Eval. Serv., Uppsala, Sweden. 8 Kirkpatrick, M., W. G. Hill, and R. Thompson Estimating the covariance structure of traits during growth and aging, illustrated with lactation in dairy cattle. Genet. Res. Camb. 64: Lee, A. J., and J. Wardrop Predicting daily milk yield, fat percent, and protein percent from morning or afternoon tests. J. Dairy Sci. 67: McDaniel, B. T Accuracy of sampling procedures for estimating lactation yields: a review. J. Dairy Sci. 52: Meinert, T. R., H. D. Norman, and F. N. Dickinson Consideration of percentage of milk shipped for calculation of total lactation yields from various morning and evening plans of milk sampling. J. Dairy Sci. 79: Palmer, R. W., E. L. Jensen, and A. R. Hardie Removal of within-cow differences between morning and evening milk yields. J. Dairy Sci. 77: Reents, R., L. Dopp, M. Schmutz, and F. Reinhardt Impact of application of a test day model to dairy production traits on genetic evaluations of cows. INTERBULL Open Mtg., Rotorua, New Zealand. Pages in Bulletin 17. Int. Bull Eval. Serv., Uppsala, Sweden. 14 Rosati, A., N. Bouloc, J. Claus, I. Mao, L. Schaeffer, and H. Wilmink Performance recording of animals, State of the art: Report of the Lactation Working Group. Page 249 in Proc. 31st Biennial Session of ICAR, Rotorua, New Zealand. 15 SAS User s Guide: Statistics, Version 6.0 Edition SAS Inst., Inc., Cary, NC. 16 Schaeffer, L. R., and J. Jamrozik Multiple-trait prediction of lactation yields for dairy cows. J. Dairy Sci. 79: Schaeffer, L. R., J. Jamrozik, G. J. Kistemarker, and B. J. Van Doormaal Experience with a test day model. J. Dairy Sci. 82(Suppl. 1):103. (Abstr.) 18 VanRaden, P. M Lactation yields and accuracies computed from test day yields and (co)variances by Best Prediction. J. Dairy Sci. 80: VanRaden, P. M., and G. W. Wiggans Derivation, calculation, and use of national animal model information. J. Dairy Sci. 74: VanRaden, P. M., G. W. Wiggans, and C. A. Ernst Expansion of projected lactation yield to stabilize genetic variance. J. Dairy Sci. 74: Wiggans, G. W Methods to estimate milk and fat yields from a.m./p.m. plans. J. Dairy Sci. 64: Wilmink, J.B.M., P. Galesloot, D. Johnson, W. Ouweltjes, A. Rosati, L. R. Schaeffer, T. Steine, and P. VanRaden Performance recording of animals, State of the art: Final report of the ICAR-INTERBULL Working Group on Milk Recording Accuracy and its impact on genetic evaluations. Page 249 in Proc. 31st Biennial Session of ICAR, Rotorua, New Zealand.

Multiplicative Factors for Estimating Daily Milk and Component Yields from Single a.m. or p.m. Tests

Multiplicative Factors for Estimating Daily Milk and Component Yields from Single a.m. or p.m. Tests Multiplicative Factors for Estimating Daily Milk and Component Yields from Single a.m. or p.m. Tests by C. Lee, E.J. Pollak, R. W. Everett, Department of Animal Science Cornell University, Ithaca, NY 14853

More information

Genetic Analysis of Cow Survival in the Israeli Dairy Cattle Population

Genetic Analysis of Cow Survival in the Israeli Dairy Cattle Population Genetic Analysis of Cow Survival in the Israeli Dairy Cattle Population Petek Settar 1 and Joel I. Weller Institute of Animal Sciences A. R. O., The Volcani Center, Bet Dagan 50250, Israel Abstract The

More information

Accuracy of predicting milk yield from alternative milk recording schemes

Accuracy of predicting milk yield from alternative milk recording schemes Alternative milk recording schemes Animal Science 2005, 80: 53-60 1357-7298/04/34880053$20.00 2005 British Society of Animal Science Accuracy of predicting milk yield from alternative milk recording schemes

More information

ESTIMATION OF BREEDING VALUES OF SAHIWAL CATTLE USING TEST DAY MILK YIELDS

ESTIMATION OF BREEDING VALUES OF SAHIWAL CATTLE USING TEST DAY MILK YIELDS ESTIMATION OF BREEDING VALUES OF SAHIWAL CATTLE USING TEST DAY MILK YIELDS M. S. KHAN, G. BILAL, I. R. BAJWA, Z. REHMAN 1 AND S. AHMAD 2 Department of Animal Breeding & Genetics, University of Agriculture,

More information

Investigation on Genotype by Environment Interaction for Milk Yield of Holstein Cows in Luxembourg and Tunisia

Investigation on Genotype by Environment Interaction for Milk Yield of Holstein Cows in Luxembourg and Tunisia Investigation on Genotype by Environment Interaction for Milk Yield of Holstein Cows in and H. Hammami 1, 5, C. Croquet 1,2, H. Soyeurt 1,4, S. Vanderick 1, S. Khlij 5, J. Stoll 3 and N. Gengler 1,2 1

More information

Section 9- Guidelines for Dairy Cattle Genetic Evaluation

Section 9- Guidelines for Dairy Cattle Genetic Evaluation - Guidelines for Dairy Cattle Genetic Evaluation Section 9 Table of Contents Section 9 1 Background... 4 2 Pre-evaluation steps... 4 2.1 Assignment to a breed of evaluation... 4 2.2 Animal identification...

More information

Modeling lactation curves of Polish Holstein-Friesian cows. Part I: The accuracy of five lactation curve models

Modeling lactation curves of Polish Holstein-Friesian cows. Part I: The accuracy of five lactation curve models Journal of Animal and Feed Sciences, Vol. 22, No., 203, 9 25 The Kielanowski Institute of Animal Physiology and Nutrition PAS Jabłonna Modeling lactation curves of Polish Holstein-Friesian cows. Part I:

More information

Procedures for estimation of genetic persistency indices for milk production for the South African dairy industry

Procedures for estimation of genetic persistency indices for milk production for the South African dairy industry 224 Procedures for estimation of genetic persistency indices for milk production for the South African dairy industry B.E. Mostert #, R.R. van der Westhuizen and H.E. Theron ARC-Animal Production Institute,

More information

Strategy for Applying Genome-Wide Selection in Dairy Cattle

Strategy for Applying Genome-Wide Selection in Dairy Cattle Strategy for Applying Genome-Wide Selection in Dairy Cattle L. R. Schaeffer Centre for Genetic Improvement of Livestock Department of Animal & Poultry Science University of Guelph, Guelph, ON, Canada N1G

More information

Modern Genetic Evaluation Procedures Why BLUP?

Modern Genetic Evaluation Procedures Why BLUP? Modern Genetic Evaluation Procedures Why BLUP? Hans-Ulrich Graser 1 Introduction The developments of modem genetic evaluation procedures have been mainly driven by scientists working with the dairy populations

More information

Establishment of a Single National Selection Index for Canada

Establishment of a Single National Selection Index for Canada Establishment of a Single National Selection Index for Canada Brian Van Doormaal, Gerrit Kistemaker and Filippo Miglior Canadian Dairy Network, Guelph, Ontario, Canada Introduction Ten years ago, in 1991,

More information

Genetic parameters for milk production and persistency in the Iranian Holstein population by the multitrait random regression model

Genetic parameters for milk production and persistency in the Iranian Holstein population by the multitrait random regression model Archiv Tierzucht 57 (2014) 12, 1-12 1 Original study Genetic parameters for milk production and persistency in the Iranian Holstein population by the multitrait random regression model Khabat Kheirabadi

More information

Genetics of dairy production

Genetics of dairy production Genetics of dairy production E-learning course from ESA Charlotte DEZETTER ZBO101R11550 Table of contents I - Genetics of dairy production 3 1. Learning objectives... 3 2. Review of Mendelian genetics...

More information

Estimation of GEBVs Using Deregressed Individual Cow Breeding Values

Estimation of GEBVs Using Deregressed Individual Cow Breeding Values Estimation of GEBVs Using Deregressed Individual Cow Breeding Values Esa A. Mäntysaari 1, Minna Koivula 1, Ismo Strandén 1, Jukka Pösö 2 and Gert P. Aamand 3 1 Genetic Research, MTT Agrifood Research Finland,

More information

LACTATION CURVES AND GENETIC PARAMETERS OF FIRST LACTATION HOLSTEIN COWS TREATED WITH

LACTATION CURVES AND GENETIC PARAMETERS OF FIRST LACTATION HOLSTEIN COWS TREATED WITH Libraries Conference on Applied Statistics in Agriculture 2003-15th Annual Conference Proceedings CUBIC SPLINES FOR ESTIMATING LACTATION CURVES AND GENETIC PARAMETERS OF FIRST LACTATION HOLSTEIN COWS TREATED

More information

Estimation of variance components for Nordic red cattle test-day model: Bayesian Gibbs sampler vs. Monte Carlo EM REML

Estimation of variance components for Nordic red cattle test-day model: Bayesian Gibbs sampler vs. Monte Carlo EM REML Estimation of variance components for Nordic red cattle test-day model: Bayesian Gibbs sampler vs. Monte Carlo EM REML M.H. Lidauer 1, P. Madsen 2, K. Matilainen 1, E.A. Mäntysaari 1, I. Strandén 1, R.

More information

Measurement error variance of testday observations from automatic milking systems

Measurement error variance of testday observations from automatic milking systems Measurement error variance of testday observations from automatic milking systems Pitkänen, T., Mäntysaari, E. A., Nielsen, U. S., Aamand, G. P., Madsen, P. and Lidauer, M. H. Nordisk Avlsværdivurdering

More information

Upgrading Dairy Cattle Evaluation System in Russian Federation

Upgrading Dairy Cattle Evaluation System in Russian Federation Upgrading Dairy Cattle Evaluation System in Russian Federation A.A. Kudinov 1,2, J. Juga 2, P. Uimari 2, E.A. Mäntysaari 3, I. Strandén 3, K.V. Plemyashov 1, E.I. Saksa 1 and M.G. Smaragdov 1 1 Russian

More information

Single step genomic evaluations for the Nordic Red Dairy cattle test day data

Single step genomic evaluations for the Nordic Red Dairy cattle test day data Single step genomic evaluations for the Nordic Red Dairy cattle test day data Minna Koivula, Ismo Strandén, Jukka Pösö, Gert Pedersen Aamand, Esa A. Mäntysaari* Introduction Most genomic evaluations are

More information

Statistical Indicators

Statistical Indicators Statistical Indicators E-7 Breeding value estimation of milk production traits with test-day model Introduction What really counts in the livestock industry is to breed a subsequent generation of cattle

More information

MULTIPLE TRAIT ANALYSIS OF GENOTYPE BY ENVIRONMENT INTERACTION FOR MILK YIELD TRAITS IN SLOVENIAN CATTLE

MULTIPLE TRAIT ANALYSIS OF GENOTYPE BY ENVIRONMENT INTERACTION FOR MILK YIELD TRAITS IN SLOVENIAN CATTLE ISSN 1330-714 UDK = 636.:637.1(497.4) MULTIPLE TRAIT ANALYSIS OF GENOTYPE BY ENVIRONMENT INTERACTION FOR MILK YIELD TRAITS IN SLOVENIAN CATTLE Betka Logar (1), Špela Malovrh (), Milena Kovač () Original

More information

STUDIES ON THE VALUE OF INCORPORATING EFFECT OF DOMINANCE IN GENETIC EVALUATIONS OF DAIRY CATTLE, BEEF CATTLE, AND SWINE

STUDIES ON THE VALUE OF INCORPORATING EFFECT OF DOMINANCE IN GENETIC EVALUATIONS OF DAIRY CATTLE, BEEF CATTLE, AND SWINE STUDIES ON THE VALUE OF INCORPORATING EFFECT OF DOMINANCE IN GENETIC EVALUATIONS OF DAIRY CATTLE, BEEF CATTLE, AND SWINE I. Misztal 1, L. Varona 1, M. Culbertson 1,2, N. Gengler 3, J.K. Bertrand 1, J.

More information

1.1 Present improvement of breeding values for milking speed

1.1 Present improvement of breeding values for milking speed Use of data from electronic milk meters and perspectives in use of other objective measures Anders Fogh 1, Uffe Lauritsen 2 and Gert Pedersen Aamand 1 1 Knowledge Center for Agriculture, Agro Food Park

More information

Genomic selection applies to synthetic breeds

Genomic selection applies to synthetic breeds Genomic selection applies to synthetic breeds Jérémie Vandenplas, Mario P.L. Calus 21 November 2015 Traditional selection Aim Selection of the best animals to create the next generation Based on estimated

More information

Subproject 1: Dairy cattle

Subproject 1: Dairy cattle Development of integrated livestock breeding and management strategies to improve animal health, product quality and performance in European organic and low input milk, meat and egg production Subproject

More information

An overview of wished recording requirements to satisfy to the current evolution of milk recording organizations and selection programs in France

An overview of wished recording requirements to satisfy to the current evolution of milk recording organizations and selection programs in France An overview of wished recording requirements to satisfy to the current evolution of milk recording organizations and selection programs in France X. Bourrigan 1, H. Leclerc 1, G. Augier 2 1 Institut de

More information

Including feed intake data from U.S. Holsteins in genomic prediction

Including feed intake data from U.S. Holsteins in genomic prediction Including feed intake data from U.S. Holsteins in genomic prediction Paul, 1 Jeff O Connell, 2 Erin Connor, 1 Mike VandeHaar, 3 Rob Tempelman, 3 and Kent Weigel 4 1 USDA, Agricultural Research Service,

More information

Genomic selection and its potential to change cattle breeding

Genomic selection and its potential to change cattle breeding ICAR keynote presentations Genomic selection and its potential to change cattle breeding Reinhard Reents - Chairman of the Steering Committee of Interbull - Secretary of ICAR - General Manager of vit,

More information

New Zealand Simmental Selection Indexes

New Zealand Simmental Selection Indexes New Zealand Simmental Selection Indexes There are currently two different selection indexes calculated for New Zealand Simmental animals. These are: Maternal Index Terminal Index Each selection index describes

More information

. Open access under CC BY-NC-ND license.

. Open access under CC BY-NC-ND license. J. Dairy Sci. 99:4574 4579 http://dx.doi.org/0.368/jds.05-0609 06, THE AUTHORS. Published by FASS and Elsevier Inc. on behalf of the American Dairy Science Association. Open access under CC BY-NC-ND license.

More information

Strategy for applying genome-wide selection in dairy cattle

Strategy for applying genome-wide selection in dairy cattle J. Anim. Breed. Genet. ISSN 0931-2668 ORIGINAL ARTICLE Strategy for applying genome-wide selection in dairy cattle L.R. Schaeffer Department of Animal and Poultry Science, Centre for Genetic Improvement

More information

Statistical Indicators

Statistical Indicators Statistical Indicators E-42 Breeding value estimation for milk protein traits Introduction What really counts in the livestock industry is to breed a subsequent generation of cattle with a more profitable

More information

Managing genetic groups in single-step genomic evaluations applied on female fertility traits in Nordic Red Dairy cattle

Managing genetic groups in single-step genomic evaluations applied on female fertility traits in Nordic Red Dairy cattle Abstract Managing genetic groups in single-step genomic evaluations applied on female fertility traits in Nordic Red Dairy cattle K. Matilainen 1, M. Koivula 1, I. Strandén 1, G.P. Aamand 2 and E.A. Mäntysaari

More information

GENETIC AND NON GENETIC FACTORS AFFECTING BODY CONDITION SCORE IN NILI RAVI BUFFALOES AND ITS CORRELATION WITH MILK YIELD ABSTRACT

GENETIC AND NON GENETIC FACTORS AFFECTING BODY CONDITION SCORE IN NILI RAVI BUFFALOES AND ITS CORRELATION WITH MILK YIELD ABSTRACT Mirza et al., The Journal of Animal & Plant Sciences, 23(6): 2013, Page: J. 1486-1490 Anim. Plant Sci. 23(6):2013 ISSN: 1018-7081 GENETIC AND NON GENETIC FACTORS AFFECTING BODY CONDITION SCORE IN NILI

More information

Test-day models for South African dairy cattle for participation in international evaluations

Test-day models for South African dairy cattle for participation in international evaluations 58 Test-day models for South African dairy cattle for participation in international evaluations B.E. Mostert 1#, H.E. Theron 1, F.H.J. Kanfer 2 and E. van Marle-Köster 3 1 ARC-LBD, Private Bag X2, Irene

More information

Genetic parameters for production traits and somatic cell score of the SA Dairy Swiss population

Genetic parameters for production traits and somatic cell score of the SA Dairy Swiss population South African Journal of Animal Science 2013, 43 (No. 2) Genetic parameters for production traits and somatic cell score of the SA Dairy Swiss population P. de Ponte Bouwer, B.E. Mostert # & C. Visser

More information

Section 2 - Guidelines for Dairy Cattle Milk Recording

Section 2 - Guidelines for Dairy Cattle Milk Recording - Guidelines for Dairy Cattle Milk Recording Section 2 Table of Contents Section 2 1 Introduction... 5 2 Definitions and terminology... 5 3 Scope... 5 4 Enrolment... 7 5 Database... 7 6 Recording... 9

More information

Proc. Assoc. Advmt. Anim. Breed. Genet. 20:57-61

Proc. Assoc. Advmt. Anim. Breed. Genet. 20:57-61 CHARACTERISTICS OF EXTENDED LACTATION AND PERSISTENCY IN AUSTRALIAN DAIRY COWS M. Abdelsayed, P.C. Thomson, and H.W. Raadsma ReproGen Animal Bioscience Group, Faculty of Veterinary Science, University

More information

Additive and Dominance Genetic Variance of Fertility by Method and Preconditioned Conjugate Gradient

Additive and Dominance Genetic Variance of Fertility by Method and Preconditioned Conjugate Gradient Additive and Dominance Genetic Variance of Fertility by Method and Preconditioned Conjugate Gradient T. Druet, J. Sölkner, A. F. Groen, and N. Gengler, *National Fund for Scientific Research, B-1000 Brussels,

More information

GENETIC AND PHENOTYPIC PARAMETERS ESTIMATION OF FIRST LACTATION, LIFE-TIME YIELD AND LONGEVITY TRAITS IN HOLSTEIN CATTLE

GENETIC AND PHENOTYPIC PARAMETERS ESTIMATION OF FIRST LACTATION, LIFE-TIME YIELD AND LONGEVITY TRAITS IN HOLSTEIN CATTLE GENETIC AND PHENOTYPIC PARAMETERS ESTIMATION OF FIRST LACTATION, LIFE-TIME YIELD AND LONGEVITY TRAITS IN HOLSTEIN CATTLE M. H. SADEK 1, A. A. HALAWA 2, A. A. ASHMAWY 1 AND M. F. ABDEL GLIL 2 1. Department

More information

Scope for a Subjective Assessment of Milking Speed

Scope for a Subjective Assessment of Milking Speed Scope for a Subjective Assessment of Milking Speed K. MEYER and E. B. BURNSIDE Centre for Genetic Improvement of Livestock Department of Animal and Poultry Science University of Guelph Guelph, Ontario,

More information

João Dürr Interbull Centre Director. Animal identification and traceability Interbull s s and Interbeef s perspectives

João Dürr Interbull Centre Director. Animal identification and traceability Interbull s s and Interbeef s perspectives João Dürr Interbull Centre Director Animal identification and traceability Interbull s s and Interbeef s perspectives Summary Interbull & Interbeef Genetic improvement essentials Globalization of cattle

More information

Genetic improvement: a major component of increased dairy farm profitability

Genetic improvement: a major component of increased dairy farm profitability Genetic improvement: a major component of increased dairy farm profitability F. Miglior,2, J. Chesnais 3, and B. J. Van Doormaal 2 Guelph Food Research Centre, Agriculture and Agri-Food Canada, Guelph,

More information

Genetic Parameters and Evaluation of Rear Legs (Rear View) for Brown Swiss and Guernseys

Genetic Parameters and Evaluation of Rear Legs (Rear View) for Brown Swiss and Guernseys J. Dairy Sci. 89:4895 4900 American Dairy Science Association, 2006. Genetic Parameters and Evaluation of Rear Legs (Rear View) for Brown Swiss and Guernseys G. R. Wiggans,* 1 L. L. M. Thornton,* R. R.

More information

Factors Affecting Holstein Cattle Fertility Traits in the Slovak Republic

Factors Affecting Holstein Cattle Fertility Traits in the Slovak Republic Factors Affecting Holstein Cattle Fertility Traits in the Slovak Republic Zuzana Riecka, Juraj Candrák, Eva Strapáková Slovak Agricultural University in Nitra, 949 76, Tr. A. Hlinku 2, Slovak republic

More information

Using lactation curves as a tool for breeding, nutrition and health management decisions in pasture-based dairy systems.

Using lactation curves as a tool for breeding, nutrition and health management decisions in pasture-based dairy systems. Using lactation curves as a tool for breeding, nutrition and health management decisions in pasture-based dairy systems. S.A. Adediran 1,A.E.O. Malau-Aduli 1, J. R. Roche 1,2, and D.J. Donaghy 1,2 1 School

More information

Sakon Nakhon Agricultural Research and Training Center Pungkone, Sakon Nakhon 47160, Thailand. Abstract

Sakon Nakhon Agricultural Research and Training Center Pungkone, Sakon Nakhon 47160, Thailand. Abstract Estimation of Covariance Components and Prediction of Additive Genetic Effects for First Lactation 305-d Milk and Fat Yields in a Thai Multibreed Dairy Population 1/ Skorn Koonawootrittriron *, Mauricio

More information

Changes to the Genetic Evaluation of Fertility in Irish Dairy Cattle

Changes to the Genetic Evaluation of Fertility in Irish Dairy Cattle Changes to the Genetic Evaluation of Fertility in Irish Dairy Cattle Abstract K. Stachowicz 1, G.M. Jenkins 1, P.R. Amer 1, D.P. Berry 2, M.M. Kelleher 3, F.J. Kearney 3, R.D. Evans 3, and A.R. Cromie

More information

Should the Markers on X Chromosome be Used for Genomic Prediction?

Should the Markers on X Chromosome be Used for Genomic Prediction? Should the Markers on X Chromosome be Used for Genomic Prediction? G. Su *, B. Guldbrandtsen *, G. P. Aamand, I. Strandén and M. S. Lund * * Center for Quantitative Genetics and Genomics, Department of

More information

TWENTY YEARS OF GENETIC PROGRESS IN AUSTRALIAN HOLSTEINS

TWENTY YEARS OF GENETIC PROGRESS IN AUSTRALIAN HOLSTEINS TWENTY YEARS OF GENETIC PROGRESS IN AUSTRALIAN HOLSTEINS P.E.Thurn 1, A.E. McClintock 1 1 Genetics Australia, Bacchus Marsh, Vic 334 SUMMARY Australian Holsteins have made significant genetic progress

More information

New Zealand Hereford Selection Indexes

New Zealand Hereford Selection Indexes New Zealand Hereford Selection Indexes There are currently four different selection indexes calculated for New Zealand Hereford animals. These are: Hereford Prime Index Export Index Dairy Maternal Index

More information

Genetic Trends for Milk Yield, Persistency of Milk Yield, Somatic Cell Count and Calving Interval in Holstein Dairy Cows of Iran

Genetic Trends for Milk Yield, Persistency of Milk Yield, Somatic Cell Count and Calving Interval in Holstein Dairy Cows of Iran Chegini et al. Research Article Genetic Trends for Milk Yield, Persistency of Milk Yield, Somatic Cell Count and Calving Interval in Holstein Dairy Cows of Iran A. Chegini 1, A.A. Shadparvar 1* and N.

More information

Genomic-Polygenic and Polygenic Evaluation of Multibreed Angus-Brahman Cattle for Direct and Maternal Growth Traits Under Subtropical Conditions

Genomic-Polygenic and Polygenic Evaluation of Multibreed Angus-Brahman Cattle for Direct and Maternal Growth Traits Under Subtropical Conditions Genomic-Polygenic and Polygenic Evaluation of Multibreed Angus-Brahman Cattle for Direct and Maternal Growth Traits Under Subtropical Conditions M. A. Elzo 1, M. G. Thomas 2, D. D. Johnson 1, C. A. Martinez

More information

Estimation of Environmental Sensitivity of Genetic Merit for Milk Production Traits Using a Random Regression Model

Estimation of Environmental Sensitivity of Genetic Merit for Milk Production Traits Using a Random Regression Model J. Dairy Sci. 86:3756 3764 American Dairy Science Association, 2003. Estimation of Environmental Sensitivity of Genetic Merit for Milk Production Traits Using a Random Regression Model M. P. L. Calus and

More information

The relationship between somatic cell count, milk production and six linearly scored type traits in Holstein cows

The relationship between somatic cell count, milk production and six linearly scored type traits in Holstein cows Czech J. Anim. Sci., 52, 2007 (12): 437 446 Original Paper The relationship between somatic cell count, milk production and six linearly scored type traits in Holstein cows E. Němcová, M. Štípková, L.

More information

Youngstock Survival in Nordic Cattle Genetic Evaluation

Youngstock Survival in Nordic Cattle Genetic Evaluation Abstract Youngstock Survival in Nordic Cattle Genetic Evaluation E. Carlén 1, J. Pedersen 2, J. Pösö 3, J-Å. Eriksson 1, U.S. Nielsen 2 and G.P. Aamand 4 1 Växa Sweden, Box 288, 75105 Uppsala, Sweden 2

More information

Genomic selection in cattle industry: achievements and impact

Genomic selection in cattle industry: achievements and impact Genomic selection in cattle industry: achievements and impact Dr. Fritz Schmitz-Hsu Senior Geneticist Swissgenetics CH-3052 Zollikofen Scientific Seminar WBFSH 2016 1 Source: https://i.ytimg.com/vi/cuvjxlhu79a/hqdefault.jpg

More information

Philippine Dairy Buffalo Breeding Program

Philippine Dairy Buffalo Breeding Program Philippine Dairy Buffalo Breeding Program ESTER B FLORES Project Development Officer IV Philippine Carabao Center Workshop on Breeding for Milk Production in Tropical / Non- Temperate Environments Nov

More information

Simulation study on heterogeneous variance adjustment for observations with different measurement error variance

Simulation study on heterogeneous variance adjustment for observations with different measurement error variance Simulation study on heterogeneous variance adjustment for observations with different measurement error variance Pitkänen, T. Mäntysaari, E. A., Nielsen, U. S., Aamand, G. P., Madsen, P. and Lidauer, M.

More information

Farm Management Decisions in the Era of Genomics

Farm Management Decisions in the Era of Genomics Farm Management Decisions in the Era of Genomics Brian Van Doormaal and Gerrit Kistemaker Canadian Dairy Network, Guelph, Ontario. E-mail: Brian@cdn.ca Take Home Messages Genomics has had a major impact

More information

Definition of subgroups for fixed regression in the test-day animal model for milk production of Holstein cattle in the Czech Republic

Definition of subgroups for fixed regression in the test-day animal model for milk production of Holstein cattle in the Czech Republic Czech J. Anim. Sci., 5, 5 (1): 7 13 Definition of subgroups for fixed regression in the test-day animal model for milk production of Holstein cattle in the Czech epublic L. ZAVADILOVÁ, E. NĚMCOVÁ, J. PŘIBYL,

More information

Improving fertility through management and genetics.

Improving fertility through management and genetics. Improving fertility through management and genetics., Director of Research, Holstein USA Introduction It is a great pleasure to be giving this talk to an international group of enthusiast Holstein breeders

More information

ORIGINAL ARTICLE Genetic analysis of residual feed intakes and other performance test traits of Japanese Black cattle from revised protocol

ORIGINAL ARTICLE Genetic analysis of residual feed intakes and other performance test traits of Japanese Black cattle from revised protocol doi: 10.1111/j.1740-0929.2008.00529.x ORIGINAL ARTICLE Genetic analysis of residual feed intakes and other performance test traits of Japanese Black cattle from revised protocol Takeshi OKANISHI, 1 Masayuki

More information

Status as of: 01 February 2008 DESCRIPTION OF BEEF NATIONAL GENETIC EVALUATION SYSTEM DATA COLLECTION

Status as of: 01 February 2008 DESCRIPTION OF BEEF NATIONAL GENETIC EVALUATION SYSTEM DATA COLLECTION Status as of: 01 February 2008 Form BEEF DESCRIPTION OF BEEF NATIONAL GENETIC EVALUATION SYSTEM Country (or countries) Denmark Trait name: Weaning weight Breed(s) Trait definition Method and frequency

More information

Genetic evaluations for crossbred Holstein x bos indicus cattle in India

Genetic evaluations for crossbred Holstein x bos indicus cattle in India 26/08/2013: 2nd Symposium on SUSTAINABLE ANIMAL PRODUCTION IN THE TROPICS (SAPT2) and high constraint areas Genetic evaluations for crossbred Holstein x bos indicus cattle in India Use of a test day model

More information

Canadian Hereford Association

Canadian Hereford Association Canadian Hereford Association Pan American Hereford Cattle Evaluation Fall 2017 EPD Averages, Tools and Trends Includes: Introduction to Genomically Enhanced EPD Post-Weaning Gain EPD Residual Feed Intake

More information

Prediction of GEBV in Comparison with GMACE Value of Genotyped YYoung Foreign Bulls

Prediction of GEBV in Comparison with GMACE Value of Genotyped YYoung Foreign Bulls INTERBULL BULLETIN NO. 48. Berlin, Germany, May 0-1, 014 Prediction of GEBV in Comparison with GMACE Value of Genotyped YYoung Foreign Bulls J. Přibyl 1, J. Bauer 1, V. Čermák, J. Motyčka 3, P. Pešek 1,

More information

Genetic effects of heat stress on milk yield and MIR predicted methane emissions of Holstein cows

Genetic effects of heat stress on milk yield and MIR predicted methane emissions of Holstein cows Genetic effects of heat stress on milk yield and MIR predicted methane emissions of Holstein cows M.-L. Vanrobays 1,*, N. Gengler 1, P.B. Kandel 1, H. Soyeurt 1 & H. Hammami 1,2 1 University of Liège,

More information

Age-Season Standardization

Age-Season Standardization Age-Season Standardization Dr. Michael M. Schutz Canadian Beef Improvement, Inc. A report on research conducted at AIPL, USDA-ARS, Beltsville, MD (financial support from the National Association of Animal

More information

Genomic prediction. Kevin Byskov, Ulrik Sander Nielsen and Gert Pedersen Aamand. Nordisk Avlsværdi Vurdering. Nordic Cattle Genetic Evaluation

Genomic prediction. Kevin Byskov, Ulrik Sander Nielsen and Gert Pedersen Aamand. Nordisk Avlsværdi Vurdering. Nordic Cattle Genetic Evaluation Genomic prediction Kevin Byskov, Ulrik Sander Nielsen and Gert Pedersen Aamand STØTTET AF mælkeafgiftsfonden Present 2-step method (HOL), RDC,JER SNP and deregressed proof (DRP) Direct genomic values (DGV)

More information

Genetics of milk yield and fertility traits in Holstein-Friesian cattle on large-scale Kenyan farms J. M. Ojango and G. E. Pollott

Genetics of milk yield and fertility traits in Holstein-Friesian cattle on large-scale Kenyan farms J. M. Ojango and G. E. Pollott Genetics of milk yield and fertility traits in Holstein-Friesian cattle on large-scale Kenyan farms J. M. Ojango and G. E. Pollott J ANIM SCI 2001, 79:1742-1750. The online version of this article, along

More information

Herd Summary Definitions

Herd Summary Definitions Herd Summary Definitions The Herd Summary is the primary source of AgSource DHI information on herd level milk production, reproduction, genetics and inventory. Individual cow data is found in AgSource

More information

Evidence of improved fertility arising from genetic selection: weightings and timescale required

Evidence of improved fertility arising from genetic selection: weightings and timescale required Department of Animal and Aquacultural Sciences Evidence of improved fertility arising from genetic selection: weightings and timescale required Torstein Steine Department of Animal and Aquacultural Sciences,

More information

MONTHLY HERD SUMMARY REPORT

MONTHLY HERD SUMMARY REPORT MONTHLY HERD SUMMARY REPORT Monthly Herd Summary Report Monthly Herd Summary Report Monthly Herd Summary Report Monthly Herd Summary Report Monthly Herd Summary Report Monthly Herd Summary Report Report

More information

The relationship between linear type traits and stayability of Czech Fleckvieh cows

The relationship between linear type traits and stayability of Czech Fleckvieh cows Czech J. Anim. Sci., 51, 2006 (7): 299 304 Original Paper The relationship between linear type traits and stayability of Czech Fleckvieh cows J. Bouška, M. Vacek, M. Štípková, A. Němec Research Institute

More information

Efficiency of Different Selection Indices for Desired Gain in Reproduction and Production Traits in Hariana Cattle

Efficiency of Different Selection Indices for Desired Gain in Reproduction and Production Traits in Hariana Cattle 789 Efficiency of Different Selection Indices for Desired Gain in Reproduction and Production Traits in Hariana Cattle Ravinder Kaushik and A. S. Khanna* Department of Animal Breeding, C C S Haryana Agricultural

More information

Calving interval genetic parameters and trends for dairy breeds in South Africa

Calving interval genetic parameters and trends for dairy breeds in South Africa 156 Calving interval genetic parameters and trends for dairy breeds in South Africa B.E. Mostert #, R.R. van der Westhuizen and H.E. Theron ARC-Animal Production Institute, Private Bag X2, Irene 0062,

More information

QTL Mapping, MAS, and Genomic Selection

QTL Mapping, MAS, and Genomic Selection QTL Mapping, MAS, and Genomic Selection Dr. Ben Hayes Department of Primary Industries Victoria, Australia A short-course organized by Animal Breeding & Genetics Department of Animal Science Iowa State

More information

Use of data from electronic milking meters and perspective in use of other objective measures

Use of data from electronic milking meters and perspective in use of other objective measures Use of data from electronic milking meters and perspective in use of other objective measures Anders Fogh Knowledge Center for Agriculture, Agro Food Park 15, 8200 Aarhus N, Denmark Gert Pedersen Aamand

More information

New Zealand Angus Selection Indexes

New Zealand Angus Selection Indexes New Zealand Angus Selection Indexes There are currently two different selection indexes calculated for New Zealand Angus animals. These are: Self Replacing Index AngusPure Index Each selection index describes

More information

Single-step genomic evaluation for fertility in Nordic Red dairy cattle

Single-step genomic evaluation for fertility in Nordic Red dairy cattle Single-step genomic evaluation for fertility in Nordic Red dairy cattle Kaarina Matilainen, Minna Koivula, Ismo Strandén, ert P. Aamand and Esa A. Mäntysaari Background Female fertility genetic evaluations

More information

EVALUATING SEMEN FERTILITY OF ARTIFICIAL INSEMINATION SIRES. R. W. EVERETT, USA Department of Animal Science Cornell University Ithaca, NY

EVALUATING SEMEN FERTILITY OF ARTIFICIAL INSEMINATION SIRES. R. W. EVERETT, USA Department of Animal Science Cornell University Ithaca, NY EVALUATING SEMEN FERTILITY OF ARTIFICIAL INSEMINATION SIRES R. W. EVERETT, USA Department of Animal Science Cornell University Ithaca, NY J. F. TAYLOR, AUSTRALIA Department of Tropical Veterinary Medicine

More information

Understanding and Using Expected Progeny Differences (EPDs)

Understanding and Using Expected Progeny Differences (EPDs) Agriculture and Natural Resources FSA3068 Understanding and Using Expected Progeny Differences (EPDs) Brett Barham Associate Professor Animal Science Arkansas Is Our Campus Visit our web site at: http://www.uaex.edu

More information

Simulation study on heterogeneous variance adjustment for observations with different measurement error variance

Simulation study on heterogeneous variance adjustment for observations with different measurement error variance Simulation study on heterogeneous variance adjustment for observations with different measurement error variance Pitkänen, T. Mäntysaari, E. A., Nielsen, U. S., Aamand, G. P., Madsen, P. and Lidauer, M.

More information

BLUP and Genomic Selection

BLUP and Genomic Selection BLUP and Genomic Selection Alison Van Eenennaam Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis, USA alvaneenennaam@ucdavis.edu http://animalscience.ucdavis.edu/animalbiotech/

More information

Application of MAS in French dairy cattle. Guillaume F., Fritz S., Boichard D., Druet T.

Application of MAS in French dairy cattle. Guillaume F., Fritz S., Boichard D., Druet T. Application of MAS in French dairy cattle Guillaume F., Fritz S., Boichard D., Druet T. Considerations about dairy cattle Most traits of interest are sex linked Generation interval are long Recent emphasis

More information

ICAR meeting State of the art of genomic evaluation and international implications. Reinhard Reents. vit, IT solutions for Animal Prduction

ICAR meeting State of the art of genomic evaluation and international implications. Reinhard Reents. vit, IT solutions for Animal Prduction ICAR meeting 2009 State of the art of genomic evaluation and international implications Reinhard Reents vit, IT solutions for Animal Prduction Chairman of the Steering Committee of Interbull 25. Mai 2009

More information

Economic Impact of Bull Choices... A.I. Or Otherwise

Economic Impact of Bull Choices... A.I. Or Otherwise Economic Impact of Bull Choices... A.I. Or Otherwise By Dr. Ben McDaniel Animal Science Department North Carolina State University P.O. Box 7621 Raleigh, NC 27695-7621 919-515-4023 fax 919-515-7780 Email:

More information

19. WORLD SIMMENTAL FLECKVIEH CONGRESS. The robust Fleckvieh cow breeding for fitness and health

19. WORLD SIMMENTAL FLECKVIEH CONGRESS. The robust Fleckvieh cow breeding for fitness and health 19. WORLD SIMMENTAL FLECKVIEH CONGRESS The robust Fleckvieh cow breeding for fitness and health Dr. Christa Egger Danner, Dr. Christian Fürst und Dr. Hermann Schwarzenbacher, ZuchtData, Vienna, Austria

More information

Milk Production of Imported Heifers and Tunisian-Born Holstein Cows

Milk Production of Imported Heifers and Tunisian-Born Holstein Cows American-Eurasian Journal of Agronomy (1): 36-4, 9 ISSN 1995-896X IDOSI Publications, 9 Milk Production of Imported Heifers and Tunisian-Born Holstein Cows B. Rekik, R. Bouraoui, A. Ben Gara, H. Hammami,

More information

QTL Mapping Using Multiple Markers Simultaneously

QTL Mapping Using Multiple Markers Simultaneously SCI-PUBLICATIONS Author Manuscript American Journal of Agricultural and Biological Science (3): 195-01, 007 ISSN 1557-4989 007 Science Publications QTL Mapping Using Multiple Markers Simultaneously D.

More information

Genetic analysis of true profit for Spanish dairy cattle

Genetic analysis of true profit for Spanish dairy cattle Genetic analysis of true profit for Spanish dairy cattle M.A. Pérez 1, D. Hernández 2, R. Alenda 1, M.J. Carabaño 2 and N. Charfeddine 3 1 ETSIA, Universidad Politécnica, Ciudad Universitaria, 28040 Madrid,

More information

Alison Van Eenennaam, Ph.D.

Alison Van Eenennaam, Ph.D. The Value of Accuracy Alison Van Eenennaam, Ph.D. Cooperative Extension Specialist Animal Biotechnology and Genomics University of California, Davis alvaneenennaam@ucdavis.edu (530) 752-7942 animalscience.ucdavis.edu/animalbiotech

More information

COW PRODUCTION MONTHLY REPORT

COW PRODUCTION MONTHLY REPORT COW PRODUCTION MONTHLY REPORT Report objectives to provide individual cow identification, age, calving and lactation number information; to provide individual cow current test day milk weights and milk

More information

R elationships between age at

R elationships between age at The Professional Animal Scientist 29 (2013):1 9 2013 American Registry of Professional Animal Scientists R elationships between age at first calving; herd management criteria; and lifetime milk, fat, and

More information

Factors affecting genetic correlation estimates from dairy sires genetic evaluations to assess genotype-environment interaction*

Factors affecting genetic correlation estimates from dairy sires genetic evaluations to assess genotype-environment interaction* Animal Science Papers and Reports vol. 30 (2012) no. 4, 309-315 Institute of Genetics and Animal Breeding, Jastrzębiec, Poland Factors affecting genetic correlation estimates from dairy sires genetic evaluations

More information

Genetic Correlations Among Body Condition Score, Yield, and Fertility in First-Parity Cows Estimated by Random Regression Models

Genetic Correlations Among Body Condition Score, Yield, and Fertility in First-Parity Cows Estimated by Random Regression Models J. Dairy Sci. 84:2327 2335 American Dairy Science Association, 2001. Genetic Correlations Among Body Condition Score, Yield, and Fertility in First-Parity Cows Estimated by Random Regression Models R.

More information

Mike Davis, The Ohio State University 6/19/14

Mike Davis, The Ohio State University 6/19/14 2014 Beef Improvement Federation Meeting! The optimum beef cow is indeed an elusive beast. I have searched for her for more than 20 years, and have come up empty handed. But I believe I m getting close.!

More information

AGE OF COW AND AGE OF DAM EFFECTS ON MILK PRODUCTION OF HEREFORD COWS 1. ABSTRACt"

AGE OF COW AND AGE OF DAM EFFECTS ON MILK PRODUCTION OF HEREFORD COWS 1. ABSTRACt AGE OF COW AND AGE OF DAM EFFECTS ON MILK PRODUCTION OF HEREFORD COWS 1 D. L. Lubritz 2, K. Forrest 2 and O. W. Robison 2 North Carolina State University, Raleigh 27695-7621 ABSTRACt" Milk production in

More information

Breeding for milkability How to use the new possibilities

Breeding for milkability How to use the new possibilities Breeding for milkability How to use the new possibilities Kevin Byskov Anders Fogh Videnscentret for Landbrug, Kvæg Why calculate breeding values for milkability? Labour is expensive time used for milking

More information