vrealize Operations and Log Insight in vsan Environments First Published On: Last Updated On:

Size: px
Start display at page:

Download "vrealize Operations and Log Insight in vsan Environments First Published On: Last Updated On:"

Transcription

1 vrealize Operations and Log Insight in vsan Environments First Published On: Last Updated On:

2 Table of Contents 1. Introduction 1.1.Executive Summary 1.2.Role of vrealize Operations and vrealize Log Insight 1.3.vRealize Log Insight 1.4.vRealize Operations 2. Scenarios and Workflows 2.1.Using Log Insight to better understand network connectivity issues in vsan 2.2.Analyzing Capacity Utilization with vrealize Operations 3. Deployment considerations and recommended practices 3.1.Upgrade Considerations for vrealize Log Insight 3.2.Upgrade considerations for vrealize Operations 3.3.Customizing dashboards in vrealize Log Insight 3.4.Customizing dashboards in vrealize Operations 3.5.Resource capacity usage for vrealize Operations and Log Insight 4. Summary 4.1.Conclusion 4.2.About the Author 2

3 1. Introduction Providing an overview of the role of VMware vrealize Operations and Log Insight in a vsan powered environment. 3

4 1.1 Executive Summary Executive Summary Data center administrators are under tremendous pressure to deliver applications that perform better, with an infrastructure that is optimized for both performance and resiliency. These environments often generate a myriad of disparate bits of information about the infrastructure that powers an assortment of business applications and data. This data, which comes from multiple sources across the data center, and resides in the form of metrics, stateful and stateless conditions, and log events. Fundamental questions arise when attempting to decipher this data. What does this information mean? What metrics deserve the most attention? How can intelligence into event data help drive smart choices in ongoing operations? How can this data help with strategic planning for growth? Infrastructure analytics helps answer these questions. By bridging the gap between raw metrics, and the desire for actionable steps by the administrator, Infrastructure analytics uses intelligence gathered from the infrastructure to help IT organizations achieve their goals of an optimized, efficient data center. VMware vsan plays a significant part in the transformation of infrastructures being dependent on proprietary hardware to a fully software defined data center (SDDC). Since vsan provides a fully distributed storage solution that is integrated directly into vsphere, this strengthens the position of the hypervisor as the ideal control and monitoring plane for infrastructure analytics. VMware vrealize Operations (vr Ops) and vrealize Log Insight can offer a supreme level of infrastructure analytics for any vsphere environment, but especially those environments that are powered by vsan. This document is targeted at vsan administrators who also use vr Ops, and vrealize Log Insight. It aims to provide tangible examples of operationalizing vrealize Operations, and vrealize Log Insight in a vsphere environment that is partially, or fully powered by vsan. In addition to the examples provided, an assortment of operational tips, explanations, and guidance will be provided that will help an new and experienced users make the very best use of these solutions. 1.2 Role of vrealize Operations and vrealize Log Insight Role of vrealize Operations and vrealize Log Insight VMware vrealize Operations, and vrealize Log Insight offer a unique level of insight and intelligence of a data center. By using sophisticated analytics engines, vrealize take raw metrics, and provides meaning and context an environment. It extracts the data collected by VMware vcenter, as well as many other solutions through its extensible framework. A set of APIs are used to collect this data from vcenter and vsan, and allows for further analysis and manipulation of data that is not available in vcenter. 4

5 Figure 1-1. The relationship between VMware vcenter (VCSA) and the vrealize suite of solutions These two applications help deliver the following: A common control and monitoring plane ensuring data is being measured and interpreted in a consistent manner. Short-term and long-term visibility for more effective trending analysis. Flexible alerting and notification mechanisms tailored to suite an organization's needs. Insight and suggestions to common infrastructure metrics. Centralized log collection of various aspects of the software and hardware infrastructure. The ability to correlate log events to performance anomalies to provide contextual awareness of events. Deep level mining of log data for more effective trouble shooting and root cause analysis. vrealize Operations and vrealize Log Insight focus on two different aspects of the data center, and can be used separately, or together. The distinctions between the purpose of each product will be provided later in this document. 1.3 vrealize Log Insight 5

6 vrealize Log Insight VMware vrealize Log Insight is a log aggregation, management, and analytics solution that gives the data center administrator an easy way to see context, correlation, and meaning behind otherwise obfuscated log content. Log Insight can aggregate log data from a variety of sources, and is extensible to over 40 applications using its content pack framework. When used correctly, with the right tools, log data can provide context and understanding to changing conditions in the data center. Log Insight's streamlined integration with VMware's portfolio of solutions is immediately noticeable upon first use. As Figure 1-2 illustrates, log data is automatically collected from vcenter, analyzed, and presented in a manner that is easy to consume. Many of Log Insight's prebuilt dashboards offer unique intelligence around vcenter log data. It can be used to easily track changes in the data center without extensive knowledge by the administrator of the actual log entries. Figure 1-2. A prebuilt vsan Object Events dashboard as a part of vrealize Log Insight 4.5 Log Insight still uses the content pack framework from previous editions, but vsan dashboards, as shown in Figure 1-3, are now included at the time of installation, making it easy to deploy and use in a vsan powered environment. Out of the box, vrealize Log Insight provides the following: Ten, prebuilt vsan dashboards that disseminate key log data entries. Intimate knowledge of log syntax not required. Captures and intelligently disseminates all vsan urgent traces. User friendly drill-down filtering abilities all within the UI. Exposes back-end vsan activity to better understand historical conditions and non-error related activities. Dashboard widgets with predefined filters to discern various host and object states. Dashboards can be cloned, and are fully customizable, allowing as a good stepping stone for additional customization. 6

7 Figure 1-3. A prebuilt vsan Object Events dashboard as a part of vrealize Log Insight 4.5 Log Insight also allows for a user to easily drill into the log events and queries behind a given widget for further analysis. Figure 1-4 illustrates the "Interactive Analytics" view of the "Object Component State - Resyncing" widget found in the vsan "Object Events" dashboard. Interactive Analytics are available from the home page of Log Insight, or within each widget. Figure 1-4. "Interactive Analytics" view available in all widgets While many associate Log Insight's core competency as the ability to detect and find logged errors and failures, this overlooks one of Log Insight's most valuable capabilities: Viewing non-error event data to provide a clear understanding of activities by the system. This provides a comprehensive understanding into a health operating data center, and is why many of the dashboards are focused on non-error event data. RECOMMENDATION: Use the Interactive Analytics within a widget. By clicking on the "open in Interactive Analytics" icon in the upper right of a selected widget, this will jump to the Interactive analytics view, but do so using the query used by the widget being viewed. This can also be a helpful way to understand how queries are built in Log Insight. 7

8 VMware vsan generates a high volume of log data. This log data is saved in a binary, compressed format to /var/log/vsantraces on each ESXi host in a vsan cluster, and is comprised of two types of data. vsan urgent traces. This is log data that includes all critical event messages from vsan. vsan non-urgent traces. Additional low-level logging for vsan that is not designed for human consumption. When redirecting vsan trace-level messages to a syslog server, urgent traces will continue to be written to the host. Urgent traces are simultaneously decompressed, and converted from binary to human readable format as they are forwarded to a syslog server. Acting as a syslog collector, Log Insight will ingest vsan urgent traces, and make them available for prebuilt, or custom dashboards and widgets. The installation of Log Insight in an environment will automatically configure the vsan hosts to send vsan urgent traces to Log Insight. Log Insight is primarily focused on collecting logs from vcenter, and other sources through it's "content pack" framework. ESXi host crash dumps and other host logs are NOT collected by Log Insight. Furthermore, due to the intensity of writes of log data, hosts that use a USB/SD device as an ESXi boot device are not used in the same way if booting ESXi from a traditional storage device. Booting ESXi from a traditional storage device (SSD, HDD, SATADOM) offers much more flexibility than from USB/SD, and may be a design consideration to reevaluate in both vsan, and non-vsan clusters. Integrated vsan dashboards in Log Insight The following information describes each dashboard included in the Log Insight content pack for vsan, which is now integrated directly into Log Insight 4.5 and newer. Host State Information The Host state information dashboard, as seen in Figure 1-5, is a good overview of how vsan treats host membership and roles. Its primary focus will be around activities of the host itself, such as additions or changes in host membership to a vsan cluster. Figure 1-5. Host State Information Dashboard 8

9 This dashboard consists of seven widgets, and will capture log entries for hosts entering and exiting maintenance mode, vsan host discovery events. It will also capture when hosts rejoin a cluster, and role initialization. This dashboard is most helpful in understanding if a vsan host is being recognized correctly. Disk group Failures The disk group failures dashboard, as displayed in Figure 1-6, is a collection of widgets that look a disk group activity. Disk groups are an important construct of vsan, and this dashboard gives visibility to disk group failure events that are logged by vcenter, but not readily visible. Figure 1-6. Disk group Failures Dashboard All seven widgets in this dashboard will report any event activity associated with the one or more disk groups of each host in a vsan cluster. Note near the bottom of Figure 1-6 the "Component creation failure" widgets. These can be extremely helpful in understanding why an object isn't able to meet a specific policy compliance due to insufficient capacity remaining, or exceeding the component maximum for the host. Networking The networking dashboard, as shown in Figure 1-7, filters log events display vsan network creation events in a cluster. It is common to see events in this dashboard when hosts are coming online, or vsan is being enabled on the hosts across a cluster. These are not errors, but simply confirmation that vsan is now using a specific VMkernel NIC on a specific host for vsan traffic. 9

10 Figure 1-7. Networking Dashboard The networking dashboard contains two widgets, but can work nicely in conjunction with the "Host State Information" dashboard, or perhaps other network related dashboards found in the content pack for vsphere. East-west host connectivity is critically important to the operation of vsan, and using this dashboard with other dashboards found in the vsan and vsphere content packs will provide the visibility needed to understand if there are any issues with east-west connectivity. Congestion The Congestion dashboard, displayed in Figure 1-8, aims to provide better visibility of events generated from congestions. Congestions is a unique measurement introduced to vsan. It s how vsan measures pressure throughout the stack, and use these measurements to introduce flow control to smooth out this traffic so that VMs have enough resources for guest VM storage needs. Figure 1-8. Congestion Dashboard This dashboard has five widgets that capture congestion related log events. This dashboard can be most helpful when viewed in conjunction with the congestion metrics provided in the vsan 10

11 performance service. The value of the congestions metrics is not for meaningful interpretation of an absolute value, but identifying a change over the course of time. Capturing log events related to congestions can provide more context behind any spikes or other statistical outliers found in the vsan performance service. Object Configurations The object configurations dashboard shown in Figure 1-9 takes a high-level view of activities of objects. This will generally report activities when vsan is seeing that an object isn t meeting compliance with its assigned storage policy, or perhaps some other activity such as assigning a policy to a new or existing VM. This dashboard, in combination with object events dashboard are often the two most useful dashboards in the content pack for vsan. Figure 1-9. Object Configurations Dashboard The seven widgets in this dashboard capture events such as create (placement), change, and repair configurations, as well as rebalance, decommissioning, cleanup and vote rebalance configurations. As with many other widgets found across dashboards in the vsan content pack, log events such as object configuration changes are not necessarily an alert to something not operating as expected. These log events help capture log entries in a manner that can provide context to some other operational activity. Decommissioning Figure 1-10 shows the Decommissioning dashboard. This dashboard focuses primarily on hosts that are entering maintenance mode. Entering maintenance mode may be for planned maintenance activities, or in preparation for host or disk group decommissioning. Event activities will be captured for all of these conditions. 11

12 Figure Decommissioning Dashboard The six widgets in this dashboard can often be helpful in rolling upgrades across one or more vsan clusters, as you can see the order in which hosts went through an upgrade process. A "disk decommissioning failed" widget can assist in situations where disks are unable to be decommissioned from a disk group, or entire disk groups are unable to be decommissioned successfully. Configuration Failures The configuration failures dashboard, as seen in Figure 1-11, presents widgets that are focused on attempting to configure and object based on a certain policy. If the environment cannot accept a particular performance or protection level for a VM based on the environmental conditions, such as cluster size, and disk layout, vsan prevent that policy from being applied, and will generate an event. These types of events will show up in the configuration failures dashboard. Figure Configuration Failures Dashboard The six widgets in this dashboard target specific failure events in configuration changes. These are most commonly due to policy changes attempting to be made to a VM, but the cluster does not have 12

13 the required conditions for support. For example, errors of "Insufficient fault domains" could be a result of attempting to change a VM's primary level of failures to tolerate (FTT) of 3 while having less than the required minimum level of hosts (7) to support FTT=3 when using a failure tolerance method (FTM) of RAID-1 mirroring. Operation Failures The dashboard shown in Figure 1-12 is a failures based dashboard that targets vsan related operations, and if they did not end in success. The types of failure events captured here focus on the creation and configuration for objects and components. It will also touch on some levels of congestion, and resync operations. Figure Operations Failures Dashboard The Operations Failures dashboard consists of five widgets. Two of the widgets capture activities around resync start events, and ingress congestion. These are included in this dashboard, as often these types of events will be related to each other. For example, object component creation failure events, which is monitored in this dashboard may be the result of network connectivity or partitioning issues. Therefore, having resync operation start events in the same dashboard can offer additional insight into possible causes. Health The Health dashboard, as shown in Figure 1-13, gives a good overview of health status changes for object components, capacity devices, and cache tier devices. In particular, the disk health changes may be correlated to degraded device handling events as seen in the vsan UI in vcenter. 13

14 Figure Health Dashboard This three-widget dashboard is an effective way to determine if is a historical issue with a device that over the course of time, was not noticeable in the vcenter UI. Permanent Device Loss (PDL) events can be the result of failed devices, or a supporting device such as a storage controller. Occasionally, the disk health change widget may report component "absent" messages which may be part of other operations. Object Events The Object Events dashboard shown in Figure 1-14 reports component state changes. This dashboard provides an easy way to track when a component that has gone into an undesired state (degraded, absent, stale) and seeing potential related activities over a period of time. Figure Object Events Dashboard This dashboard consists of five widgets, and may be the most useful dashboard integrated into the vsan content pack. The state changes provide context to a series of events that otherwise may go unnoticed. For instance, this dashboard will immediately report what objects lost "liveness." This will 14

15 also be reflected in the object component states of degraded, absent, or stale. Subsequent resyncing events are captured in the "Object component state - Resyncing" widget at a time based on the type of failure that occurred. Component resyncing can begin immediately if vsan receives a sense code that places that device in a degraded state, or resyncing can begin 60 minutes after a period in which an object component went absent. RECOMMENDATION: Do not be overly concerned if you do not see much activity in vsan related widgets. Often times Log Insight may not always show a lot of information in the dashboards. This is quite common for environments that do not have much activity on them, have fully operational hardware, or do not consume much capacity. Lack of data in Log Insight is not a bad thing, and will likely report more events once there is more activity in the environment as capacity and workload increases. 1.4 vrealize Operations vrealize Operations VMware vrealize Operations provides a window to all monitoring, events, and analysis of metrics in a vsphere environment. vrealize Operations (vr Ops) primary point of data collection comes from vcenter, where it consumes raw metrics and events for further analysis and correlation. vr Ops is built on an extensible framework that allows it to collect data from dozens of types of sources, including guest OS and other application specific information. Extending the functionality of vr Ops can be done quite easily through the VMware Solutions Exchange Marketplace, where purpose-built management packs can be downloaded and installed to tailor vr Ops specifically for a given environment. Since vr Ops uses data collected from vcenter, it takes advantage of vcenter's role as a control and management plane, and reshapes the data in a number of ways. This level of infrastructure analytics offers up insight into a data center that would otherwise be difficult to decipher across disparate, raw metrics. Figure 2-1 shows an "Operations Overview" dashboard that succinctly highlights the top VMs experiencing CPU contention, guest memory utilization, and disk I/O latency. Figure 2-1. A prebuilt "Operations Overview" dashboard for all vsphere environments 15

16 vsan integration is now fully built into vrealize Operations 6.6 and later, which means the same level of monitoring and analytics for vsphere is easily extended to vsan. The APIs in vsan 6.6 were significantly enhanced to allow vr Ops to fetch data directly from vsan. This results in more detailed information for vr Ops to analyze, and make visible. Out of the box, vr Ops provides the following: Four, prebuilt vsan dashboards, as shown in Figure 2-2, with multi-cluster visibility and analytics. Dashboards display vsan and non-vsan metrics together to show critical correlation across various resources. Native integration into vr Ops 6.6 means that no additional Management Packs need to be installed. Dashboards can be cloned, and are fully customizable, allowing as a good stepping stone for additional customization. Figure 2-2. Locating the four prebuilt vsan dashboards, with the vsan Operations Overview dashboard shown in the background vrealize Operations uses vsan's enhanced set of APIs to fetch data collected by the vsan health and performance service. The vsan health and performance service was introduced in vsan 6.2, and provides a way for vsan administrators to look at basic performance metrics of vsan directly in vcenter. Unlike other metrics, vsan performance metrics are not stored in vcenter. It is housed as an object that resides on the vsan datastore. With each subsequent release of vsan, additional metrics have been exposed in the performance service. However, the metrics in the performance services are not customizable, and have a limited window in which data can be viewed (1 hour to 24 hours), and a limited retention time (90 days). vr Ops fetches this vsan performance data, and provides the user with much more flexibility in manipulation and retention of the data. vr Ops requires that the vsan health and performance service be enabled to properly collect vsan related metrics. Many of the integrated vsan dashboards use a similar approach in the layout of the dashboard. As shown in Figure 2-3, the dashboard presents aggregate statistics of all clusters across the top of the dashboard, while the lower half of the dashboard will present metrics only for the cluster selected. 16

17 Figure 2-3. Layout of a vsan dashboard vr Ops 6.6 and later use the new Clarity UI, which offers a new style of widget that displays a metric as a single value, and "sparkline" below each number. This sparkline will show a time-based history of the measurement in the form of a line graph. These are interactive in two ways. As shown in Figure 2-4, moving the mouse cursor across the sparkline will show the value of the metric for the specified point in time. Figure 2-4. Hovering over metrics displaying sparklines A double-click on the sparkline will provide a "Details" window that allows for closer inspection of the metric. As shown in Figure 2-5, a user can interactively zoom in and out on a particular area. 17

18 Figure 2-5. "Details" view of metric presented as a sparkline The transition to a new HTML5 based user interface, and improvements with the API used by vr Ops to collect vsan data means that vr Ops now has the ability to show more data in useful ways than ever before. Integrated vsan dashboards in vrealize Operations vrealize Operations 6.6 includes four built-in dashboards to immediately address the most common vsan administration needs. The following information describes each integrated vsan dashboard included in vr Ops 6.6. vsan Operations Overview The vsan Operations Overview dashboard aims to provide a broad overview of the status of one or more vsan powered clusters in an environment. As shown in Figure 2-6, this dashboard allows an administrator to see aggregate cluster statistics, along with cluster specific measurements. Not only does this dashboard touch on some of the key indicators of storage such as IOPS, throughput, and latency, it also provides other measurements that contribute to the health and well-being of the cluster, such as the host count, CPU and Memory utilization, and alert volume. 18

19 Figure 2-6. vsan Operations Overview Dashboard The horizontal widget near the top of the screen shows the aggregate statistics for all vsan clusters. A double-click of those metrics allow for further detailed analysis. Upon selecting the desired vsan cluster in the widget located near the left side of the screen will automatically update the eight other widgets in the dashboard to show vital statistics for the selected vsan cluster. Unique to this dashboard is the "Alert Volume" widget. This will show a time-based representation of alerts in a vsan environment for the past seven days. Each category of an alert can be clicked on to toggle off/on the visibility of that type of alert. Viewing alter history in this manner is especially important for issues that may be transient in nature, and would be readily visible when looking at active alerts at a later date. 19

20 Figure 2-7. Alert Volume widget vsan Capacity Overview The vsan Capacity Overview dashboard provides a wealth of vsan capacity information not available in the point-in-time storage capacity statistics found in vcenter. This dashboard takes advantage of vr Ops' ability to capture capacity utilization over a period of time, which offers extensive insight into past trends of capacity usage. Capacity is about more than just storage resource usage. It is about CPU and memory capacity as well, and as shown in Figure 2-8, this dashboard gives a window in to remaining CPU and memory capacity for a vsan cluster. This data, paired with the storage utilization data will give an administrator a better understanding on if scaling up (adding more storage to each host) or scaling out (adding more hosts) will be the best approach for an environment. 20

21 Figure 2-8. vsan Capacity Overview Dashboard This dashboard presents ten widgets. The three across the top of the dashboard represent the aggregate vsan capacity statistics for all vsan powered clusters. Many of the widgets use the sparkline based metrics described earlier in this document. Highlighting the desired cluster will update the widgets showing the cluster-specific metrics. As shown in Figure 2-9, the right-hand side of the dashboard will display a 30 day history of deduplication and compression ratios, and how that impacts overall cluster usage. 21

22 Figure 2-9. vsan Cluster level deduplication & compression rates NOTE: Variability in deduplication and compression ratios is normal behavior. The number and type of new VMs provisioned, object space reservation (OSR) settings, disk group layout, the ability of new data to be deduplicated or compressed, and the activity level on each host are among the many reasons behind the variability. Storage systems rely heavily on the need for free storage space, and this variability should be factored in when maintaining the recommended 30% slack space in a vsan cluster. The dashboard also gives a visual representation of the balance data across the storage devices in each host across the vsan cluster. Each filled in rectangle represents a storage device on the host, and will be sized and colored based on the percentage of space used. The bottom portion of the dashboard targets CPU and memory capacity. On the bottom left hand side of the dashboard, and as shown in Figure 2-10, a "Capacity Remaining" widget displays a score indicating the remaining computing resources as a percent of the total consumer capacity. 22

23 Figure Capacity Remaining widget The "Time Remaining" widget, as shown in Figure 2-11, displays how much time remains before the resources of item are exhausted. The time remaining score can be used to plan for acquisition of additional resources, for better incremental purchasing strategies. 23

24 Figure Time Remaining widget The capacity dashboard can summarize the capacity needs of one or more vsan clusters that is simply not available with the vsan capacity view in vcenter. Troubleshoot vsan The Troubleshoot vsan dashboard assembles a collection of alerts, metrics, and trending results to help determine the source of what changed in an environment, and when the change occurred. It assembles them in a systematic, layered approach to assist with troubleshooting and root cause analysis of an environment. As shown in Figure 2-12, the dashboard begins with widgets showing any active alerts for the cluster, and identify the hosts contributing to the alerts. Also displayed are key performance indicators at the cluster level. Highlighting the desired cluster will expose trending of cluster related resources (CPU Workload, Memory workload, Capacity remaining, etc.) over the past 12 hours. Widgets for VM read and write latency show a history of storage performance for the past 24 hours. 24

25 Figure Upper portion of the Troubleshoot vsan dashboard Scrolling further down on the Troubleshoot vsan dashboard reveals more widgets designed to drill into specifics of the hosts participating in the vsan cluster. This allows the administrator to easily look at host specific elements such as disk groups, and host resource usage, and compare them to other hosts in the cluster. As shown in Figure 2-13, two widgets provide visibility to any I/O error activity on the hosts, such as I/Os aborted, and any bus resets on the disk group. Figure Middle portion of the Troubleshoot vsan dashboard The Troubleshoot vsan dashboard also looks at the health and performance of cache and capacity disks of the selected vsan cluster. These widgets allow you to choose from one of the seven defined data types, and will then render the amount of activity in the heat map, as shown in Figure The data types that can be viewed include bus resets, commands aborted per second, and five types of SMART data measurements. 25

26 Figure Bottom portion of the Troubleshoot vsan dashboard RECOMMENDATION: Use multiple tools to help pinpoint the root cause of an issue. vr Ops excels at the aggregation and analysis of a variety of metrics of an infrastructure, but often, other tools are purpose built and maintain special intelligence that may provide valuable insight to help pinpoint the cause of an issue. For instance, Log Insight might contain valuable log event messages generated in vcenter. VMware Global Support Services (GSS) may choose to collect host logs for deep granular analysis of events upon a failure. Taking advantage of all available tools, and enabling the "vsan Support Insight" through the Customer Experience Improvement Program will help produce the quickest path to a resolution of an issue. Optimize vsan Deployments The "Optimize vsan Deployments" dashboard is designed to assist with migration efforts over to vsan. The dashboard provides a comparison of critical storage metrics of a VM running on a data store running on traditional storage against a VM powered by vsan. This dashboard recognizes the phased approach that can occur when transitioning to a new storage system, and is intended to monitor what matters most in the transition: the effective performance behavior between storage systems as seen by the application, or VM. While each VM's workload will be unique, and not an exact moment by moment mirror of another VM's workload, one can compare similar systems effectively. For example, applications farms such as SQL clusters, ERP systems, SharePoint servers, or some other multi-tiered application use a cluster of VMs to provide back-end, middle-tier, or front-end services. Any of these examples would be an ideal scenario for comparison, as one of the systems in the application farm can be migrated over to vsan, and compared to a similar system running on the legacy storage. In Figure 2-15, two systems with a nearly identical workload were compared, and this dashboard shows that the VM running on vsan had a 10x reduction in latency as compared to the VM running on a traditional, all-flash datastore. 26

27 Figure Optimize vsan Deployments Dashboard The two most important widgets are near the bottom of the dashboard. The widget on the lower left will show the aggregate virtual disk IOPS, read latency, and write latency of the selected VM running on a legacy data store. The widget on the lower right will show the same metrics of the selected VM running on a vsan powered data store. Thanks to the power of customization, you may wish to simplify this dashboard. This might allow you to utilize a larger portion of the screen for key metrics, and simplify operation, or reduce the time window of observation to a smaller window. An example of this particular dashboard that was simplified can be found on the following blog post: Using vr Ops Management Pack for vsan to assist with workload migrations. RECOMMENDATION: When using this dashboard, untick the line in the key of each widget that represents IOPS. This will change the display so that only read latency, and write latency are shown, and will help us better understand the real performance comparison between storage systems. Note however that each y-axis is independently scaled relative to the highest peak of a given time window. In the example provided in Figure 2-15, the latency of the VM running on vsan (on the right) was below 1ms, while the latency for the VM running on a traditional all-flash array (on the left) was peaking at nearly 8ms. 27

28 2. Scenarios and Workflows This section details specific scenarios and workflows that an administrator may encounter in day to day operations of their vsan environment. These workflows are designed to help improve efficiency. 28

29 2.1 Using Log Insight to better understand network connectivity issues in vsan Using Log Insight to better understand network connectivity issues in vsan Introduction Hyper-converged infrastructures bring a change in architecture, and shifts dependencies of components in the data center. In traditional three-tier architectures, hosts were only responsible for compute resources. However, in a hyper-converged environment, hosts are also responsible for storing persistent data. As a distributed system, each host contributes to the storage capacity, storage performance, and data resiliency of the systems it is providing. With this change in areas of responsibility, it makes sense that what is monitored, and its relative significance should also be shifted as well. Let's look at one way that monitoring and alerting practices should be adjusted to accommodate HCI. Hyper-converged solutions like VMware vsan are highly dependent on the connectivity between nodes to provide access to all distributed storage resources. There can be many reasons why eastwest connectivity can be intermittently or permanently interrupted. Typical reasons would include: Host NIC adapter port failure Host NIC adapter failure Host NIC driver issue Host NIC firmware issue Physical cable disconnection Physical switchgear disconnection Physical switchgear reboot Virtual network changes on switchgear (e.g. VLAN assignment changes) Note that four of the eight reasons listed above could come as a result of another team performing tasks that might the virtualization team may be unaware of. With the increased level of importance on maintaining proper connectivity across hosts, administrators need a way to sufficiently monitor these traits in the data center. This topic will demonstrate how to use Log Insight with vsan to gain better visibility with network connectivity issues for detection of changes. Existing challenges With a sophisticated health checks framework built right into vsan, the administrator will be alerted to any current condition detected in an environment. When host connectivity issues occur, vsan has the built-in logic necessary to reconfigure and repair the data to reflect the object's assigned storage policy. Even though vsan can repair the affected objects accordingly, underlying network issues can cause a lot of unnecessary vsan activity, and may compromise levels of performance and availability. Host connectivity issues can be highly transient. A connection may drop for an intermittent period of time, and restore itself for some unknown reason. The outage may have been an anomaly, or a representation of a more systemic issue. Whatever the reason, the causes behind these undetermined outages warrant further investigation. vcenter was not designed to deliver a method to visualize current and past connectivity issues. RECOMMENDATION: Audit your existing cluster to ensure proper redundancy of host network connectivity. There are several redundancy options for host connectivity, and determining the best approach is dependent on a number of factors. Applying common practices can help avoid 29

30 unforeseen connectivity issues should some element of the host connectivity. See the vsan Network Design Guide for more information. Operational approach The following example will demonstrate how vrealize Log Insight eliminates many of the operational blind spots described earlier. This example will show how to create a custom dashboard in Log Insight to visualize current, and past vsan object component states, and how they may correlate with host connectivity issues. Create new dashboard 1. In Log Insight, under "My Dashboards" click "New Dashboard." Name it "vsan Fabric Connectivity." 2. Click on the "VMware - vsan" content pack, and click the "Object Events" dashboard. 3. Locate the "vsan - Object component state - Absent" widget. Click on the gear icon in the upper right-hand corner of the widget, then click "Clone " 4. Select the destination dashboard of: "vsan Fabric Connectivity" and click "Clone" Customize new dashboard 1. Click on "My Dashboards" and select "vsan Fabric Connectivity." 2. Hover over the right side of the widget, and click on the "Click to expand widget" button to use more of the screen. 3. Click on the gear icon for the "vsan - Object component state - Absent" widget, and click "Clone " 4. For a Name, type in "Connectivity issues with host NICs" and select the destination dashboard of "vsan Fabric Connectivity" and complete the task by clicking the "Clone" button. 5. Click on gear icon of new widget, and select "Edit in Interactive Analytics." 6. Remove the first three filters, so that only the "hostname = exists" filter remains. 7. Change the hostname from "exists" to "contains" and enter in the host names for one or more vsan clusters. 8. Click on "Add Filter" and select the "text" for type, while using "contains" for the condition. Enter in " vmnic* is down " (without the quotes) to establish the specific string of text it should look for in the logs. 9. Click Save to complete, followed by "return to dashboard" to view the completed dashboard. Result The new custom dashboard will display a time-based view showing vsan object component states of "absent" paired with notifications of host NIC connectivity issues. As shown in Figure 4, both widgets will indicate what host the events are associated with for easy diagnosis and root cause analysis, and align the time period for easy correlation between events. As with all dashboards in Log Insight, the custom dashboard provides an easy way to quickly adjust the window of time that is of interest. 30

31 Figure 3-1. New custom dashboard showing vsan component states paired with host connectivity. If there is a need to temporarily isolate a specific host with these dashboards, all of the other hosts can be deselected by clicking on the hosts in the right-hand side of each widget. In Figure 3-2, all hosts except ESX04 are deselected. Figure 3-2. Temporary isolation of a specific host by deselecting hosts in key on right hand side of each widget. The activity shown in Figure 5 reveals an interesting observation. Note that there are periods of time reporting issues with a NIC on host ESX04, while no component "absent" events are logged for vsan. This can be a result of several factors. Ideally, virtual distributed switch (VDS) should have redundant uplinks to so that another uplink is available for failover. If the uplinks are sharing the same adapter, and there are issues with firmware or drivers for that adapter, this may interfere with the overall connectivity of the host. In some circumstances, physical switch issues could cause this behavior. In any event, these would be events worth looking into, and this dashboard will be a great way to identify issues that are not immediately visible using other forms of management. 31

32 Conclusion Host connectivity is critical for any distributed storage solution. Pairing up vrealize Log Insight with vsan is an ideal way to provide the visibility you need in order to ensure the infrastructure is performing the way it was designed. 2.2 Analyzing Capacity Utilization with vrealize Operations Analyzing Capacity Utilization with vrealize Operations Introduction Managing resource capacity is often a continuous challenge in the data center. While resource capacity management can come in many forms, such as CPU, network, and memory, it is most often associated with storage capacity. VMware vsan makes storage design and management significantly easier than with legacy architectures. In a vsan powered cluster, multiple LUNS and datastores are replaced by a single datastore, where VMs are housed as objects. Scaling storage resources is also no longer an issue, since performance and capacity characteristics are driven by the design of the hosts that power a vsan cluster, and not limited by the constraints of a storage array. Since local devices in hosts across a cluster are always aggregated as a single datastore, this gives an administrator and ability to granularly add to their capacity and performance requirements without incurring large capital costs. vsan provides basic performance and capacity metrics directly in vcenter. Capacity metrics for vsan in vcenter are limited to global statistics for a single cluster at a time. These statistics also are limited to the current state of capacity utilization of the selected cluster. While the built-in capacity metrics provide basic utilization statistics, there is a tremendous opportunity for further analysis and insight. Understanding capacity utilization trends is one of the best ways to minimize potential shortages of capacity in the future. This topic will demonstrate how to use vrealize Operations (vr Ops) with vsan to gain better visibility of storage capacity usage. Existing challenges vsan changes the capacity management paradigm for the better. With that comes a need to understand how capacity in vsan is presented and consumed. vsan uses a distributed architecture, and can apply performance and availability settings on a per VM basis using VMware's Storage Policy Based Management (SPBM) framework. This means that new factors are introduced in how capacity is served, and consumed. Factors influencing capacity presented and used are noticeably different in vsan when compared to traditional storage architectures. Key differences include: Each host provides capacity and performance to a vsan cluster. Some management activities can temporarily, or permanently change the amount of capacity available. This would include occurrences of planned, and unplanned host maintenance events. Adding storage capacity can be performed by scaling up or scaling out. Increasing capacity can be achieved by scaling up, where adding more devices, or higher density devices to each host increases the overall capacity of the cluster. Increasing capacity can also be achieved by scaling out, where adding hosts automatically increases the effective capacity of the cluster. 32

33 Applying storage policies that dictate specific performance and protection settings at a per VM, or per VMDK level will result in VMs consuming different amounts of space on a vsan datastore. Reducing capacity usage can be achieved by using space efficiency technologies such as deduplication and compression, using RAID-5/6 storage policies, or reducing the levels of failures to tolerate in storage policies. Understanding how the variables above influence available and consumed capacity will help improve operations, management, and planning for an organization. Better understanding comes through enhanced visibility and analytics of infrastructure metrics. vr Ops is the solution that enhances visibility of raw metrics to provide correlation, and actionable insight through its analytics capabilities. RECOMMENDATION: Aim for host resource uniformity across a vsan cluster. Host uniformity across a cluster has always been a good design principle in any vsphere cluster, and is highly recommended. This recommendation is no longer limited to CPU, memory, and network connectivity. In a distributed storage environment like vsan, asymmetrical implementations are fully functional, but just like CPU, memory, and network connectivity resources, can become extremely challenging in planned, and unplanned maintenance events. Host uniformity across a cluster minimizes the challenges of maintaining sufficient resource availability in the event of host, fault domain, and site failures. The vr Ops Deduplication and Compression Savings widget The vsan capacity view in vcenter displays key statistics related to capacity of the selected vsan cluster. As shown in Figure 4-1, this view focuses on the most current capacity statistics, with emphasis relating to used, versus available capacity. The static, point-in-time nature of this view does not allow the administrator to properly understand the dynamic nature of storage capacity utilization in an environment. vr Ops can view this same data provided in vcenter, but do so in ways that allows for a more detailed understanding of consumption. Figure 4-1. The vsan Capacity view in vcenter 33

34 In vr Ops, the vsan Capacity Overview dashboard provides an easy way to show capacity information for each cluster managed by vcenter. As shown in Figure 4-2, the "List of vsan Clusters" widget provides an enumerated, at-a-glance view of cluster capacity statistics and information. Viewing the capacity "remaining (%)" column is an easy way to see if all clusters are maintaining 30% or greater free space. Ensuring sufficient free space of a vsan datastore is one of the most important steps for maintaining proper health of a vsan cluster. Figure 4-2. "List of vsan Cluster(s) widget in the vsan Capacity Overview Dashboard This widget also provides a forecast of time remaining before cluster resources may be fully depleted. Like other widgets on this dashboard, (but not discussed in here) the "Time Left in Days" column extrapolates past consumption rates to forecast when additional resources may be necessary. It is an estimation of resources remaining, and does not reflect operational changes that could impact utilization rates, such as storage policy settings, host evacuation activities, or any other operations that may impact space efficiency. As noted in the section, " vrealize Operations," highlighting a cluster will update many of the widgets to reflect statistics specific to the selected cluster. The "Deduplication and Compression Savings" widget, shown in Figure 4-3, provides the current status, and 30-day history (fully adjustable) of the following: Deduplication and Compression Ratio Deduplication and Compression Savings (in GB) Deduplication and Compression Used (after savings) Deduplication and Compression Used (before savings) Each one of the four boxes in this widget will show a value, and a "sparkline." This sparkline will show a history of that value, and will note the high and low value with an orange dot for that given time window. Hovering over the sparkline will show the value for the given point in time. The sparkline will automatically adjust its scale to show the maximum and minimum values in the view. The delta between the high and low value will determine the scale. The large numerical value reported in each box represents the latest value. It is not an average of the displayed time period. 34

35 Figure 4-3. Deduplication and Compression Savings widget The window of time displayed can be adjusted in two ways. Clicking on the "Edit Widget" icon in the upper right-hand corner (the icon in the shape of a pencil) will present basic property settings of the widget, as shown in Figure 4-4. The period length can be easily adjusted as desired. The default for this widget is 30 days, as storage trends tend to develop over longer periods of time. 35

36 Figure 4-4. The "Edit Widget" dialog box Viewing a more detailed time window can be achieved by double-clicking on the sparkline. As shown in Figure 4-5, a pop-up box will appear. One can drag and click over the time desired, or use the adjustable slider bars near the bottom of the box in order to resize the time period desired. Resizing the vertical height of this pop-up box can improve the usefulness of the view, as it will expose the parent timeline, and show the selected time window with a light blue color. Figure 4-5. The pop-up box when double-clicking one of the views The Deduplication and Compression Savings widget can offer a substantial amount of insight into understanding the changes in capacity consumed for a vsan cluster. To better understand why an 36

37 active cluster may see constant changes in the capacity consumed, let's review what occurs in vsan when a new policy is assigned to an object, or the attributes of an existing policy are changed. With vsan, storage policies can be applied at a granular level. While they are most commonly applied on a per-vm basis, they can be applied at an object level: the individual virtual disks, or the VM home namespace. Since each storage policy may establish different performance and protection criteria for objects, this means that changing policies can influence the capacity used by an object. Let's first look at the capacity usage for an object using a failure tolerance method (FTM) of RAID-1 mirroring, where the level of failure to tolerate (FTT) is changed from 1 to 2. Figure 4-6 shows an object using an FTM of RAID-1 mirror, with an FTT=1. The second copy/replica will consume approximately the same amount of space as original copy. Figure 4-6 represents this used capacity as "overhead." When an object's policy is changed to FTT=2 as shown in step 2, an additional replica of the object will be constructed, and will result in the object consuming more "overhead" capacity to comply with the new policy setting. In the example below, the total capacity consumed for the object went from 2x, to 3x. Figure 4-6. Consumed capacity when changing object from FTT=1 to FTT=2 Now let's look at the capacity usage for an object using an FTM of RAID-1, but changed to an FTM of RAID-5 (with an implied FTT=1). Figure 4-7 shows an object using an FTM of a RAID-1, with FTT=1. When the policy is changed to an FTM of RAID-5, as shown in in step 3 of Figure 4-7, the new RAID-5 stripe must be constructed prior to any full replicas being removed from vsan. This means that for a temporary period of time, the overhead will consist of the replica of the object, and the newly constructed stripe while it is being built. Once the RAID-5 stripe is completed, the mirrored replicas will be deleted. In the example below, the total capacity consumed for the object started as 2x, went to 3.3x during the RAID-5 stripe construction phase, then went to 1.3x once the stripe was completed. Figure 4-7. Consumed capacity when changing object from RAID-1 to RAID-5 Policy changes can also impact current deduplication and compression ratios. Deduplication and compression occur when the data is destaged from the buffer/cache tier, to the capacity tier, as shown 37

38 in Figure 4-8. When changing an object from an FTM of RAID-1 to RAID-5, data will be synchronized to meet the new policy setting, and will be inflated as it traverses back through the stack to be placed in another disk group on the same host, or on a different host. vsan destages this data in batches, at a rate that is dependent on the level of write activity in a cluster. Disk groups with large cache tiers and a relatively small number of incoming writes many not destage the data for an extended period of time. For this reason, vsan might occasionally report a reduced, or even a negative deduplication and compression ratio for a short period of time. This is expected behavior. Figure 4-8. Data deduplicated and compressed as it moves through the data path This temporary impact of deduplication and compression ratios may occur with any activity that moves the data through the data path. Data evacuations due to maintenance activities, vsan object rebuilds, cluster-wide adjustments, and storage policy changes are the most common reasons. RECOMMENDATION: Variability in deduplication and compression ratios is normal behavior, and should be factored in when maintaining the recommended 30% slack space in a vsan cluster. The number and type of new VMs provisioned, object space reservation (OSR) settings, disk group layout, the ability of new data to be deduplicated or compressed, and the activity level on each host are among the many reasons behind the variability. Storage systems rely heavily on the need for free storage space, and should be emphasized in all design and operational procedures. Operational approach Using the vsan Capacity Overview dashboard in vr Ops, we can gain a visual understanding of how these capacity changes may impact a cluster. For this exercise, the time window has been changed to 24 hours to look at a few activities in more detail. In Figure 4-9, we see that the Deduplication and Compression ratio (upper left sparkline) had a steady state ratio of 1.6x. It then took a dramatic dip to under 1x, followed by regaining to a 1.3x ratio. We can see that the savings in gigabytes from deduplication and compression (upper right sparkline) also reflects a similar pattern, where there was a dramatic dip in space savings, followed by a slow recovery to nearly the level prior to the change. 38

39 Figure 4-9. Deduplication and Compression Savings widget showing a change In situations where only deduplication and compression ratios are monitored, a reduction in the ratio might be cause for concern for an administrator. This metric alone is not sufficient for a proper understanding of space efficiency of a cluster, as described below. The lower left sparkline in Figure 4-9 notes the "Usage with Deduplication and Compression." The sparkline shows that this spiked upward sharply. If the metric is double-clicked, we can zoom up to a more specific time window, as shown in Figure A zoomed in view shows that the usage with deduplication and compression started out as 963GB, spiked upward to 2.8TB, then dropped back down to 951GB after about 45 minutes. 39

40 Figure Usage with Deduplication and Compression widget - a detailed view We see that even though the deduplication and compression ratio went from 1.6x to 1.3x (as reported in Figure 4-9), the overall consumed usage, as shown in Figure 4-10, was lower than prior to the increase. Once again, this may strike an administrator as unexpected, since the deduplication and compression ratio went down. To understand this fully, we will close this details view, and double-click on "Usage without Deduplication and Compression" as shown in Figure Zooming into roughly the same time window, we see that the initial usage of 1.6TB was followed by a spike in usage of 2.13TB. In approximately 15 minutes, this space consumed was dramatically reduced to an all new low of 1.26TB. 40

41 Figure Usage without Deduplication and Compression widget - a detailed view What Figure 4-11 shows is that there was a dramatic improvement in capacity utilization when looking at capacity usage WITHOUT deduplication and compression. This suggests that a large number of objects were changed to a policy using RAID-5/6 erasure coding. RECOMMENDATION: Be mindful of the differences between various space-efficiency techniques such as RAID-5/6 erasure coding, and deduplication and compression. RAID-5/6 erasure codes are a space-efficiency technique that make the data redundant while consuming less space than a traditional RAID-1 mirror. Erasure codes GUARANTEES space reduction, while deduplication and compression are opportunistic space efficiency techniques that will depend on the conditions of the data and the topology of the cluster. vrealize Log Insight can be used to aid in correlating events that may suggest the causes for the change in capacity utilization. While policy changes do not show up as an explicit action with a vcenter log event, we can still track log events that indicate potential changes. In Figure 4-12, we see that object resynchronizations occurred at the same time as possible storage policy assignment/ adjustment events. And these changes correspond with the times of the deduplication and compression statistics shown above. 41

42 Figure A custom dashboard showing object component resyncing, and potential storage policy assignments and adjustments Findings The information provided in vr Ops paired with the intelligence gathered with Log Insight helps us understand that a large number of VMs had their storage policies changed from an FTM of a RAID-1, to RAID-5. This introduced a significant increase in storage capacity (for a temporary amount of time) for the transition to occur. The result was an overall decrease in storage capacity usage, even though the deduplication and compression ratio was decreased. In this particular scenario, deduplication and compression ratios went down because there was less opportunity to deduplicate and compress the data. All but two VMs were assigned a new storage policy using RAID-5. In practice, VMs using RAID-5/6 may see lower deduplication and compression ratios, as it is inherently more space efficient than RAID-1 mirroring. Since there were only two remaining VMs using RAID-1, there may have been less opportunity to deduplicate and compress shared blocks. Additionally, with vr Ops, we were able to learn the following: The precise times in which capacity usage changed. The amount of slack space that was used to accommodate the temporary requirements of the policy changes (which were nearly 3x in this scenario). The rate of recovery of steady state capacity utilization. A detailed understanding of how storage policies using space efficiency techniques like RAID-5/6 erasure coding impacts deduplication and compression ratios. RECOMMENDATION: Instead of changing attributes of an existing policy, consider assigning VMs to another, or new policy with the desired settings. This technique allows a user to limit the number of VMs (or amount of data) that may resynchronize at any given time, which will require less temporary space in your vsan cluster. Conclusion 42

43 vrealize Operations not only provides better visibility to the history of behavior of a vsan cluster, it can also help provide a better understanding on guidance as it relates to maintaining sufficient free space for cluster activities. 43

44 3. Deployment considerations and recommended practices This section includes helpful tips on deploying, maintaining, and customization vrealize Operations, and vrealize Log Insight for a vsan environment. 44

45 3.1 Upgrade Considerations for vrealize Log Insight Upgrade Considerations for vrealize Log Insight The process of upgrading Log Insight is relatively simple, and can be performed in the Log Insight Administration console, as seen in Figure 5-1. Administration console access can be gained by specifying the "/admin" page in the URL for your vrealize Log Insight Server (e.g. loginsight.localdomain.com/admin ) Log Insight upgrades require incremental upgrades to be applied in the order they have been released. For example, in order to update an environment from Log Insight version 4.0 to version 4.5, Log Insight requires that the environment be updated to version 4.3 prior to updating to version 4.5. Figure 5-1. The Log Insight administration console While Log Insight does require this serialized, incremental approach to upgrades, most find the process of upgrading their Log Insight servers predictable, and nearly effortless. Once the upgrade is complete, the Log Insight server(s) will resume collecting and reporting log event data. Log Insight can be upgraded with any account with the "Edit Admin" permission, as seen in Figure

46 Figure 5-2. The "Edit Admin" permission that is necessary for upgrading Log Insight For a complete summary of upgrade considerations for Log Insight, please see the " Upgrading vrealize Log Insight " section of the " Administering vrealize Log Insight " production documentation. 3.2 Upgrade considerations for vrealize Operations Upgrade considerations for vrealize Operations vrealize Operations and vsan have both seen a number of enhancements to deliver more value to the customer. Improvements in integration is courtesy of enhanced APIs in vsan. vr Ops is highly dependent upon these APIs in order to collect the proper vsan related data. While interoperability matrices will show the compatibility between the relative versions of vr Ops and vsan, both products have continuous improvements related to the APIs in order to create as much integration as possible. Even when there is a basic level of compatibility, any disparity between versions may translate to less functionality between the two products than if they are both running the most up-to-date versions. Since vrealize Operations is a tool that can interact with a number of different systems in the infrastructure, prudent planning is always highly recommended to ensure that planned upgrades are 46

47 smooth and predictable. For a complete understanding of product interoperability, visit the VMware Product Interoperability Matri x site. For compatibility inquiries with these two products, ensure that "VMware vrealize Operations Manager" is entered in line #1, and "VMware vsan" is entered in line #2. The process of upgrading vrealize Operations is relatively simple, and can be performed in the vrealize Operations Manager Administration console, as seen in Figure 6-1. Administration console access can be gained by specifying the "/admin" page in the URL for your vrealize Operations server (e.g. Once in the administration page, a node will need to be "offline" prior to the actual upgrade. This is simply a matter of clicking the "Take Offline" button, as seen in Figure 6-1. This step may take a while, as it is flushing all data and placing the system in a state where it is no longer ingesting data. Figure 6-1. Taking the vrealize Operations instance offline prior to running an upgrade Once a node is taken offline, installing an update is as easy as clicking "Install a software update" button, as shown in Figure 6-2. A dialog box will prompt for the.pak file downloaded from VMware, which contains the binaries for updating the product. 47

48 Figure 6-2. Installing a software update from the administration console For a sample scenario of upgrading a vrealize Operations environment, see Upgrading vrealize Operations. The vrealize Operations Install/Upgrade Guide has great step-by-step information on the upgrade process for the latest edition of vr Ops. For late breaking information on vrealize Operations 6.6, see the vrealize Operations 6.6 Release Notes. 3.3 Customizing dashboards in vrealize Log Insight Customizing dashboards in vrealize Log Insight The user interface of Log Insight allows an administrator to easily customize the type of log content that rendered. This is achieved through the use of dashboards and widgets. Dashboards are generalized groupings of data that can be presented in a single view. Widgets reside in a dashboard, and are used to present data. These widgets are simply predefined queries that present the query results in the manner desired, such as a graphical chart over time, or a summary of event counts based on an entity in your data center. Dashboards and widgets in Log Insight Log Insight presents these dashboards in one of two possible locations, as shown in Figure 7-1: Content pack dashboards, or custom dashboards. Content pack dashboards are dashboards integrated directly into the product, or added to Log Insight by downloading and installing from the VMware Marketplace. 48

49 Figure 7-1: Custom Dashboards and Content Pack Dashboards Predefined dashboards and widgets are usually delivered through a Log Insight plugin, known as a content pack. Custom content packs can be created and distributed across an organization, while other content packs can be found and downloaded from the VMware Marketplace. Some content packs, such as the vsan content pack, are now built into Log Insight 4.5 and newer. When importing dashboards, one of two options are presented, as shown in Figure 7-2, below. The "Install as content pack" option will place the dashboards in the "Content Pack Dashboards" section, and cannot have modifications saved to them. The "Import into My Content" option will import the custom dashboards into the "Custom Dashboards" section, where adjustments to queries and other modifications can be saved. 49

50 Figure 7-2. Options for importing content packs Choosing the best option depends on your intention of the dashboards that you will be using. The "Install as a content pack" option offers a level of control and standardization of the dashboards but limits the ability to save customizations within those same dashboards. This can be helpful for multiple team members who benefit from a consistent accessibility to specific dashboards. The "Import into My Content" option offers full customization of dashboards and widgets to suite an individual, but may not offer the standardization, consistency, or accessibility sought by other team members. RECOMMENDATION: You may wish to import a predefined content pack using the "Import into My Content" customizing for your organization as necessary, then redistributing it as a content pack for distribution across your organization. This approach allows for an organization to take advantage of the customization features of Log Insight while maintaining consistency across your organization. Cloning and customizing dashboards and widgets in Log Insight Widgets found in dashboards in the "Content Pack Dashboards" (such as the vsan dashboards) cannot be customized. However, as shown in Figure 7-3, you can easily clone individual widgets to build your own custom dashboards. 50

51 Figure 7-3. Widget options limited to only "Clone" for widgets in a dashboard installed as a content pack As shown on Figure 7-4, once the widget is cloned to a custom dashboard, many more options become available, such as customizing the query generating the results in the widget, and changing how it will render the data, such as chart type. Figure 7-4. Expanded widget options for widgets in a dashboard in the "My Dashboards" section of Log Insight When selecting "Edit in Interactive Analytics" all changes made to the query in the Interactive Analytics view will persist in the view presented in the widget. RECOMMENDATION: Keep the prebuilt dashboards found in published content packs available for future reference. They can be a great tool for learning, and a template for items that are most important for your organization. The queries created in these widgets minimizes the need for creating custom queries. When using a web browser that had been used to previously access Log Insight, the browser may attempt to load a dashboard that was recently deleted. This can give the impression that there is an issue with the operation of Log Insight, as it appears to be in the process of loading a dashboard. This can be easily corrected by removing the portion of the URL address that refers to the old dashboard. Once this is done, all subsequent logins to Log Insight should work without issue. RECOMMENDATION: Bring multiple widgets from various dashboards into a custom dashboard. This can be an easy way to create correlations between elements of an infrastructure. For instance, vsphere network events from the vsphere content back can be combined with various vsan object 51

52 state changes, so that we can determine if network connectivity issues impacted object state and resyncing in vsan. More information can be found in the " Using vrealize Log Insight " product documentation. 3.4 Customizing dashboards in vrealize Operations Customizing dashboards in vrealize Operations VMware vrealize Operations (vr Ops) comes with extensive abilities to customize nearly every aspect of the data that it presents. A user can assemble this data in almost any way desired. Much like vrealize Log Insight, vr Ops uses the concepts of dashboards and widgets to assemble and render the data. As shown in Figure 8-1, it also uses the concept of "Interactions" to create real-time links between the rendered data. Figure 8-1. Widgets, Views, and Interactions within a dashboard layout Administrators have the ability to create and modify dashboards as necessary. Just as with vrealize Log Insight, vr Ops comes with a number of prebuilt dashboards for vsan. The prebuilt dashboards for vsan are good examples of what can be achieved with vr Ops. They can be used unmodified in production, or tailored to accommodate the needs of an environment best. vr Ops pulls vsan related health and performance metrics through special vsan APIs. vsan data is not limited to what is presented in the prebuilt dashboards. When customizing widgets in a 52

53 dashboard, you can see a number of additional metrics exposed through the "vsan Adapter Instance" as shown in Figure 8-2. Figure 8-2. Accessing the vsan Adapter instance The "vsan Adapter Instance" is the primary way that vr Ops can collect vsan specific metrics, and will be used as the method of selecting what type of metrics should be rendered within a widget on a dashboard. The vsan adapter instance will collect all vsan related data. It is up to the user to determine if the data should be rendered, and how it should be displayed. This is one of the many reasons why vr Ops is so flexible. If vsan metrics are not showing correctly in a custom dashboard, make sure that data is showing up in other vsan dashboards. If the prebuilt dashboards appear to indicate that vr Ops is not currently collecting vsan metrics, ensure that the vsan Adapter Instance shows that it is actively receiving data in the administration console, as shown in Figure 8-3. Administration console access can be gained by specifying the "/admin" page in the URL for your vrealize Operations server (e.g. vrops.localdomain.com/admin). Figure 8-3. Using the administration console to verify the vsan Adapter Instance is receiving data 53

54 If an adapter instance stops repeatedly, or fails to start, this may be a symptom of other issues with vr Ops. See the vr Ops Administration Guide for further details in determining the cause for adapter instances that are unable to maintain a running state. Dashboard management in vrealize Operations As shown in Figure 8-4, clicking on Dashboards > Actions > Manage Dashboards will be the location in which a user can create, delete, clone, and edit dashboards. Even though some of these functions can be performed elsewhere, this area provides a consistent location to perform all dashboard customization and management. Figure 8-4. Accessing the "Manage Dashboards" view of vr Ops The "Manage Dashboards" view, as shown in Figure 8-5, will list all available dashboards available for further actions. Typing in "vsan" in the "Quick Filter" will quickly isolate the list of dashboards that have the word "vsan" included in the name. 54

55 Figure 8-5. The "Manage Dashboards" view, with a "quick filter" of "vsan" applied RECOMMENDATION: When cloning existing dashboards, or creating new custom dashboards, it might be helpful to append a special name that is consistent across all custom dashboards. This will make the custom dashboards extremely easy to find when clicking on Dashboards > Actions > Manage Dashboards. This consistent name can be entered into the "Quick Filter" to isolate just the custom dashboards desired, for easy selection and editing. When editing a dashboard, a pop-up box will appear that is divided into two areas. As shown in Figure 8-6, the left-hand side of the pop-up box is where the dashboard tools allow the user to define the widgets to be added to the layout, as well as the widget interactions, and other navigation settings. The right-hand side of the screen represents the actual WYSIWYG layout of the dashboard. This is where individual widgets can be edited, and the layout of the respective widgets can be changed. Figure 8-6. The "Edit Dashboard" pop-up box RECOMMENDATION: Keep custom dashboards simple. Overly complex dashboards with a large collection of metrics are often very difficult to discern by anyone other than the creator of the 55

56 dashboard. Even if it is a collection of metrics in a single widget, this often can be the clearest way to convey the information. Simple dashboards also allow for more screen real-estate to be used, which can be easier for the reader to digest. As shown in Figure 8-7, vr Ops allows for easy cloning of existing dashboards for further modification and adjustment. Cloned dashboards can be modified as desired. Figure 8-7. Cloning a dashboard Modifying dashboards that are a clone of an existing prebuilt dashboard is highly recommended. Working with cloned copies of the prebuilt dashboards are an easy way to experiment and learn customization techniques without fear of harming the original dashboard for future use or reference. Working with cloned copies also allows an administrator to safely update the prebuilt dashboards during the product upgrade process without harming any customizations. 3.5 Resource capacity usage for vrealize Operations and Log Insight Resource capacity usage for vrealize Operations and Log Insight Infrastructure analytics solutions can offer tremendous insight into an environment that would otherwise go unnoticed. As environments grow, and the solutions are more heavily relied upon, the resource usage of these solutions can grow as well. Infrastructure analytics solutions tend to use a significant amount of CPU, memory, and storage I/O to aggregate log data, and apply their respective analytics to render the results. While vr Ops and Log Insight have the ability to scale out by using additional VMs, the aggregate resource usage increases as well. Due to the increased demands on an environment, it is not uncommon for these types of applications to eventually be moved to a dedicated vsphere cluster, or perhaps sharing the resources in a dedicated management cluster. With a three-tier architecture, isolation into a separate cluster only 56

57 solves part of the problem, as storage I/O would still contend with hosts in other clusters for the same storage resources. A vsan powered cluster dedicated for a farm of log aggregation and infrastructure analytics is an ideal solution for managing the demands of these types of solutions. In addition to isolating compute resources that are independent from other resources in the data center, a vsan powered cluster will isolate all storage resources to just the hosts in that cluster, minimizing impacts of noisy neighbor scenarios and ensuring more predictable levels of service. Figure 9-1 represents this isolation of compute and storage resources. Figure 9-1. A fully isolated management cluster powered by vsan RECOMMENDATION: Understand the impact of sampling intervals. vr Ops collects and renders data in 5-minute intervals. This in part is due to the significant amount of data points it collects. This longer sampling interval is more fitting for broad overview and long-term analysis needs, as it is unable to adequately show spikes of resources that last for a shorter period of time. For more granular analysis, use vcenter based metrics (in particular, guest VM metrics). vcenter uses a 20 second sampling rate and retains this sampling rate for 1 hour. The IOInsight fling is also extremely helpful in observing I/O activity at a very granular level. For more information on the rationale behind this type of topology, see the use case, Cost Effective Independent Environments using vsan for details on how best to implement such a configuration. VMware vrealize Operations and vrealize Log Insight have their own specific sizing recommendations. For vrealize Log Insight, see Planning your vrealize Log Insight Deployment and Sizing the vrealize Log Insight Virtual Appliance for more details. For vrealize Operations, see vrealize Operations Manager 6.6 and Sizing Guidelines and vrealize Operations Manager Deployment and Configuration Guide for more details. These guidelines will help determine a sizing configuration that works best for your organization's needs. 57

VMware vcenter Operations Standard

VMware vcenter Operations Standard VMware vcenter Operations Standard Real-time Performance Management for VMware Administrators Even Solberg 2010 VMware Inc. All rights reserved Why vcenter Operations Standard? 80% of VMware admin time

More information

Getting Started with vrealize Operations First Published On: Last Updated On:

Getting Started with vrealize Operations First Published On: Last Updated On: Getting Started with vrealize Operations First Published On: 02-22-2017 Last Updated On: 07-30-2017 1 Table Of Contents 1. Installation and Configuration 1.1.vROps - Deploy vrealize Ops Manager 1.2.vROps

More information

Cloud Management Platform Overview First Published On: Last Updated On:

Cloud Management Platform Overview First Published On: Last Updated On: Cloud Management Platform Overview First Published On: 06-09-2016 Last Updated On: 07-25-2017 1 Table of Contents 1. Cloud Management Platform Overview 1.1.Cloud Consumer Request/Catalog 1.2.Cloud Admin

More information

COMPARE VMWARE. Business Continuity and Security. vsphere with Operations Management Enterprise Plus. vsphere Enterprise Plus Edition

COMPARE VMWARE. Business Continuity and Security. vsphere with Operations Management Enterprise Plus. vsphere Enterprise Plus Edition COMPARE VMWARE vsphere EDITIONS Business Continuity and Security vmotion Enables live migration of virtual machines with no disruption to users or loss of service, eliminating the need to schedule application

More information

Disclaimer This presentation may contain product features that are currently under development. This overview of new technology represents no commitme

Disclaimer This presentation may contain product features that are currently under development. This overview of new technology represents no commitme STO1378BE vsan Management Today and In the Future Christian Dickmann Mansi Shah #VMworld #STO1378BE Disclaimer This presentation may contain product features that are currently under development. This

More information

Brocade SANnav Management Portal and. Global View. Product Brief. Storage Modernization. Highlights. Brocade Fabric Vision Technology

Brocade SANnav Management Portal and. Global View. Product Brief. Storage Modernization. Highlights. Brocade Fabric Vision Technology Highlights Streamline workflows to accelerate the deployment of new applications, switches, hosts, and targets Transform information into actionable insights to quickly identify and isolate problems Quickly

More information

Uncovering the Hidden Truth In Log Data with vcenter Insight

Uncovering the Hidden Truth In Log Data with vcenter Insight Uncovering the Hidden Truth In Log Data with vcenter Insight April 2014 VMware vforum Istanbul 2014 Serdar Arıcan 2014 VMware Inc. All rights reserved. VMware Strategy To help customers realize the promise

More information

Integrated Service Management

Integrated Service Management Integrated Service Management for Power servers As the world gets smarter, demands on the infrastructure will grow Smart traffic systems Smart Intelligent food oil field technologies systems Smart water

More information

What s New in VMware vcenter Site Recovery Manager 5.0 TECHNICAL WHITE PAPER V 1.0/UPDATED MAY 2011

What s New in VMware vcenter Site Recovery Manager 5.0 TECHNICAL WHITE PAPER V 1.0/UPDATED MAY 2011 What s New in VMware vcenter Site Recovery Manager 5.0 TECHNICAL WHITE PAPER V 1.0/UPDATED MAY 2011 Table of Contents Introduction.... 3 Technology Changes And New Features.... 4 vsphere Replication....

More information

Tiefere Einblicke in virtuelle Umgebungen

Tiefere Einblicke in virtuelle Umgebungen Tiefere Einblicke in virtuelle Umgebungen VMware vsphere with Operations Management (vsom) Tobias Mauer ARROW ECS Deutschland 2015 VMware Inc. All rights reserved. Agenda Today s Reality Goals & Evolution

More information

HP Cloud Maps for rapid provisioning of infrastructure and applications

HP Cloud Maps for rapid provisioning of infrastructure and applications Technical white paper HP Cloud Maps for rapid provisioning of infrastructure and applications Table of contents Executive summary 2 Introduction 2 What is an HP Cloud Map? 3 HP Cloud Map components 3 Enabling

More information

ENTERPRISE HYBRID CLOUD 4.1

ENTERPRISE HYBRID CLOUD 4.1 Solution Guide ENTERPRISE HYBRID CLOUD 4.1 EMC Solutions Abstract This guide provides an overview of the management and monitoring functionality of the. Enterprise Hybrid Cloud enables IT organizations

More information

VMware vrealize. Claes Bäckström RTS. Här läggs leverantörsloggor om det finns. Copyright Real Time Services AB

VMware vrealize. Claes Bäckström RTS. Här läggs leverantörsloggor om det finns. Copyright Real Time Services AB VMware vrealize Claes Bäckström RTS Här läggs leverantörsloggor om det finns vrealize Suite namnförändringar Existing Name New Name New SaaS vcenter Operations Management Suite vrealize Operations vrealize

More information

See Capacity and Performance across your IT enterprise

See Capacity and Performance across your IT enterprise athene 10.30 athene The world s leading companies rely on athene Capacity Management software and our consulting and training services as key elements of their IT Service Management and Service Delivery.

More information

vsom vsphere with Operations

vsom vsphere with Operations vsom vsphere with Operations Maciej Kot Senior System Engineer VMware Inc. 2014 VMware Inc. All rights reserved. Agenda 1 Introduction 2 3 vcenter Operations Manager Overview vcenter Operations Manager

More information

Virtualization Manager

Virtualization Manager GETTING STARTED GUIDE Virtualization Manager Version 8.0 Last Updated: Thursday, October 5, 2017 Retrieve the latest version from: https://support.solarwinds.com/success_center/virtualization_manager_(vman)/vman_documentation

More information

Monitoring: Know Your Audience

Monitoring: Know Your Audience Monitoring: Know Your Audience Best Practice for Opsview Business Service Monitoring and Keywords Opsview Technical Overview Page 2 Monitoring: Know Your Audience Contents Summary...3 Modeling Your Business

More information

A Examcollection.Premium.Exam.35q

A Examcollection.Premium.Exam.35q A2030-280.Examcollection.Premium.Exam.35q Number: A2030-280 Passing Score: 800 Time Limit: 120 min File Version: 32.2 http://www.gratisexam.com/ Exam Code: A2030-280 Exam Name: IBM Cloud Computing Infrastructure

More information

Capacity Management - Telling the story

Capacity Management - Telling the story Capacity Management - Telling the story What is a Story? It is either: a. an account of incidents or events b. a statement regarding the facts pertinent to a situation in question Data is nothing more

More information

Table of Contents HOL CMP

Table of Contents HOL CMP Table of Contents Lab Overview - - Optimize vsphere Capacity and Cost Savings with vrealize Operations... 2 Lab Guidance... 3 Module 1 - Assess Capacity of Your vsphere Datacenters with vrealize Operations

More information

IBM Tivoli Monitoring

IBM Tivoli Monitoring Monitor and manage critical resources and metrics across disparate platforms from a single console IBM Tivoli Monitoring Highlights Proactively monitor critical components Help reduce total IT operational

More information

Self-driving Clouds: From Vision to Reality

Self-driving Clouds: From Vision to Reality @ZeroStackInc sales@zerostack.com www.zerostack.com Self-driving Clouds: From Vision to Reality White Paper Introduction Imagine you are in New York for some customer meetings and meet your brother. So

More information

TECHNICAL WHITE PAPER. Rubrik and Microsoft Azure Technology Overview and How It Works

TECHNICAL WHITE PAPER. Rubrik and Microsoft Azure Technology Overview and How It Works TECHNICAL WHITE PAPER Rubrik and Microsoft Azure Technology Overview and How It Works TABLE OF CONTENTS THE UNSTOPPABLE RISE OF CLOUD SERVICES...3 CLOUD PARADIGM INTRODUCES DIFFERENT PRINCIPLES...3 WHAT

More information

More information for FREE VS ENTERPRISE LICENCE :

More information for FREE VS ENTERPRISE LICENCE : Source : http://www.splunk.com/ Splunk Enterprise is a fully featured, powerful platform for collecting, searching, monitoring and analyzing machine data. Splunk Enterprise is easy to deploy and use. It

More information

Sage ERP MAS. Everything you want to know about Sage ERP MAS Intelligence. What is Sage ERP MAS Intelligence? benefits

Sage ERP MAS. Everything you want to know about Sage ERP MAS Intelligence. What is Sage ERP MAS Intelligence? benefits Sage ERP MAS Everything you want to know about Sage ERP MAS Intelligence What is Sage ERP MAS Intelligence? Sage ERP MAS Intelligence (or Intelligence) empowers managers to quickly and easily obtain operations

More information

Table of Contents HOL CMP

Table of Contents HOL CMP Table of Contents Lab Overview - HOL-1834-CMP - vrealize Suite Lifecycle Manager... 2 Lab Guidance... 3 Module 1 - Introduction to vrealize Suite Lifecycle Manager (30 minutes)...10 Introduction... 11

More information

TABLE OF CONTENTS DOCUMENT HISTORY

TABLE OF CONTENTS DOCUMENT HISTORY TABLE OF CONTENTS DOCUMENT HISTORY 5 UPDATE 17D 5 Revision History 5 Overview 5 Optional Uptake of New Features (Opt In) 6 Update Tasks 6 Feature Summary 7 Demand Management 9 Forecast Unique Demand Segments

More information

FixStream. Industry First AIOps Platform for Oracle ERP

FixStream. Industry First AIOps Platform for Oracle ERP FixStream Industry First AIOps Platform for Oracle ERP An Industry First AIOps Platform for Oracle ERP Out-of-the-box discovery and correlation of Oracle ERP business processes and transactions with infrastructure.

More information

IT Business Management Standard Edition User's Guide

IT Business Management Standard Edition User's Guide IT Business Management Standard Edition User's Guide VMware IT Business Management Suite 1.0.1 This document supports the version of each product listed and supports all subsequent versions until the document

More information

WorkloadWisdom Storage performance analytics for comprehensive workload insight

WorkloadWisdom Storage performance analytics for comprehensive workload insight DATASHEET Storage performance analytics for comprehensive workload insight software is the industry s only automated workload acquisition, workload analysis, workload modeling, and workload performance

More information

Site Recovery Manager Integrations across VMware

Site Recovery Manager Integrations across VMware Site Recovery Manager Integrations across VMware GS Khalsa, Tech Marketing, VMware, Inc. Stefan Tsonev, Engineering, VMware, Inc. #vmworld HCI3085BU #HCI3085BU Disclaimer This presentation may contain

More information

Understanding the Velostrata technology for mass migrations into Google Cloud Platform

Understanding the Velostrata technology for mass migrations into Google Cloud Platform Understanding the Velostrata technology for mass migrations into Google Cloud Platform Table of Contents Executive overview....................................................................3 Barriers

More information

VirtualWisdom Analytics Overview

VirtualWisdom Analytics Overview DATASHEET VirtualWisdom Analytics Overview Today s operations are faced with an increasing dynamic hybrid infrastructure of near infinite scale, new apps appear and disappear on a daily basis, making the

More information

DELL EMC ISILON INSIGHTIQ

DELL EMC ISILON INSIGHTIQ DATA SHEET DELL EMC ISILON INSIGHTIQ Customizable analytics platform to accelerate workflows and applications on Isilon clusters ESSENTIALS Powerful monitoring and reporting tools to optimize performance

More information

Developing and Deploying vsphere Solutions, vservices, and ESX Agents

Developing and Deploying vsphere Solutions, vservices, and ESX Agents Developing and Deploying vsphere Solutions, vservices, and ESX Agents Update 1 16 OCT 2018 vsphere Web Services SDK 6.7 vcenter Server 6.7 VMware ESXi 6.7 You can find the most up-to-date technical documentation

More information

SVA Software Inc. BVQ - Infrastructure Performance Optimizer KEEP YOUR INFRASTRUCTURE BALANCED

SVA Software Inc. BVQ - Infrastructure Performance Optimizer KEEP YOUR INFRASTRUCTURE BALANCED SVA Software Inc. BVQ - Infrastructure Performance Optimizer KEEP YOUR INFRASTRUCTURE BALANCED THE INFRASTRUCTURE CHALLANGE Complex IT environments make infrastructure In other words: Don t waste your

More information

[Header]: Demystifying Oracle Bare Metal Cloud Services

[Header]: Demystifying Oracle Bare Metal Cloud Services [Header]: Demystifying Oracle Bare Metal Cloud Services [Deck]: The benefits and capabilities of Oracle s next-gen IaaS By Umair Mansoob Introduction As many organizations look to the cloud as a way to

More information

I D C T E C H N O L O G Y S P O T L I G H T

I D C T E C H N O L O G Y S P O T L I G H T I D C T E C H N O L O G Y S P O T L I G H T V V o l s Provi d e s P ow erful Ap p l i c a t i o n - Aw a r e M a nagement for vs p h e r e E n vi r o n m e n t s August 2017 Adapted from VMware Helps Further

More information

Datacenter Resource Management First Published On: Last Updated On:

Datacenter Resource Management First Published On: Last Updated On: Datacenter Resource Management First Published On: 04-18-2017 Last Updated On: 07-31-2017 1 1. Workload Balance 1.1.vROps Workload Balance 2. Predictive DRS 2.1.vROps - Predictive DRS Table of Contents

More information

CAPACITY MANAGEMENT GUIDELINES FOR VBLOCK INFRASTRUCTURE PLATFORMS

CAPACITY MANAGEMENT GUIDELINES FOR VBLOCK INFRASTRUCTURE PLATFORMS CAPACITY MANAGEMENT GUIDELINES FOR VBLOCK INFRASTRUCTURE PLATFORMS August 2011 WHITE PAPER 2011 VCE Company, LLC. All rights reserved. 1 Table of Contents Executive Summary... 3 Why is Capacity Management

More information

Kaseya Traverse Unified Cloud, Network, Server & Application Monitoring

Kaseya Traverse Unified Cloud, Network, Server & Application Monitoring PRODUCT BRIEF Kaseya Traverse Unified Cloud, Network, Server & Application Monitoring Kaseya Traverse is a next-generation software solution for monitoring the performance of hybrid cloud and IT infrastructure

More information

data sheet ORACLE ENTERPRISE PLANNING AND BUDGETING 11i

data sheet ORACLE ENTERPRISE PLANNING AND BUDGETING 11i data sheet ORACLE ENTERPRISE PLANNING AND BUDGETING 11i Oracle Enterprise Planning and Budgeting provides finance and business managers with the right information and self-service tools to help them understand

More information

Dell Advanced Infrastructure Manager (AIM) Automating and standardizing cross-domain IT processes

Dell Advanced Infrastructure Manager (AIM) Automating and standardizing cross-domain IT processes Systems Automating and standardizing cross-domain IT processes By Hal Clark The combination of Dell Advanced Infrastructure Manager (AIM) and BMC Atrium Orchestrator enables the creation of automated,

More information

Industry's First Visual Artificial Intelligence Platform To Predict Oracle ERP Business Application Issues Across Hybrid IT

Industry's First Visual Artificial Intelligence Platform To Predict Oracle ERP Business Application Issues Across Hybrid IT Industry's First Visual Artificial Intelligence Platform To Predict Oracle ERP Business Application Issues Across Hybrid IT 2018 FixStream All Rights Reserved 1 An Industry First AIOps Platform for Oracle

More information

Disclaimer This presentation may contain product features that are currently under development. This overview of new technology represents no commitme

Disclaimer This presentation may contain product features that are currently under development. This overview of new technology represents no commitme SER2617BE How vsphere with Operations Management Made Our Environment Run Lean and Mean VMworld 2017 David Stamen, Sr Virtualization Engineer Avast Software Kyle Ruddy, Sr Technical Marketing Engineer

More information

Successfully Planning and Executing Large-Scale Cloud and Data Center Migration Projects

Successfully Planning and Executing Large-Scale Cloud and Data Center Migration Projects White Paper PlateSpin Migrate PlateSpin Transformation Manager PlateSpin Migration Factory Successfully Planning and Executing Large-Scale Cloud and Data Center Migration Projects Updated for PlateSpin

More information

Kaseya Traverse Predictive SLA Management and Monitoring

Kaseya Traverse Predictive SLA Management and Monitoring PRODUCT BRIEF Kaseya Traverse Predictive SLA Management and Monitoring Kaseya Traverse Traverse is a breakthrough cloud and service-level monitoring solution that provides real-time visibility into the

More information

Converged Infrastructures Demand Converged Business Service Management

Converged Infrastructures Demand Converged Business Service Management Converged Infrastructures Demand Converged Business Service Management Businesses invest in technology for a reason, such as generating revenue directly through online commerce, improving efficiency in

More information

Storage Resource Monitor

Storage Resource Monitor EVALUATION GUIDE Storage Resource Monitor Storage Resource Monitor The purpose of this document is to explain the value proposition of SolarWinds Storage Resource Monitor (SRM). This detailed document

More information

Understanding How Velostrata Technology Works

Understanding How Velostrata Technology Works Understanding How Velostrata Technology Works WHITE PAPER Understanding Velostrata Technology: How it Works» 2 Executive Overview This white paper will provide a deeper understanding of Velostrata s unique

More information

Virtualization Manager 7.1 Comprehensive virtualization management for VMware vsphere and Microsoft Hyper-V

Virtualization Manager 7.1 Comprehensive virtualization management for VMware vsphere and Microsoft Hyper-V DATASHEET Virtualization Manager 7.1 Comprehensive virtualization management for VMware vsphere and Microsoft Hyper-V Download a free product trial and start monitoring your network typically in about

More information

BP(A S) Taleo Performance User Guide

BP(A S) Taleo Performance User Guide BP(A S) Taleo Performance User Guide January 2008 Confidential Information It shall be agreed by the recipient of the document (hereafter referred to as "the other party") that confidential information

More information

ORACLE DATABASE PERFORMANCE: VMWARE CLOUD ON AWS PERFORMANCE STUDY JULY 2018

ORACLE DATABASE PERFORMANCE: VMWARE CLOUD ON AWS PERFORMANCE STUDY JULY 2018 ORACLE DATABASE PERFORMANCE: VMWARE CLOUD ON AWS PERFORMANCE STUDY JULY 2018 Table of Contents Executive Summary...3 Introduction...3 Test Environment... 4 Test Workload... 6 Virtual Machine Configuration...

More information

Oracle Risk Management Cloud. Release 13 (updates 18A 18C) What s New

Oracle Risk Management Cloud. Release 13 (updates 18A 18C) What s New Oracle Risk Management Cloud Release 13 (updates 18A 18C) What s New TABLE OF CONTENTS DOCUMENT HISTORY 4 UPDATE 18C 4 Revision History 4 Overview 4 Feature Summary 5 Risk Management 8 Common 8 Monitor

More information

Cisco Workload Optimization Manager: Setup and Use Cases

Cisco Workload Optimization Manager: Setup and Use Cases Cisco Workload Optimization Manager: Setup and Use Cases 2017 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public Information. Page 1 of 49 Contents Introduction Minimum requirements

More information

What Do You Need to Ensure a Successful Transition to IoT?

What Do You Need to Ensure a Successful Transition to IoT? What Do You Need to Ensure a Successful Transition to IoT? As the business climate grows ever more competitive, industrial companies are looking to the Internet of Things (IoT) to provide the business

More information

BACSOFT IOT PLATFORM: A COMPLETE SOLUTION FOR ADVANCED IOT AND M2M APPLICATIONS

BACSOFT IOT PLATFORM: A COMPLETE SOLUTION FOR ADVANCED IOT AND M2M APPLICATIONS BACSOFT IOT PLATFORM: A COMPLETE SOLUTION FOR ADVANCED IOT AND M2M APPLICATIONS What Do You Need to Ensure a Successful Transition to IoT? As the business climate grows ever more competitive, industrial

More information

Systems Management of the SAS 9.2 Enterprise Business Intelligence Environment Gary T. Ciampa, SAS Institute Inc., Cary, NC

Systems Management of the SAS 9.2 Enterprise Business Intelligence Environment Gary T. Ciampa, SAS Institute Inc., Cary, NC Paper 276-2010 Systems Management of the SAS 9.2 Enterprise Business Intelligence Environment Gary T. Ciampa, SAS Institute Inc., Cary, NC ABSTRACT The evolution of the SAS 9.2 architecture provides a

More information

Agilent Quality Tool Online Help. Printable Version. Intelligent Test Software Solutions. ITFSS p January 2005

Agilent Quality Tool Online Help. Printable Version. Intelligent Test Software Solutions. ITFSS p January 2005 Agilent Quality Tool Online Help Printable Version Intelligent Test Software Solutions ITFSS 03.10 p 1204 January 2005 Agilent Quality Tool Online Help: Printable Version 1 Copyrights and Notices Agilent

More information

Zynstra Software for the Retail Edge Datasheet

Zynstra Software for the Retail Edge Datasheet Powering the Retail Edge Zynstra Software for the Retail Edge Datasheet Zynstra enables the virtualization of retail back office and front office IT resources, and offers specific virtualization solutions

More information

SSL ClearView Reporter Data Sheet

SSL ClearView Reporter Data Sheet SSL ClearView Reporter Data Sheet Written expressly for the Juniper Networks SSL VPN, the SSL ClearView Reporter application takes log data from one or more SSL VPN devices and generates feature-rich reports

More information

Data Protection and Management of Virtualized Infrastructure. Raymond Goh Senior Systems Engineer Asia Region

Data Protection and Management of Virtualized Infrastructure. Raymond Goh Senior Systems Engineer Asia Region Data Protection and Management of Virtualized Infrastructure Raymond Goh Senior Systems Engineer Asia Region According to Gartner: By 2014, at least 30% of organisations will have changed backup vendors

More information

A technical discussion of performance and availability December IBM Tivoli Monitoring solutions for performance and availability

A technical discussion of performance and availability December IBM Tivoli Monitoring solutions for performance and availability December 2002 IBM Tivoli Monitoring solutions for performance and availability 2 Contents 2 Performance and availability monitoring 3 Tivoli Monitoring software 4 Resource models 6 Built-in intelligence

More information

Microsoft Dynamics NAV

Microsoft Dynamics NAV Microsoft Dynamics NAV Maximising value through business insight Business Intelligence White Paper November 2016 CONTENTS Reports were tedious. Earlier it would take days for manual collation. Now all

More information

Benefits. + + Consistent quality to recipe specification. + + Increase asset utilization and operational efficiency

Benefits. + + Consistent quality to recipe specification. + + Increase asset utilization and operational efficiency Wonderware InBatch Flexible Batch Management Wonderware InBatch software enables sophisticated equipment arbitration and concurrent batch execution capabilities to maximize asset utilization, plant throughput

More information

WHITE PAPER SPLUNK SOFTWARE AS A SIEM

WHITE PAPER SPLUNK SOFTWARE AS A SIEM SPLUNK SOFTWARE AS A SIEM Improve your security posture by using Splunk as your SIEM HIGHLIGHTS Splunk software can be used to build and operate security operations centers (SOC) of any size (large, med,

More information

Central Management Server (CMS) for SMA

Central Management Server (CMS) for SMA Central Management Server (CMS) for SMA Powerful virtual machine for appliance management, resilience and reporting SonicWall Central Management Server (CMS) provides organizations, distributed enterprises

More information

Dell EMC XC and Nutanix: Overview and Demo of One-Click Simplicity for Infrastructure Upgrades, Capacity Expansion and How To Search

Dell EMC XC and Nutanix: Overview and Demo of One-Click Simplicity for Infrastructure Upgrades, Capacity Expansion and How To Search Dell EMC XC and Nutanix: Overview and Demo of One-Click Simplicity for Infrastructure Upgrades, Capacity Expansion and How To Search Nutanix Prism Explained 2 Prism 3 Enterprise-grade Engineering Consumer-grade

More information

DELL EMC XTREMIO X2: NEXT-GENERATION ALL-FLASH ARRAY

DELL EMC XTREMIO X2: NEXT-GENERATION ALL-FLASH ARRAY DATA SHEET DELL EMC XTREMIO X2: NEXT-GENERATION ALL-FLASH ARRAY Realizing New Levels of Efficiency, Performance, and TCO ESSENTIALS Performance and Efficiency Predictable and consistent high performance

More information

Virtualizing Enterprise SAP Software Deployments

Virtualizing Enterprise SAP Software Deployments Virtualizing SAP Software Deployments A Proof of Concept by HP, Intel, SAP, SUSE, and VMware Solution provided by: The Foundation of V Virtualizing SAP Software Deployments A Proof of Concept by HP, Intel,

More information

IBM Storwize Family Scaling Capabilities and Value

IBM Storwize Family Scaling Capabilities and Value Technology Insight Paper IBM Storwize Family Scaling Capabilities and Value By Randy Kerns January, 2013 Enabling you to make the best technology decisions IBM Storwize Family Scaling Capabilities and

More information

Getting it Right II: Testing Storage Arrays The Way They ll be Used An Example Implementation Peter Murray Virtual Instruments

Getting it Right II: Testing Storage Arrays The Way They ll be Used An Example Implementation Peter Murray Virtual Instruments Getting it Right II: Testing Storage Arrays The Way They ll be Used An Example Implementation Peter Murray Virtual Instruments 1 Typical Performance Testing Questions Which is the best technology for my

More information

Table of Contents HOL CMP

Table of Contents HOL CMP Table of Contents Lab Overview - - vrealize Business for Cloud - Getting Started... 2 Lab Guidance... 3 Module 1 - Computing the Cost of your Private Cloud (30 Minutes)... 9 Introduction... 10 Overview

More information

VideojetConnect TM Remote Service. For select Ethernet-enabled Videojet printers

VideojetConnect TM Remote Service. For select Ethernet-enabled Videojet printers VideojetConnect TM Remote Service For select Ethernet-enabled Videojet printers Use the power of data and connectivity to drive productivity With immediate access to your printer data, you can now experience

More information

Everything you want to know about. Sage Accpac Intelligence. Version

Everything you want to know about. Sage Accpac Intelligence. Version Everything you want to know about Sage Accpac Intelligence Version 2.1 2009-10-19 What is Sage Accpac Intelligence? Sage Accpac Intelligence or SAI is an exciting new product within the Sage Accpac Extended

More information

April Microsoft Corp. All rights reserved

April Microsoft Corp. All rights reserved Select the right tools for today and tomorrow. Microsoft Project 2010 offers flexibility and choice by providing tailored work management solutions for individuals, teams and the enterprise. April 2010

More information

Opsview Enterprise Architecture Whitepaper

Opsview Enterprise Architecture Whitepaper Opsview Enterprise Architecture Whitepaper Contents About this Whitepaper What is Opsview Enterprise? 2 Functional overview 2 Key features 3 Design principles 3 Architecture 5 Addressing Issues in Today

More information

Server Configuration Monitor

Server Configuration Monitor EVALUATOR S GUIDE Server Configuration Monitor How SCM can help improve your efficiency and increase the performance and security of your servers. WHAT IS SOLARWINDS SERVER CONFIGURATION MONITOR SolarWinds

More information

REVISED 6 NOVEMBER 2018 COMPONENT DESIGN: WORKSPACE ONE INTELLIGENCE

REVISED 6 NOVEMBER 2018 COMPONENT DESIGN: WORKSPACE ONE INTELLIGENCE REVISED 6 NOVEMBER 2018 COMPONENT DESIGN: WORKSPACE ONE INTELLIGENCE Table of Contents Component Design: Workspace ONE Intelligence Architecture Scalability and Availability Databases Workspace ONE Intelligence

More information

What s New in SRM 6.1 December 15, 2017

What s New in SRM 6.1 December 15, 2017 December 15, 2017 1 Table of Contents 1. What's New in SRM 6.1 1.1.Introduction 1.2.Storage Profile Based Protection 1.3.Stretched Storage and Orchestrated vmotion 1.4.Enhanced Integration with VMware

More information

Productivity. PPS Cart: PulseNet Production Systems. Powerful Tools for Better Performance

Productivity. PPS Cart: PulseNet Production Systems. Powerful Tools for Better Performance Productivity : PulseNet Production Systems Powerful Tools for Better Performance This page intentionally left blank. I Contents Introduction 1 What is 1 Using this Manual 1 System Setup 2 Open PPS Monitor

More information

Choosing Between Private and Public Clouds: How to Defend Which Workload Goes Where

Choosing Between Private and Public Clouds: How to Defend Which Workload Goes Where Choosing Between Private and Public Clouds: How to Defend Which Workload Goes Where Why are you here? We ll venture five guesses as to why you are reading this document. You want to: A. Find answers about

More information

Keep Calm and Don t Panic vsphere 5.5 End of General Support by Christopher Lewis

Keep Calm and Don t Panic vsphere 5.5 End of General Support by Christopher Lewis Keep Calm and Don t Panic vsphere 5.5 End of General Support by Christopher Lewis VMware vsphere 5.5 is coming to the end of general support on 19th September 2018. If you are a super, wellorganised and

More information

Oracle Enterprise Manager

Oracle Enterprise Manager Oracle Enterprise Manager System Monitoring Plug-in for Oracle Enterprise Manager Ops Center Guide 12c Release 5 (12.1.0.5.0) E38529-08 April 2016 This document describes how to use the Infrastructure

More information

GUIDE The Enterprise Buyer s Guide to Public Cloud Computing

GUIDE The Enterprise Buyer s Guide to Public Cloud Computing GUIDE The Enterprise Buyer s Guide to Public Cloud Computing cloudcheckr.com Enterprise Buyer s Guide 1 When assessing enterprise compute options on Amazon and Azure, it pays dividends to research the

More information

Choosing Between Private and Public Clouds: How to Defend Which Workload Goes Where

Choosing Between Private and Public Clouds: How to Defend Which Workload Goes Where White Paper Choosing Between Private and Public Clouds: How to Defend Which Workload Goes Where Why are you here? We ll venture five guesses as to why you are reading this document. You want to: A. Find

More information

Tivoli Workload Scheduler

Tivoli Workload Scheduler Tivoli Workload Scheduler Dynamic Workload Console Version 9 Release 2 Quick Reference for Typical Scenarios Table of Contents Introduction... 4 Intended audience... 4 Scope of this publication... 4 User

More information

Visual BI Value Driver Tree for SAP Lumira Designer - User Guide -

Visual BI Value Driver Tree for SAP Lumira Designer - User Guide - Visual BI Value Driver Tree for SAP Lumira Designer - User Guide - 1 Copyright 3 1.1 Trademark Information 3 1.2 Patent Information 3 1.3 SAP Trademarks 3 2 Definitions 4 3 Introduction 5 3.1 Document

More information

TECHNICAL GUIDE. DataStream. Coho Data SRM Integration Guide. Version February

TECHNICAL GUIDE. DataStream. Coho Data SRM Integration Guide. Version February TECHNICAL GUIDE DataStream Coho Data SRM Integration Guide Version 2.9.0.1 February 2017 www.cohodata.com TABLE OF CONTENTS Introduction 3 Intended Audience 3 Key Components 3 Disaster Recovery Objectives

More information

ENTERPRISE HYBRID CLOUD 4.1.1

ENTERPRISE HYBRID CLOUD 4.1.1 ENTERPRISE HYBRID CLOUD 4.1.1 EMC Solutions Abstract This document describes how to deploy an SAP environment on an Enterprise Hybrid Cloud with VMware vrealize Automation as its core. This solution addresses

More information

CCC Wallboard Manager User Manual

CCC Wallboard Manager User Manual CCC Wallboard Manager User Manual 40DHB0002USBF Issue 2 (17/07/2001) Contents Contents Introduction... 3 General... 3 Wallboard Manager... 4 Wallboard Server... 6 Starting the Wallboard Server... 6 Administering

More information

Resolve End User Experience Issues for Any Citrix or VMware-Delivered Application

Resolve End User Experience Issues for Any Citrix or VMware-Delivered Application Resolve End User Experience Issues for Any Citrix or VMware-Delivered Application Technical Overview Goliath Technologies gives us complete visibility into the end user experience from the time they log

More information

SysTrack Workspace Analytics

SysTrack Workspace Analytics SysTrack Workspace Analytics The Visibility IT Needs to Enable End-User Productivity Challenge IT executives are under constant pressure to cost-effectively manage complex IT systems. SysTrack enables

More information

Application Performance Monitoring (APM) Technical Whitepaper

Application Performance Monitoring (APM) Technical Whitepaper Application Performance Monitoring (APM) Technical Whitepaper Table of Contents Introduction... 3 Detect Application Performance Issues Before Your Customer Does... 3 Challenge of IT Manager... 3 Best

More information

Resolve End User Experience Issues for Any Citrix or VMware-Delivered Application

Resolve End User Experience Issues for Any Citrix or VMware-Delivered Application Resolve End User Experience Issues for Any Citrix or VMware-Delivered Application Technical Overview Goliath Technologies gives us complete visibility into the end user experience from the time they log

More information

Resolve End User Experience Issues for Any Citrix or VMware-Delivered Application

Resolve End User Experience Issues for Any Citrix or VMware-Delivered Application Resolve End User Experience Issues for Any Citrix or VMware-Delivered Application Technical Overview Goliath Technologies gives us complete visibility into the end user experience from the time they log

More information

Increased Informix Awareness Discover Informix microsite launched

Increased Informix Awareness Discover Informix microsite launched Information Management Increased Informix Awareness Discover Informix microsite launched www.ibm.com/discoverinformix 2010 IBM Corporation Informix Panther Early Program Want to be on the cutting-edge

More information

Data Sheet. VIAVI Observer Apex. Centralized performance monitoring and troubleshooting

Data Sheet. VIAVI Observer Apex. Centralized performance monitoring and troubleshooting Data Sheet VIAVI Observer Apex Centralized performance monitoring and troubleshooting Strategic Vision, Intelligent Workflows, and End-User Experience Scoring Get 360 of Visibility into Service Health

More information

Contents Getting Started... 9 Sample Dashboards... 17

Contents Getting Started... 9 Sample Dashboards... 17 Analytics Reference Guide 16 R1 March 2016 Contents Getting Started... 9 About Oracle Primavera Analytics... 10 Prerequisites to Use Primavera Analytics... 11 About Analyses... 11 About s... 12 About

More information

BUILDING A PRIVATE CLOUD

BUILDING A PRIVATE CLOUD INNOVATION CORNER BUILDING A PRIVATE CLOUD How Platform Computing s Platform ISF* Can Help MARK BLACK, CLOUD ARCHITECT, PLATFORM COMPUTING JAY MUELHOEFER, VP OF CLOUD MARKETING, PLATFORM COMPUTING PARVIZ

More information