Plants viruses as biological vectors

Size: px
Start display at page:

Download "Plants viruses as biological vectors"

Transcription

1 Plants viruses as biological vectors

2 Virus very small infectious particles composed of a protein coat and a nucleic acid core. Most viruses have at least 3 genes: One (or more) concerned with replication of the nucleic acid, One (or more) concerned with cell-to-cell movement of the virus and One (or more) encoding a structural protein that is assembled into the virus particle (usually called the "coat" or "capsid" protein). There may also be additional genes that have a regulatory function or which are required for transmission between plants.

3 Viruses provide natural examples of genetic engineering since viral infection provide addition of new genetic material to the target cell Advantage of viral infection: High efficiency gene transfer: as amplification of genes occurs via viral genome replication cross protection a plant infected by one virus usually can t be superinfected by a second strain of a related virus- infection by mild strain or non-infectious strain provide protection against infection by more severe isolates this has encouraged the use of viruses for genetic transformation of plants

4 Virus as vectors Viruses are able to adsorb to and introduce their nucleic acid into intact plant cells However for many viruses, naked DNA or RNA are also infectious, allowing recombinant vectors to be directly introduced into the plants by methods such as leaf rubbing Recombinant viral vectors have potential for high level of transgene expression since infected plant cells yield large amount of virus Viral infection being systemic result in expression of transgene in all cells Viral infection are rapid and therefore large amounts of recombinant proteins can be produced in a few weeks Viral vectors are non integrative episomal vectors, therefore they have high copy number per cell and they are not subjected to the position effect. The gene product is very rapidly accumulated. Viral genome sequences are excellent source of promoters, enhancers and other components useful for designing gene vectors

5 Characteristics of viral vector Broad Host range Virulence Ease of mechanical transmission Rate of seed transmission Virus whose capsid is filamentous or rod shaped or viruses with multi-partite genome or helper or satellite component offer potential for carrying extra nucleic acid Genetic material must be able to be manipulated and be infectious

6 Most notable plant virus based vectors Caulimovirus based vectors Gemini virus based vectors TMV based vectors

7 Caulimovirus Unique plant viruses in having genome made up of double stranded DNAmakes it more compatible for manupulations Caulimovirus is the collective name for a group of tightly related viral species usually transmitted by aphids. Symptoms occur two to three weeks after infection and can be recognized by the mosaic-like lesions of infected leaves. The virus spreads systemically, its secondary symptoms are similar to those of the primary infection. Leaves that were infected during their development display deformed leaf blades. Caulimoviruses have, however, been important in genetic engineering as the source of highly active promoters that work in all plants and that are used to obtain expression of genes introduced by Ti plasmid cloning or direct gene transfer. The prototype of a plant virus with double-stranded DNA is the cauliflower mosaic-virus (CaMV).

8 Cauliflower mosaic virus (CaMV) dsdna virus of size 8kb. Mechanical and aphid mediated transmission Virion DNA alone or cloned CaMV DNA is infectious when simply rubbed on leaves High copy number (Up to 10 6 copies per cell). Rapid spread within 3-4 weeks for systemic infection through plant. The promoters (particularly 35S) and terminator for both transcripts have been utilized in plant expression vectors.

9 Genome properties of CaMV Linear, open circular and twisted or knotted form Unusual structure characterized by the presence of three discontinuities in the duplex genome Eight tightly packed genes expressed as two major transcripts : 35s RNA and 19s RNA 35s RNA: represent entire genome 19s RNA: encodes for gene VI

10 Genome properties of CaMV (contd..) ORF I - Movement Protein ORF II - Insect Transmission Factor ORF III - Structural Protein, DNA- Binding Capabilities ORF IV - Capsid Protein ORF V - Protease, Reverse Transcriptase and RNaseH ORF VI - Translational Activator, Inclusion Body Formation/Trafficking; Possibly more functions ORF VII - Unknown (Appears to not be required for infection)

11 CaMV activity in plant cell Gene I uncoating nucleus Inclusion body (gene VI) Gene III/IV transcription assembly 35S RNA 19S RNA Reverse transcription Gene V Gene IV translation

12 Genome properties of CaMV (contd..) Two regions of the CaMV genome- ORF II and VII do not seem to be essential for infection, as both can be either deleted or expanded by small inserts for foreign DNA Since CaMV has an icosahedral capsid, the size of the genome can t be increased greatly without affecting the efficiency of packaging The maximum insert size is of less than 1kb after deletion of all non-essential genes

13 Recent research has shown that it might be possible to circumvent this problem by adopting a helper virus strategy In this strategy, the cloning vector is a cauliflower mosaic virus (CaMV) genome that lacks several of the essential genes, which means that it carry a large DNA insert but cannot by itself direct infection. Plants are inoculated with the vector DNA along with a normal CaMV genome. The normal viral genome provides the genes needed for the cloning vector to be packaged into virus proteins and spread through the plant.

14 Example I: Expression of bacterial gene in plants No functional genes have yet been introduced into these ORFs. Here we report the replacement of CaMV ORF II by the R67 plasmid-encoded dihydrofolate reductase (DHFR) gene; this gene (dhfr) confers resistance to methotrexate in Escherichia coli. The chimeric viral DNA can be stably propagated in turnip plants and the dhfr gene is expressed, producing a functional enzyme

15 Example II: Mammalian metallothionein Functions in Plants A recombinant cauliflower mosaic virus (Ca-MTII) was constructed by inserting a cdna clone of Chinese hamster metallothionein II into the ORF II of the cloned virus pca- BB1. Systemically-infected Brassica campestris tissue contained metallothionein at a level of 0.5% of the soluble leaf protein. This efficient expression conferred 4X the Cdbinding capacity when compared with Ca-BB1 infected leaves. Ca-MTII-infected leaves exposed to 1 mm CdCl2 bound all the free Cd whereas uninfected leaves possessed 43.8 nmol free Cd per milligram of protein. This may be responsible for Cd resistance in the Ca-MTII plant cells. Metallothionein is the first mammalian gene product shown to be functional in plants.

16 Challenges with CaMV vector Small insertions (10-30 bp) in various sites abolished infectivity. Only gene II could tolerate insertion of significant size and could be entirely removed But the largest insert tolerated so far is bp. Complicated polycistronic design (ATG of cloned DNA must not interfere with the termination of gene I). CaMV derived vectors are restricted to members of cruciferae and some species of solanceae only CaMV DNA has multiple cleavages sites which also limits its usefulness Due to these limitations, CaMV vectors have not be widely used.

17 Gemini Viruses Characterized by twin (geminate) virions comprising two partially fused icosahedral capsids Small single stranded DNA in circular form represents the genome Genome in some species divided into two segments namely DNA A and DNA B Insects (greenhouse whitefly, grasshoppers, and others) help usually in spreading Gemini-viruses in nature.

18 Monopartite C1 WDV V1 V2: capsid protein V1: systemic spread C1 and C2: replication C2 V2 Bipartite AC1 TGMV DNA A AV1 BV1 TGMV DNA B BV1 AC1: replication AV1: Coat protein AC2: transactivation of sense genes AC3: delayed or attenuated symptoms BC1 and BV1: spread AC2 AC3

19 [The EMBO Journal (2000) 19, doi: /emboj/ ]

20 So far two genera of gemini viruses namely Begomovirus and Mastrevirus have been developed as vectors Begomovirus: with bipartitite genomes Transmitted by whitefly Bemisia tabaci Infects dicots Examples of the vectors: African cassava mosaic virus (ACMV) and Tomato golden mosaic virus (TGMV) Mastrevirus: monopartite genome Transmitted by leaf hoppers Mostly infect monocots Vectors developed so far: Maize streak virus (MSV) and Wheat dwarf virus (WDV) Mastreviruses are not mechanically transmissible Solved this problem by Grimsley et al, 1987 using the principle of Agroinfection Agroinfection: a plasmid containing tandem dimer of the MSV genome inserted into binary vector at T-DNA region Usually replacement of coat protein gene used as strategy for construction of expression vectors

21 Gemini virus vectors have their coat protein coding sequence replaced with a reporter gene or gene of interest Expression vectors based on these virus have been found to successfully deliver, amplify and thus express the gene of interest into the protplasts, cultured cells and the intact plants as well Able to accommodate gene inserts of size up to 3 kb

22 Advantages of Gemini virus as expression vectors The ssdna genome replicate via a double stranded intermediate and this makes the in vivo manipulation more convenient Due to presence of bipartite genome it is possbile to delete or replace the viral coat protien encoding genes with the gene of interest without interfering the replication of viral genome; thus increases the efficiency of gene expression These are particularly interesting because their natural hosts include plants such as maize and wheat, and they could therefore be potential vectors for these and others monocots.

23 But Gemini difficulties; Constraints viruses have presented their own set of one problem being that during the infection cycle the genomes of some Gemini viruses undergo rearrangements and deletions, such that the target gene insert might get excised, which would scramble up any additional DNA that has been inserted, an obvious disadvantage for a cloning vector. not readily transferred by mechanical means from plants to plants The size of gene of interest that can be inserted still very small

24 RNA viruses as expression vectors in Plants Most plant RNA viruses have filamentous morphology and this sort of packaging don t present the constraints regarding the limitation of the size of insert

25 Tobacco mosaic virus (TMV) One of the most extensively studied plant viruses Has monopartite RNA genome of size 6.5 kb Movement protein and coat protein encoded by the subgenomic RNA Replacement of coat protein gene with the cat gene showed high level CAT activity at the site of infection. But the expression was found to be confined at the point of viral entry because the coat protein is required for systemic infection

26

27 Assignment Elaborate about the uses of viruses as vectors in generation of transgenic plants along with their advantages and constraints. [7.5]

DNA Cloning with Cloning Vectors

DNA Cloning with Cloning Vectors Cloning Vectors A M I R A A. T. A L - H O S A R Y L E C T U R E R O F I N F E C T I O U S D I S E A S E S F A C U L T Y O F V E T. M E D I C I N E A S S I U T U N I V E R S I T Y - E G Y P T DNA Cloning

More information

Virus- infectious particle consisting of nucleic acid packaged in a protein coat.

Virus- infectious particle consisting of nucleic acid packaged in a protein coat. Chapter 19 Virus- infectious particle consisting of nucleic acid packaged in a protein coat. Most scientists consider viruses non-living because they cannot reproduce or carry out metabolic activities

More information

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc.

Chapter 20 Recombinant DNA Technology. Copyright 2009 Pearson Education, Inc. Chapter 20 Recombinant DNA Technology Copyright 2009 Pearson Education, Inc. 20.1 Recombinant DNA Technology Began with Two Key Tools: Restriction Enzymes and DNA Cloning Vectors Recombinant DNA refers

More information

Molecular Biology: Gene cloning

Molecular Biology: Gene cloning Molecular Biology: Gene cloning Author: Prof Marinda Oosthuizen Licensed under a Creative Commons Attribution license. CLONING VECTORS The central component of a gene cloning experiment is the vector or

More information

Biotechnology. Cloning. Transformation 2/4/ glue DNA

Biotechnology. Cloning. Transformation 2/4/ glue DNA Biotechnology Cloning The production of multiple copies of a single gene (gene cloning) For basic research on genes and their protein products To make a protein product (insulin, human growth hormone)

More information

Bacteria Reproduce Asexually via BINARY FISSION

Bacteria Reproduce Asexually via BINARY FISSION An Introduction to Microbial Genetics Today: Intro to Microbial Genetics Lunch pglo! Bacteria Reproduce Asexually via BINARY FISSION But, Bacteria still undergo GENETIC RECOMBINATION (combining DNA from

More information

Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio

Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio 2013 Plant Management Network. Accepted for publication 18 December 2012. Published. Identification of a Cucumber mosaic virus Subgroup II Strain Associated with Virus-like Symptoms on Hosta in Ohio John

More information

BACTERIOPHAGES: STRUCTURE AND PROPERTIES OF BACTERIAL VIRUSES

BACTERIOPHAGES: STRUCTURE AND PROPERTIES OF BACTERIAL VIRUSES BACTERIOPHAGES: STRUCTURE AND PROPERTIES OF BACTERIAL VIRUSES Bacteriophage (phage) are obligate intracellular parasites that multiply inside bacteria by making use of some or all of the host biosynthetic

More information

The demonstration that wild-type T-DNA coding region can be replaced by any DNA sequence without any effect on its transfer from A.

The demonstration that wild-type T-DNA coding region can be replaced by any DNA sequence without any effect on its transfer from A. The demonstration that wild-type T-DNA coding region can be replaced by any DNA sequence without any effect on its transfer from A. tumefaciens to the plant inspired the promise that A. tumefaciens might

More information

Viral Genomes. Genomes may consist of: 1. Double Stranded DNA 2. Double Stranded RNA 3. Single-stranded RNA 4. Single-stranded DNA

Viral Genomes. Genomes may consist of: 1. Double Stranded DNA 2. Double Stranded RNA 3. Single-stranded RNA 4. Single-stranded DNA Chapter 19 Viral Genomes Genomes may consist of: 1. Double Stranded DNA 2. Double Stranded RNA 3. Single-stranded RNA 4. Single-stranded DNA Genome is usually organized as a single linear or circular molecule

More information

Lecture Series 10 The Genetics of Viruses and Prokaryotes

Lecture Series 10 The Genetics of Viruses and Prokaryotes Lecture Series 10 The Genetics of Viruses and Prokaryotes The Genetics of Viruses and Prokaryotes A. Using Prokaryotes and Viruses for Genetic Experiments B. Viruses: Reproduction and Recombination C.

More information

MMG 301, Lec. 25 Mutations and Bacteriophage

MMG 301, Lec. 25 Mutations and Bacteriophage MMG 301, Lec. 25 Mutations and Bacteriophage Questions for today: 1. What are mutations and how do they form? 2. How are mutant bacteria used in research? 3. What are the general properties of bacteriophage

More information

Biotechnology Unit: Viruses

Biotechnology Unit: Viruses Biotechnology Unit: Viruses What do you see here? What is the cause: bacteria or virus? In the late 1800 s Martinus Beijerinck performed this experiment and saw that something smaller than bacteria was

More information

Rawan Almujaibel Anas Abu-Humaidan

Rawan Almujaibel Anas Abu-Humaidan 8 Rawan Almujaibel...... Anas Abu-Humaidan In the previous lecture the Dr. talked about DNA structure and their 4 types of nitrogen bases. Then he talked about bacterial DNA (chromosomes) and their replication

More information

Reading Lecture 8: Lecture 9: Lecture 8. DNA Libraries. Definition Types Construction

Reading Lecture 8: Lecture 9: Lecture 8. DNA Libraries. Definition Types Construction Lecture 8 Reading Lecture 8: 96-110 Lecture 9: 111-120 DNA Libraries Definition Types Construction 142 DNA Libraries A DNA library is a collection of clones of genomic fragments or cdnas from a certain

More information

The Zombies of the Scientific Community Viruses

The Zombies of the Scientific Community Viruses The Zombies of the Scientific Community Viruses What are viruses and what do they look like? Viruses do not satisfy all of the characteristics of life. Often, viruses are called parasites because they

More information

Bootcamp: Molecular Biology Techniques and Interpretation

Bootcamp: Molecular Biology Techniques and Interpretation Bootcamp: Molecular Biology Techniques and Interpretation Bi8 Winter 2016 Today s outline Detecting and quantifying nucleic acids and proteins: Basic nucleic acid properties Hybridization PCR and Designing

More information

الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء. 222Cell Biolgy 1

الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء. 222Cell Biolgy 1 الحمد هلل رب العالميه الذي هداوا لهذا وما كىا لىهتدي لىال أن هداوا اهلل والصالة والسالم على أشزف األوبياء 222Cell Biolgy 1 Lecture 13 222Cell Biolgy 2 Nucleosome Nucleosomes form the fundamental repeating

More information

Genetic Engineering & Recombinant DNA

Genetic Engineering & Recombinant DNA Genetic Engineering & Recombinant DNA Chapter 10 Copyright The McGraw-Hill Companies, Inc) Permission required for reproduction or display. Applications of Genetic Engineering Basic science vs. Applied

More information

By two mechanisms: Mutation Genetic Recombination

By two mechanisms: Mutation Genetic Recombination Genetics (see text pages 257-259, 267-298) Remember what it is we want to address: How is it that prokaryotes gain new genetic ability? The cells are haploid and reproduce by fission...so how does an genetic

More information

What goes into my Biological Inventory?

What goes into my Biological Inventory? What goes into my Biological Inventory? What Information is Required for an Effective Risk Assessment? According to the Laboratory Biosafety Guidelines (2004), the risk group of an organism is determined

More information

Viruses 11/30/2015. Chapter 19. Key Concepts in Chapter 19

Viruses 11/30/2015. Chapter 19. Key Concepts in Chapter 19 Chapter 19 Viruses Dr. Wendy Sera Houston Community College Biology 1406 Key Concepts in Chapter 19 1. A virus consists of a nucleic acid surrounded by a protein coat. 2. Viruses replicate only in host

More information

Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen)

Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen) G01066 pfbaavmcswtiresmcherrybghpa Plasmid Features: Coordinates Feature 194-348 Tn7L 377-617 SV40pA Complementary 678-818 AAV2 ITR (141bp) 860-955 mcs 956-1542 wtires 1543-2253 mcherry 2268-2481 BgHpA

More information

AP Biology Gene Expression/Biotechnology REVIEW

AP Biology Gene Expression/Biotechnology REVIEW AP Biology Gene Expression/Biotechnology REVIEW Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Gene expression can be a. regulated before transcription.

More information

Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen)

Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen) G01067 pfbaavcagmcswtiresmcherrybghpa Plasmid Features: Coordinates Feature 194-348 Tn7L 377-617 SV40pA Complementary 678-818 AAV2 ITR (141bp) 938-2607 CAG 2600-2685 mcs 2687-3273 wtires 3274-3984 mcherry

More information

5. the transformation of the host cell. 2. reject the virus. 4. initiate an attack on the virus.

5. the transformation of the host cell. 2. reject the virus. 4. initiate an attack on the virus. Version 001 Bacterial/Viral Genetics mahon (26) 1 This print-out should have 28 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt Bio

More information

Methods of Gene Transfer in Plants: 2 Methods

Methods of Gene Transfer in Plants: 2 Methods Biology Discussion Methods of Gene Transfer in Plants: 2 Methods Article Shared by Nandkishor Jha This article throws light upon the two methods used for gene transfer in plants. The two methods are: (1)

More information

Recitation CHAPTER 9 DNA Technologies

Recitation CHAPTER 9 DNA Technologies Recitation CHAPTER 9 DNA Technologies DNA Cloning: General Scheme A cloning vector and eukaryotic chromosomes are separately cleaved with the same restriction endonuclease. (A single chromosome is shown

More information

Multiple cloning site between CAG and wild type IRES:

Multiple cloning site between CAG and wild type IRES: G0747 pfbaavcagmcs wtiresegfpbghpa Plasmid Features: Coordinates Feature 194-348 Tn7L 376-511 SV40pA Complementary 678-818 AAV2 ITR (141bp) 938-2607 CAG promoter 872-955 mcs 2687-3273 wtires (11th ATG

More information

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome.

Introducing new DNA into the genome requires cloning the donor sequence, delivery of the cloned DNA into the cell, and integration into the genome. Key Terms Chapter 32: Genetic Engineering Cloning describes propagation of a DNA sequence by incorporating it into a hybrid construct that can be replicated in a host cell. A cloning vector is a plasmid

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics AP Biology What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron microscope size smaller than ribosomes ~20 50 nm

More information

Recombinant DNA Technology

Recombinant DNA Technology Recombinant DNA Technology Common General Cloning Strategy Target DNA from donor organism extracted, cut with restriction endonuclease and ligated into a cloning vector cut with compatible restriction

More information

General Biology. Structure of Viruses. Viral Genomes

General Biology. Structure of Viruses. Viral Genomes Course No: BNG2003 Credits: 3.00 General Biology 12. Viruses and Bacteria Bacteria, Viruses and Biomedical Engineering: - Medicine ---> Biofilms etc - Energy: Biofuel Cells - Environment/Industries: Bioremediation

More information

Recombinant protein production in Eukaryotic cells. Dr. W. McLaughlin BC35C

Recombinant protein production in Eukaryotic cells. Dr. W. McLaughlin BC35C Recombinant protein production in Eukaryotic cells Dr. W. McLaughlin BC35C Recombinant protein production in Eukaryotic cells! rhuman protein must be identical to the natural protein! Prokaryotes are generally

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning

CHAPTER 20 DNA TECHNOLOGY AND GENOMICS. Section A: DNA Cloning Section A: DNA Cloning 1. DNA technology makes it possible to clone genes for basic research and commercial applications: an overview 2. Restriction enzymes are used to make recombinant DNA 3. Genes can

More information

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype)

Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Self-test Quiz for Chapter 12 (From DNA to Protein: Genotype to Phenotype) Question#1: One-Gene, One-Polypeptide The figure below shows the results of feeding trials with one auxotroph strain of Neurospora

More information

Lac Operon contains three structural genes and is controlled by the lac repressor: (1) LacY protein transports lactose into the cell.

Lac Operon contains three structural genes and is controlled by the lac repressor: (1) LacY protein transports lactose into the cell. Regulation of gene expression a. Expression of most genes can be turned off and on, usually by controlling the initiation of transcription. b. Lactose degradation in E. coli (Negative Control) Lac Operon

More information

Unit 8: Genomics Guided Reading Questions (150 pts total)

Unit 8: Genomics Guided Reading Questions (150 pts total) Name: AP Biology Biology, Campbell and Reece, 7th Edition Adapted from chapter reading guides originally created by Lynn Miriello Chapter 18 The Genetics of Viruses and Bacteria Unit 8: Genomics Guided

More information

Vectors for Gene Cloning: Plasmids and Bacteriophages

Vectors for Gene Cloning: Plasmids and Bacteriophages Vectors for Gene Cloning: Plasmids and Bacteriophages DNA molecule must be able to replicate within the host cell to be able to act as a vector for gene cloning, so that numerous copies of the recombinant

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 19 Viruses Lectures by Erin Barley

More information

Red Type Indicates Unique Site

Red Type Indicates Unique Site 3600 G0605 pscaavmcmvmcsbghpa Plasmid Features: Coordinates Feature 980-1084 AAV2 5 ITR 1144-1666 modified CMV 1667-1761 MCS 1762-1975 BgHpA 1987-2114 AAV2 3 ITR 3031-3891 B-lactamase (Ampicillin) Antibiotic

More information

Biotechnology and DNA Technology

Biotechnology and DNA Technology 11/27/2017 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 9 Biotechnology and DNA Technology Introduction to Biotechnology Learning Objectives Compare

More information

Chapter 10 Genetic Engineering: A Revolution in Molecular Biology

Chapter 10 Genetic Engineering: A Revolution in Molecular Biology Chapter 10 Genetic Engineering: A Revolution in Molecular Biology Genetic Engineering Direct, deliberate modification of an organism s genome bioengineering Biotechnology use of an organism s biochemical

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Safe Operating Procedure

Safe Operating Procedure Safe Operating Procedure RECOMBINANT OR SYNTHETIC NUCLEIC ACIDS IBC AND OTHER REVIEW REQUIREMENTS (For assistance, please contact EHS at (402) 472-4925, or visit our web site at http://ehs.unl.edu/) (Revised

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

PLNT2530 (2018) Unit 6b Sequence Libraries

PLNT2530 (2018) Unit 6b Sequence Libraries PLNT2530 (2018) Unit 6b Sequence Libraries Molecular Biotechnology (Ch 4) Analysis of Genes and Genomes (Ch 5) Unless otherwise cited or referenced, all content of this presenataion is licensed under the

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for

Viruses. Chapter 19. Biology Eighth Edition Neil Campbell and Jane Reece. PowerPoint Lecture Presentations for Chapter 19 Viruses PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Copyright

More information

March 15, Genetics_of_Viruses_and_Bacteria_p5.notebook. smallest viruses are smaller than ribosomes. A virulent phage (Lytic)

March 15, Genetics_of_Viruses_and_Bacteria_p5.notebook. smallest viruses are smaller than ribosomes. A virulent phage (Lytic) Genetics_of_Viruses_and_Bacteria_p5.notebook smallest viruses are smaller than ribosomes Adenovirus Tobacco mosaic virus Bacteriophage Influenza virus envelope is derived from the host cell The capsids

More information

Viruses, Viroids, and Prions

Viruses, Viroids, and Prions 11/21/2017 PowerPoint Lecture Presentations prepared by Bradley W. Christian, McLennan Community College CHAPTER 13 Viruses, Viroids, and Prions General Characteristics of Viruses Learning Objective Differentiate

More information

Calvin College Biosafety Application

Calvin College Biosafety Application SECTION 1: GENERAL INFORMATION Calvin College Biosafety Application Applicant Name: Campus Address: Email Address: Campus Phone #: Project Title: APPLICATION TYPE: Research Teaching Course #(s) PROTOCOL

More information

BIOLOGY 205 Midterm II - 19 February Each of the following statements are correct regarding Eukaryotic genes and genomes EXCEPT?

BIOLOGY 205 Midterm II - 19 February Each of the following statements are correct regarding Eukaryotic genes and genomes EXCEPT? BIOLOGY 205 Midterm II - 19 February 1999 Name Multiple choice questions 4 points each (Best 12 out of 13). 1. Each of the following statements are correct regarding Eukaryotic genes and genomes EXCEPT?

More information

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8

Bi 8 Lecture 4. Ellen Rothenberg 14 January Reading: from Alberts Ch. 8 Bi 8 Lecture 4 DNA approaches: How we know what we know Ellen Rothenberg 14 January 2016 Reading: from Alberts Ch. 8 Central concept: DNA or RNA polymer length as an identifying feature RNA has intrinsically

More information

CHAPTERS 16 & 17: DNA Technology

CHAPTERS 16 & 17: DNA Technology CHAPTERS 16 & 17: DNA Technology 1. What is the function of restriction enzymes in bacteria? 2. How do bacteria protect their DNA from the effects of the restriction enzymes? 3. How do biologists make

More information

Applicazioni biotecnologiche

Applicazioni biotecnologiche Applicazioni biotecnologiche Analisi forense Sintesi di proteine ricombinanti Restriction Fragment Length Polymorphism (RFLP) Polymorphism (more fully genetic polymorphism) refers to the simultaneous occurrence

More information

Genomic regions of tomato leaf curl virus DNA satellite required for replication and for satellitemediated delivery of heterologous DNAs

Genomic regions of tomato leaf curl virus DNA satellite required for replication and for satellitemediated delivery of heterologous DNAs Journal of General Virology (2007), 88, 2073 2077 DOI 10.1099/vir.0.82853-0 Short Communication Correspondence M. Ali Rezaian ali.rezaian@adelaide.edu.au Genomic regions of tomato leaf curl virus DNA satellite

More information

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION

BIOLOGY. Viruses CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson. Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick TENTH EDITION CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 19 Viruses Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick A Borrowed Life A virus is an infectious particle

More information

Chapter 15 Recombinant DNA and Genetic Engineering. Restriction Enzymes Function as Nature s Pinking Shears

Chapter 15 Recombinant DNA and Genetic Engineering. Restriction Enzymes Function as Nature s Pinking Shears Chapter 15 Recombinant DNA and Genetic Engineering In this chapter you will learn How restriction enzyme work and why they are essential to DNA technology. About various procedures such as cloning and

More information

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering

Chapter 8: Recombinant DNA. Ways this technology touches us. Overview. Genetic Engineering Chapter 8 Recombinant DNA and Genetic Engineering Genetic manipulation Ways this technology touches us Criminal justice The Justice Project, started by law students to advocate for DNA testing of Death

More information

Researchers use genetic engineering to manipulate DNA.

Researchers use genetic engineering to manipulate DNA. Section 2: Researchers use genetic engineering to manipulate DNA. K What I Know W What I Want to Find Out L What I Learned Essential Questions What are the different tools and processes used in genetic

More information

Chapter 13A: Viral Basics

Chapter 13A: Viral Basics Chapter 13A: Viral Basics 1. Viral Structure 2. The Viral Life Cycle 3. Bacteriophages 1. Viral Structure What exactly is a Virus? Viruses are extremely small entities that are obligate intracellular parasites

More information

Genetics Lecture 21 Recombinant DNA

Genetics Lecture 21 Recombinant DNA Genetics Lecture 21 Recombinant DNA Recombinant DNA In 1971, a paper published by Kathleen Danna and Daniel Nathans marked the beginning of the recombinant DNA era. The paper described the isolation of

More information

Genome research in eukaryotes

Genome research in eukaryotes Functional Genomics Genome and EST sequencing can tell us how many POTENTIAL genes are present in the genome Proteomics can tell us about proteins and their interactions The goal of functional genomics

More information

Learning Objectives :

Learning Objectives : Learning Objectives : Understand the basic differences between genomic and cdna libraries Understand how genomic libraries are constructed Understand the purpose for having overlapping DNA fragments in

More information

LECTURE PRESENTATIONS

LECTURE PRESENTATIONS LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 19 Viruses Lectures by Erin Barley

More information

Chapter 26 : Viruses

Chapter 26 : Viruses Chapter 26 : Viruses Note : In this chapter the important points are in bold font and the less important are in normal font. so if you don t have an enough time ; study only important points. Concept 26.1:

More information

Very Short Answers Questions:

Very Short Answers Questions: Chapter-8 Viruses Very Short Answers Questions: 1. What is the shape of T 4 phage? What is its genetic material? A: Tadpole shape distinguished with head and tail regions joined by collar. Genetic material

More information

Chapter 29. DNA as the Genetic Material. Recombination of DNA. BCH 4054 Spring 2001 Chapter 29 Lecture Notes. Slide 1. Slide 2.

Chapter 29. DNA as the Genetic Material. Recombination of DNA. BCH 4054 Spring 2001 Chapter 29 Lecture Notes. Slide 1. Slide 2. BCH 4054 Spring 2001 Chapter 29 Lecture Notes 1 Chapter 29 DNA: Genetic Information, Recombination, and Mutation 2 DNA as the Genetic Material Griffith Experiment on pneumococcal transformation (Fig 29.1)

More information

Chapter 29. DNA as the Genetic Material. Recombination of DNA. BCH 4054 Fall 2000 Chapter 29 Lecture Notes. Slide 1. Slide 2. Slide 3.

Chapter 29. DNA as the Genetic Material. Recombination of DNA. BCH 4054 Fall 2000 Chapter 29 Lecture Notes. Slide 1. Slide 2. Slide 3. BCH 4054 Fall 2000 Chapter 29 Lecture Notes 1 Chapter 29 DNA: Genetic Information, Recombination, and Mutation 2 DNA as the Genetic Material Griffith Experiment on pneumococcal transformation (Fig 29.1)

More information

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review

DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA REPLICATION & BIOTECHNOLOGY Biology Study Review DNA DNA is found in, in the nucleus. It controls cellular activity by regulating the production of, which includes It is a very long molecule made up

More information

G0463 pscaavmcsbghpa MCS. Plasmid Features:

G0463 pscaavmcsbghpa MCS. Plasmid Features: 3200 G0463 pscaavmcsbghpa Plasmid Features: Coordinates Feature 980-1085 AAV2 ITR 106bp (mutated ITR) 1110-1226 MCS 1227-1440 BgHpA 1453-1595 AAV2 ITR (143bp) 2496-3356 B-lactamase (Ampicillin) Antibiotic

More information

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech )

NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) NOTES - CH 15 (and 14.3): DNA Technology ( Biotech ) Vocabulary Genetic Engineering Gene Recombinant DNA Transgenic Restriction Enzymes Vectors Plasmids Cloning Key Concepts What is genetic engineering?

More information

Identification of Two Tobacco rattle virus Sequence Variants Associated with Virus-like Mottle Symptom on Hosta in Ohio

Identification of Two Tobacco rattle virus Sequence Variants Associated with Virus-like Mottle Symptom on Hosta in Ohio 2013 Plant Management Network. Accepted for publication 21 December 2012. Published. Identification of Two Tobacco rattle virus Sequence Variants Associated with Virus-like Mottle Symptom on Hosta in Ohio

More information

The Biotechnology Toolbox

The Biotechnology Toolbox Chapter 15 The Biotechnology Toolbox Cutting and Pasting DNA Cutting DNA Restriction endonuclease or restriction enzymes Cellular protection mechanism for infected foreign DNA Recognition and cutting specific

More information

The 5 end problem. 3 5 Now what? RNA primers. DNA template. elongate. excise primers, elongate, ligate

The 5 end problem. 3 5 Now what? RNA primers. DNA template. elongate. excise primers, elongate, ligate 1 2 3 DNA Replication Viruses must replicate their genomes to make new progeny This always requires expression of at least one virus protein, sometimes many (hence always delayed after infection) DNA is

More information

Lecture 25 (11/15/17)

Lecture 25 (11/15/17) Lecture 25 (11/15/17) Reading: Ch9; 328-332 Ch25; 990-995, 1005-1012 Problems: Ch9 (study-guide: applying); 1,2 Ch9 (study-guide: facts); 7,8 Ch25 (text); 1-3,5-7,9,10,13-15 Ch25 (study-guide: applying);

More information

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA

DNA and Biotechnology Form of DNA Form of DNA Form of DNA Form of DNA Replication of DNA Replication of DNA 21 DNA and Biotechnology DNA and Biotechnology OUTLINE: Replication of DNA Gene Expression Mutations Regulating Gene Activity Genetic Engineering Genomics DNA (deoxyribonucleic acid) Double-stranded molecule

More information

The Structure and Genetic Map of Lambda phage

The Structure and Genetic Map of Lambda phage NPTEL Biotechnology - Systems Biology The Structure and Genetic Map of Lambda phage Dr. M. Vijayalakshmi School of Chemical and Biotechnology SASTRA University Joint Initiative of IITs and IISc Funded

More information

Biological Research Registration Form

Biological Research Registration Form Biological Research Registration Form The University of Oregon requires Institutional Biosafety Committee review and approval of research involving recombinant or synthetic nucleic acids (rsna), organisms

More information

Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes

Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes Molecular Cell Biology - Problem Drill 06: Genes and Chromosomes Question No. 1 of 10 1. Which of the following statements about genes is correct? Question #1 (A) Genes carry the information for protein

More information

Biotechnology: DNA Technology & Genomics

Biotechnology: DNA Technology & Genomics Chapter 20. Biotechnology: DNA Technology & Genomics 2003-2004 1 The BIG Questions! How can we use our knowledge of DNA to: " diagnose disease or defect? " cure disease or defect? " change/improve organisms?!

More information

-Is the process of manipulating genes and genomes

-Is the process of manipulating genes and genomes Genetic Engineering -Is the process of manipulating genes and genomes Biotechnology -Is the process of manipulating organisms or their components for the purpose of making useful products Restriction Enzymes

More information

Regulation of metabolic pathways

Regulation of metabolic pathways Regulation of metabolic pathways Bacterial control of gene expression Operon: cluster of related genes with on/off switch Three Parts: 1. Promoter where RNA polymerase attaches 2. Operator on/off, controls

More information

2054, Chap. 14, page 1

2054, Chap. 14, page 1 2054, Chap. 14, page 1 I. Recombinant DNA technology (Chapter 14) A. recombinant DNA technology = collection of methods used to perform genetic engineering 1. genetic engineering = deliberate modification

More information

Learning Objectives. 2. Restriction Endonucleases 3. Cloning 4. Genetic Engineering 5. DNA libraries 6. PCR 7. DNA Fingerprinting

Learning Objectives. 2. Restriction Endonucleases 3. Cloning 4. Genetic Engineering 5. DNA libraries 6. PCR 7. DNA Fingerprinting Fig. 13-CO, p.330 Learning Objectives 1. Purification & detection of nucleic acids. 2. Restriction Endonucleases 3. Cloning 4. Genetic Engineering 5. DNA libraries 6. PCR 7. DNA Fingerprinting Gel Electrophoresis

More information

G0202 pfbaavmcsbghpa MCS. Red type indicates unique restriction site. Plasmid Features:

G0202 pfbaavmcsbghpa MCS. Red type indicates unique restriction site. Plasmid Features: G0202 pfbaavmcsbghpa Plasmid Features: Coordinates Feature 183-348 Tn7L 377-617 SV40pA Complementary 678-818 AAV2 ITR (141bp) 820-975 MCS 976-1189 BgHpA 1243-1372 AAV2 ITR (130bp) 1929-2462 Gentamicin

More information

Biotechnology DNA technology

Biotechnology DNA technology Biotechnology Biotechnology is the manipulation of organisms or their components to make useful products The applications of DNA technology affect everything from agriculture, to criminal law, to medical

More information

Name AP Biology Mrs. Laux Take home test #11 on Chapters 14, 15, and 17 DUE: MONDAY, DECEMBER 21, 2009

Name AP Biology Mrs. Laux Take home test #11 on Chapters 14, 15, and 17 DUE: MONDAY, DECEMBER 21, 2009 MULTIPLE CHOICE QUESTIONS 1. Inducible genes are usually actively transcribed when: A. the molecule degraded by the enzyme(s) is present in the cell. B. repressor molecules bind to the promoter. C. lactose

More information

Basics of Recombinant DNA Technology Biochemistry 302. March 5, 2004 Bob Kelm

Basics of Recombinant DNA Technology Biochemistry 302. March 5, 2004 Bob Kelm Basics of Recombinant DNA Technology Biochemistry 302 March 5, 2004 Bob Kelm Applications of recombinant DNA technology Mapping and identifying genes (DNA cloning) Propagating genes (DNA subcloning) Modifying

More information

Red type indicates unique restriction site. Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen)

Red type indicates unique restriction site. Antibiotic Resistance: Ampicillin and Gentamicin Bacterial Backbone: pfastbac (Invitrogen) G0619 pfbaavmcscmvegfp SV40pA Plasmid Features: Coordinates Feature 194-348 Tn7L 376-511 SV40pA (complementary-remnant of pfb cloning) 678-818 AAV2 ITR (141bp) 877-969 MCS 970-1549 CMV Promoter 1569-2288

More information

Chapter 13: Biotechnology

Chapter 13: Biotechnology Chapter Review 1. Explain why the brewing of beer is considered to be biotechnology. The United Nations defines biotechnology as any technological application that uses biological system, living organism,

More information

Chapter 20 DNA Technology & Genomics. If we can, should we?

Chapter 20 DNA Technology & Genomics. If we can, should we? Chapter 20 DNA Technology & Genomics If we can, should we? Biotechnology Genetic manipulation of organisms or their components to make useful products Humans have been doing this for 1,000s of years plant

More information

Molecular Genetics Student Objectives

Molecular Genetics Student Objectives Molecular Genetics Student Objectives Exam 1: Enduring understanding 3.A: Heritable information provides for continuity of life. Essential knowledge 3.A.1: DNA, and in some cases RNA, is the primary source

More information

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY.

BIOLOGY - CLUTCH CH.20 - BIOTECHNOLOGY. !! www.clutchprep.com CONCEPT: DNA CLONING DNA cloning is a technique that inserts a foreign gene into a living host to replicate the gene and produce gene products. Transformation the process by which

More information

AP Biology Reading Guide BI #3 Chapter 19: Viruses

AP Biology Reading Guide BI #3 Chapter 19: Viruses AP Biology Reading Guide BI #3 Chapter 19: Viruses Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat 1. What was some early evidence of the existence of viruses? Why were they

More information

Genetic Adaptation II. Microbial Physiology Module 3

Genetic Adaptation II. Microbial Physiology Module 3 Genetic Adaptation II Microbial Physiology Module 3 Topics Topic 4: Topic 5: Transposable Elements Exchange of Genetic Material Between Organisms Topic 5a: Protection Against Foreign DNA Aims and Objectives

More information

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329.

Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, ; ; 330 PCR, ; 329. Lecture 3 (FW) January 28, 2009 Cloning of DNA; PCR amplification Reading assignment: Cloning, 240-245; 286-87; 330 PCR, 270-274; 329. Take Home Lesson(s) from Lecture 2: 1. DNA is a double helix of complementary

More information

Chap. 6 Principles of Genetic Manipulation of Organisms: Recombinant DNA (rdna) Technology

Chap. 6 Principles of Genetic Manipulation of Organisms: Recombinant DNA (rdna) Technology 1 Chap. 6 Principles of Genetic Manipulation of Organisms: Recombinant DNA (rdna) Technology Purpose and expected outcomes 1. Recombinant DNA (rdna) technology allows scientists to transfer genes from

More information