A PRE-TENSIONED, ROCKING BRIDGE BENT FOR ABC IN SEISMIC REGIONS.

Size: px
Start display at page:

Download "A PRE-TENSIONED, ROCKING BRIDGE BENT FOR ABC IN SEISMIC REGIONS."

Transcription

1 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska A PRE-TENSIONED, ROCKING BRIDGE BENT FOR ABC IN SEISMIC REGIONS. John Stanton, Marc Eberhard, David Sanders, Travis Thonstad, Jeffrey Schaefer, Bryan Kennedy, Olafur Haraldsson and Islam Mantawy. ABSTRACT A new, rocking, pre-tensioned concrete bridge bent system has been developed that reduces onsite construction time by precasting the beams and columns, minimizes post-earthquake residual displacements by the use of locally unbonded, pre-tensioned strands in the columns, and reduces earthquake damage by means of rocking connections at the ends of the columns. Cyclic tests of the critical connections have demonstrated that the system can deform to drift ratios of around 6% with minimal damage and negligible residual displacements. Shaking table tests of a 25% scale, two-span bridge at the University of Nevada, Reno will be used to evaluate the dynamic performance of the system.

2 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska A Pre-tensioned, Rocking Bridge Bent for ABC in Seismic Regions. John Stanton 1, Marc Eberhard 1, David Sanders 2, Travis Thonstad 3, Jeffrey Schaefer 3, Bryan Kennedy 3, Olafur Haraldsson 3 and Islam Mantawy 4 ABSTRACT A new, rocking, pre-tensioned concrete bridge bent system has been developed that reduces on-site construction time by precasting the beams and columns, minimizes post-earthquake residual displacements by the use of locally unbonded, pre-tensioned strands in the columns, and reduces earthquake damage by means of rocking connections at the ends of the columns. Cyclic tests of the critical connections have demonstrated that the system can deform to drift ratios of around 6% with minimal damage and negligible residual displacements. Shaking table tests of a 25% scale, twospan bridge at the University of Nevada, Reno will be used to evaluate the dynamic performance of the system. Introduction Within the United States, the design of reinforced concrete bridges in seismic regions has changed little since the mid-1970s, when ductile details were first introduced. In seismic regions, nearly all bridge bents today are constructed of cast-in-place reinforced concrete. These cast-inplace bridges have typically met life-safety requirements, but are slow to construct and suffer damage during earthquakes. New structural systems and construction methods are needed to improve speed of construction on site, to minimize residual displacements after an earthquake and to reduce post-earthquake damage. A new concept has been developed that addresses each of these three concerns. This paper describes the concept, its constructability characteristics, and the results of quasi-static testing of subassemblies representing components of the new system. Shaking table tests on a 25% scale model bridge using the system will be conducted in 2014 at the University of Nevada, Reno Network for Earthquake Engineering Simulation (NEES) facility. 1 Professor, Dept. of Civil Eng., University of Washington, Seattle, WA Professor, Dept. of Civil Eng., University of Nevada, Reno, NV Graduate Research Assistant, Dept. of Civil Eng., University of WA, Seattle, WA Graduate Research Assistant, Dept. of Civil Eng., University of Nevada, Reno, NV Author: Stanton,J.F. A Pre-tensioned, Rocking Bridge Bent for ABC in Seismic Regions. Proceedings of the 10 th National Conference in Earthquake Engineering, Earthquake Engineering Research Institute, Anchorage, AK, 2014.

3 Structural Concept The new system is a development of the one tested by Davis et al (2012). It is shown schematically in Figure 1 and has the following key features. The columns and cross-beams are cast off-site and then assembled rapidly once they arrive on-site. Precasting significantly reduces the on-site construction time and offers solutions when the site is environmentally sensitive, such as over water. Further, the critical components of the system are cast under factory conditions, which reduces the probability of errors. Construction is further accelerated by using a wet socket connection between the column and the spread footing (Haraldsson et al. 2013). In this connection, the precast column and the footing reinforcement are placed in the excavation, then the concrete is cast in place around it. To facilitate the transfer of forces into the surrounding concrete, the base of the column has a roughened exterior with a saw-tooth detail. No bars cross the interface between the precast column and cast-in-place footing. The column longitudinal bars are not bent out as they are in conventional construction, but instead, they are developed using mechanical anchors within the part of the column that is embedded in the footing. This design facilitates transportation, increases safety (no protruding bars), and improves performance (compared with bent-out bars). Post-earthquake residual displacements are reduced by pre-tensioning the precast bridge columns with tendons that are unbonded over the central part of the column and bonded at the ends. They are designed to return the system to its original plumb position when the ground motion stops. They are situated in the center of the cross-section. The column is cast horizontally to facilitate pretensioning, and the section is octagonal to provide a flat to surface for good finishing. Figure 1. Precast, Pretensioned Rocking Column Bent Concept

4 Damage to the system is minimized by incorporating a new rocking detail at the ends of the columns, as shown (for the base of the column) in Figure 2. The column is detailed so that it cracks on a plane at the top of the footing, and the column then rocks as a rigid body at the crack. Each end of the column is fitted with a steel jacket (or shoe ), which consists of circular steel pipe welded to an end plate. The shoe forms a discontinuity at Figure 2. Base Detail for Precast, Pretensioned Rocking Column Bent Figure 3. Construction of Precast Column Bent (without pretensioning) which the crack naturally occurs and it confines the end of the column to minimize damage to the concrete during rocking. The connection detail at the top of the column is similar in principle but the column section is reduced at its interface with the cap beam (Figure 1). This detail allows the use of a precast cap beam, which significantly shortens on-site construction time, without the

5 need for a large and potentially damaging opening in the cap beam. It also provides a convenient seat for the cap beam during construction, thereby avoiding the need for other, temporary support mechanisms. The primary longitudinal bars are debonded near the interface to distribute their elongation over a region long enough to reduce the peak strain and prevent bar failure at the design deformation. Additional bars, which are discontinuous and welded to the base plate of the shoe, are included in the system to help dissipate the local compressive forces at the rocking interface, and to ensure that any cracking is concentrated at this interface rather than in the body of the column above the shoe. Rapid On-Site Construction A non-prestressed version of the precast bent system was deployed in Washington State as part of the construction of a bridge over Interstate-5 (Khaleghi et al. 2012). The bridge had two spans, tall abutments on the ends and a center pier with four columns (Fig. 3). The precast columns were connected to the cast-in-place spread footings using a wet socket connection (Haraldsson et al. 2013). The tops of the precast columns were connected to the precast cap-beam using a large-bar connection (Pang et al. 2010), consisting of large bras grouted into ducts. Large bars are used to reduce the number of bar fit-ups, which facilitates on-site construction. Experiments (Steuck et al 2009) have shown that the bars can be fully developed within the depth of the cap beam. The cap-beam was made in two segments because of weight constraints. No major problems were encountered during construction, and alignment was straightforward (Khaleghi et al. 2012). The placement of each cap-beam segment took less than 30 minutes. The precast, pre-tensioned rocking system has construction details similar to those of the nonprestressed system, so it could be assembled similarly, as illustrated in Figure 4. Seismic Performance Figure 4. Construction Sequence The resistance and damage progression of the top and bottom connections were evaluated through quasi-static tests of a column-to-spread-footing connection subassembly (PreT-SF-Rock) and a column-to-cap-beam connection subassembly (PreT-CB-Rock).

6 The columns were designed to have a strength similar (at 42% scale) to that of a typical reinforced concrete column. For both subassemblies, the octagonal columns had a diameter (flatto-flat) of 20 in. (508 mm) and a cantilever length of 60 in. (1524 mm), resulting in a cantilever span-to-depth ratio of 3.0. The columns were subjected to a constant axial load while cyclic, lateral displacements were applied to the column. The loading setup is shown in Figure 5. Figure 5. Loading Setup for Subassembly Tests The cyclic performance of the subassemblies (Figure 6) greatly exceeded that of a comparable conventional reinforced concrete column connection (e.g., Pang et al. 2010). For peak drift ratios up to approximately 6%, the columns returned to their undeformed geometry upon unloading. The columns continued to resist nearly 100% of the peak lateral load after having been subjected to two cycles of deformation at a drift ratio of 10.4%. Even after those extreme load cycles, the residual drift ratio was less than 1%. No spalling or bar buckling was observed during the tests, and the grout in the top connection suffered only cosmetic damage. The longitudinal bars for the column-to-spread-footing specimen fractured after being subjected to a drift ratio of 5.9%. The column-to-cap-beam bars, which had a longer debonded length, fractured after being subjected to a drift ratio of 7.0%.

7 (a) Column Connection to Spread Footing (PreT-SF-Rock) (b) Column Connection to Cap Beam (PreT-CB-Rock) Figure 6. Measured Effective-Force vs. Drift Ratio Responses for Rocking Connections

8 Planned Shaking Table Tests To complement the component tests described above, shaking table tests on the system will be conducted at the NEES facility at the University of Nevada, Reno in The structure will consist of a two-span, three-bent bridge constructed at 25% scale. The columns of the bents have been designed to perform similarly to those already tested statically at the University of Washington. Figure 7 shows the shaking table specimen. Figure 7. Planned Shaking Table Specimen Conclusions A new column bridge bent system has been developed for use in any seismic region. It accelerates bridge construction, it re-centers after even an extreme earthquake, and it minimizes seismic damage. Its seismic behavior is characterized by rigid-body rocking, and re-centering is achieved by pretesnioning that is debonded over the central region of the column. Damage is minimized by suitable confinement detailing. Field experience with a similar, non-prestressed system suggests that the new system can be constructed rapidly. Quasi-static tests of a column-to-spread-footing subassembly and a column-to-cap-beam subassembly indicate that the new system will perform better than a reinforced concrete bridge constructed with conventional seismic detailing. The column re-centers even after excursions to large drift ratios, the column suffers almost no damage, and lateral strength is maintained out to very high drift ratios. The dynamic performance of the system will be evaluated in upcoming shaking table tests of a 25% scale, two-span bridge constructed using the system.

9 Acknowledgments This research was supported by the National Science Foundation George Brown Network for Earthquake Engineering Systems Research Program (Award # ), the Pacific Earthquake Engineering Research (PEER) Center and the Valle Foundation of the University of Washington. The findings and conclusions contained herein are those of the authors alone. The quasi-static tests were conducted at the University of Washington with the help of graduate students Lisa Berg, Spencer Livermore, Kevin Martin, Tony Nguyen, Max Stephens and Hung Viet Tran. Further help was provided by undergraduate students Sam Adiputra, Matt Brosman, Nathan Clemens, David Lam, Scott Laws, Kevin Tsuchida, Hin-Kei Wong and Chase Young. The assistance of Professor Donald Janssen and Laboratory Manager Vince Chaijaroen is also gratefully acknowledged. References 1. Davis, Phillip M., Janes, Todd M., Haraldsson, Olafur S., Stanton, John F., and Eberhard, Marc O. (2012). Unbonded Pre-tensioned Columns for Accelerated Bridge Construction in Seismic Regions. Journal of Bridge Engineering, ASCE (submitted November 2012) 2. Haraldsson, O.S., Janes, T.M., Eberhard, M.O. and Stanton, J.F. (2013). Seismic Resistance of Socket Connection between Footing and Precast Column. Journal of Bridge Engineering, ASCE, Sept-Oct, pp Khaleghi, B., Schultz, E., Seguirant, S.J., Marsh, M.L., Haraldsson, O.S., Eberhard, M.O. and Stanton, J.F. (2012). Accelerated Bridge Construction in Washington State -- From Research to Practice, PCI Journal, Autumn, pp Pang, J.B.K., Eberhard M.O. and Stanton, J.F. (2010). Large-Bar Connection for Precast Bridge Bents in Seismic Regions. Journal of Bridge Engineering, ASCE, May-June, pp Steuck, K.P., Stanton, J.F. and Eberhard, M.O., (2009). Anchorage of Large-Diameter Reinforcing Bars in Ducts, ACI Structural Journal, 106(4), July-August, pp

SHAKE TABLE EXPERIMENTS OF PRECAST, PRETENSIONED BRIDGE

SHAKE TABLE EXPERIMENTS OF PRECAST, PRETENSIONED BRIDGE SHAKE TABLE EXPERIMENTS OF PRECAST, PRETENSIONED BRIDGE Abstract Islam Mantawy 1, Travis Thonstad 2, David Sanders 3, John Stanton 4 and Marc Eberhard 4 This paper describes the verification by shake-table

More information

Seismic Resilience of Pre-Tensioned Bridge Bents

Seismic Resilience of Pre-Tensioned Bridge Bents Seismic Resilience of Pre-Tensioned Bridge Bents Eric Ramirez Home Institution: University of Texas at El Paso REU Site: University of Nevada, Reno PI: Dr. David Sanders Graduate Student Mentor: Islam

More information

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER Unbonded Pretensioned Bridge Columns with Rocking Detail Jeffrey A. Schaefer United States Air Force Bryan Kennedy Marc O. Eberhard John F. Stanton Department

More information

SUMMARY SHEETS OF HYBRID CONNECTIONS

SUMMARY SHEETS OF HYBRID CONNECTIONS APPENDIX E SUMMARY SHEETS OF HYBRID CONNECTIONS NCHRP 12-88 Connection Evaluations Appendix E E-1 APPENDIX E SUMMARY SHEETS OF HYBRID CONNECTIONS NCHRP 12-88 Connection Evaluations Appendix E E-2 Location:

More information

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER Unbonded Pre-Tensioned Columns for Bridges in Seismic Regions Phillip M. Davis Todd M. Janes Marc O. Eberhard John F. Stanton Department of Civil and Environmental

More information

ACCELERATED BRIDGE CONSTRUCTION IN WASHINGTON STATE FROM RESEARCH TO PRACTICE

ACCELERATED BRIDGE CONSTRUCTION IN WASHINGTON STATE FROM RESEARCH TO PRACTICE ACCELERATED BRIDGE CONSTRUCTION IN WASHINGTON STATE FROM RESEARCH TO PRACTICE by Bijan Khaleghi 1, Eric Schultz 2, Stephen Seguirant 3, Lee Marsh 4, Marc Eberhard 5 and John Stanton 5. ABSTRACT The Federal

More information

PRECAST CONCRETE CONNECTIONS FOR ACCELERATED BRIDGE CONSTRUCTION IN REGIONS OF HIGH SEISMICITY

PRECAST CONCRETE CONNECTIONS FOR ACCELERATED BRIDGE CONSTRUCTION IN REGIONS OF HIGH SEISMICITY PRECAST CONCRETE CONNECTIONS FOR ACCELERATED BRIDGE CONSTRUCTION IN REGIONS OF HIGH SEISMICITY SAM WHITE 1, MUSTAFA MASHAL 2, ALESSANDRO PALERMO 2 1 Opus International Consultants, formerly College of

More information

A precast Concrete Bridge Bent for Seismic Regions: Achieving both Performance and Constructability

A precast Concrete Bridge Bent for Seismic Regions: Achieving both Performance and Constructability A precast Concrete Bridge Bent for Seismic Regions: Achieving both Performance and Constructability John Stanton Marc Eberhard University of Washington PCI Fall Convention 15 Sept 2009, San Antonio, TX.

More information

MPC-545 November 15, 2017

MPC-545 November 15, 2017 MPC-545 November 15, 2017 Project Title: Self-Centering Bridge Bent for Accelerated Bridge Construction in Seismic Regions University: University of Utah Principal Investigators: Chris Pantelides Professor

More information

Accelerated Bridge Construction Developments on the Earthquake Frontier

Accelerated Bridge Construction Developments on the Earthquake Frontier Accelerated Bridge Construction Developments on the Earthquake Frontier John Stanton University of Washington AASHTO SCOBS meeting Spokane WA, 12 June 2017 Outline ABC in Seismic Regions What are the challenges?

More information

SEISMIC DESIGN OF PRECAST PIERS WITH POCKET CONNECTIONS, CFRP TENDONS AND ECC/UHPC COLUMNS

SEISMIC DESIGN OF PRECAST PIERS WITH POCKET CONNECTIONS, CFRP TENDONS AND ECC/UHPC COLUMNS International Journal of Bridge Engineering (IJBE), Special Issue 2017, pp. 99-123 SEISMIC DESIGN OF PRECAST PIERS WITH POCKET CONNECTIONS, CFRP TENDONS AND ECC/UHPC COLUMNS Alireza Mohebbi 1, M. Saiid

More information

PRECAST PIERS WITH GROUTED SPLICE SLEEVE CONNECTIONS FOR ACCELERATED BRIDGE CONSTRUCTION IN SEISMIC ZONES

PRECAST PIERS WITH GROUTED SPLICE SLEEVE CONNECTIONS FOR ACCELERATED BRIDGE CONSTRUCTION IN SEISMIC ZONES International Journal of Bridge Engineering (IJBE), Special Issue 2017, pp. 25-52 PRECAST PIERS WITH GROUTED SPLICE SLEEVE CONNECTIONS FOR ACCELERATED BRIDGE CONSTRUCTION IN SEISMIC ZONES M. J. Ameli 1,

More information

Cyclic Tests on Prefabricated Bridge Piers

Cyclic Tests on Prefabricated Bridge Piers Cyclic Tests on Prefabricated Bridge Piers *Chang-Su Shim 1), Sang-Yong Lee 2), Sung-Jun Park 2), and Chandara Koem 2) 1), 2) Department of Civil Engineering, Chung-Ang University, Seoul 156-756, Korea

More information

In-plane testing of precast concrete wall panels with grouted sleeve

In-plane testing of precast concrete wall panels with grouted sleeve In-plane testing of precast concrete wall panels with grouted sleeve P. Seifi, R.S. Henry & J.M. Ingham Department of Civil Engineering, University of Auckland, Auckland. 2017 NZSEE Conference ABSTRACT:

More information

LARGE-SCALE TESTING OF LOW-DAMAGE SUPERSTRUCTURE CONNECTIONS IN PRECAST BRIDGES Z CHEGINI 1 ; A PALERMO 1

LARGE-SCALE TESTING OF LOW-DAMAGE SUPERSTRUCTURE CONNECTIONS IN PRECAST BRIDGES Z CHEGINI 1 ; A PALERMO 1 LARGE-SCALE TESTING OF LOW-DAMAGE SUPERSTRUCTURE CONNECTIONS IN PRECAST BRIDGES Z CHEGINI 1 ; A PALERMO 1 1 Department of Civil and Natural Resources Engineering, University of Canterbury, NZ SUMMARY Prefabrication

More information

Unbonded Prestressed Columns for Earthquake Resistance

Unbonded Prestressed Columns for Earthquake Resistance NDOT Research Report Report No. 32-1-83 Unbonded Prestressed Columns for Earthquake Resistance May 212 Nevada Department of Transportation 1263 South Stewart Street Carson City, NV 89712 Disclaimer This

More information

REINFORCED CONCRETE BRIDGE COLUMNS THAT RE-CENTER FOLLOWING EARTHQUAKES ABSTRACT

REINFORCED CONCRETE BRIDGE COLUMNS THAT RE-CENTER FOLLOWING EARTHQUAKES ABSTRACT Proceedings of the 8 th U.S. National Conference on Earthquake Engineering April 18-22, 26, San Francisco, California, USA Paper No. 1421 REINFORCED CONCRETE BRIDGE COLUMNS THAT RE-CENTER FOLLOWING EARTHQUAKES

More information

Analytical Investigations and Design Implications of Seismic Response of a 2-Span ABC Bridge System

Analytical Investigations and Design Implications of Seismic Response of a 2-Span ABC Bridge System Analytical Investigations and Design Implications of Seismic Response of a 2-Span ABC Bridge System Quarterly Progress Report For the period ending February 28, 2018 Submitted by: PI- M. Saiidi and A.

More information

HIGHWAYS FOR LIFE PROJECTS AND ACCELERATED BRIDGE CONSTRUCTION IN WASHINGTON STATE

HIGHWAYS FOR LIFE PROJECTS AND ACCELERATED BRIDGE CONSTRUCTION IN WASHINGTON STATE HIGHWAYS FOR LIFE PROJECTS AND ACCELERATED BRIDGE CONSTRUCTION IN WASHINGTON STATE ABSTRACT The Federal Highway Administration, as part of the Every Day Counts initiative, is actively promoting accelerated

More information

Large-scale testing of low-damage superstructure connections in precast bridges

Large-scale testing of low-damage superstructure connections in precast bridges Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Large-scale testing of low-damage superstructure connections

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT October 1, 2016 to December 31, 2016 Period Year 1 Project Development and Seismic Evaluation of Pier Systems w/ Pocket Connections and Square

More information

Deformation Capacity of RC Structural Walls without Special Boundary Element Detailing

Deformation Capacity of RC Structural Walls without Special Boundary Element Detailing Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Deformation Capacity of RC Structural Walls without Special

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT Oct. 1, 2015 to December 31, 2015 Period Submitted by M. Saiidi, A. Itani, and A. Mohebbi Department of Civil and Environmental Engineering

More information

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL CYCLIC RESPONSE OF ALTERNATIVE COLUMN TO FOUNDATION CONNECTIONS OF REINFORCED CONCRETEC PRECAST STRUCTURES Ettore Fagà, Dr, EUCENTRE, Pavia, Italy Lorenzo

More information

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1

Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction. Bijan Khaleghi 1 Seismic Performance of Precast Concrete Bents used for Accelerated Bridge Construction Bijan Khaleghi 1 Abstract Ductility of precast prestressed girder bridges can be achieved by proper detailing of pier

More information

Quasi-static cyclic tests of Emulative Precast Segmental Bridge Piers (E-PSBP)

Quasi-static cyclic tests of Emulative Precast Segmental Bridge Piers (E-PSBP) Quasi-static cyclic tests of Emulative Precast Segmental Bridge Piers (E-PSBP) M. Mashal, S. White, & A. Palermo Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch.

More information

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1

The Hashemite University Department of Civil Engineering. Dr. Hazim Dwairi. Dr. Hazim Dwairi 1 Department of Civil Engineering Lecture 2.1 Methods of Prestressing Advantages of Prestressing Section remains uncracked under service loads Reduction of steel corrosion (increase durability) Full section

More information

Controlled damage precast connections for Accelerated Bridge Construction in regions of high seismicity

Controlled damage precast connections for Accelerated Bridge Construction in regions of high seismicity Controlled damage precast connections for Accelerated Bridge Construction in regions of high seismicity S. White & A. Palermo Department of Civil and Natural Resources Engineering, University of Canterbury,

More information

Hybrid System Using Precast Prestressed Frame with Corrugated Steel Panel Damper

Hybrid System Using Precast Prestressed Frame with Corrugated Steel Panel Damper Journal of Advanced Concrete Technology Vol. 7, No. 3, 297-36, October 29 / Copyright 29 Japan Concrete Institute 297 Scientific paper Hybrid System Using Precast Prestressed Frame with Corrugated Steel

More information

EARTHQUAKE SIMULATOR TESTS ON THE MITIGATION OF RESIDUAL DISPLACEMENTS OF REINFORCED CONCRETE BRIDGE COLUMNS

EARTHQUAKE SIMULATOR TESTS ON THE MITIGATION OF RESIDUAL DISPLACEMENTS OF REINFORCED CONCRETE BRIDGE COLUMNS EARTHQUAKE SIMULATOR TESTS ON THE MITIGATION OF RESIDUAL DISPLACEMENTS OF REINFORCED CONCRETE BRIDGE COLUMNS Abstract Junichi Sakai 1, Hyungil Jeong 2 and Stephen A. Mahin 3 To minimize residual displacements

More information

LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS. Qiang SHEN Graduate Research Assistant. Yahya C. KURAMA Assistant Professor

LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS. Qiang SHEN Graduate Research Assistant. Yahya C. KURAMA Assistant Professor LATERAL LOAD BEHAVIOR OF UNBONDED POST-TENSIONED HYBRID COUPLED WALLS Qiang SHEN Graduate Research Assistant Yahya C. KURAMA Assistant Professor University of Notre Dame, Civil Engineering and Geological

More information

PRECAST PRESTRESSED PORTAL FRAMES WITH CORRUGATED STEEL PANEL DAMPERS

PRECAST PRESTRESSED PORTAL FRAMES WITH CORRUGATED STEEL PANEL DAMPERS PRECAST PRESTRESSED PORTAL FRAMES WITH CORRUGATED STEEL PANEL DAMPERS Yuki TANAKA 1, Yukako ICHIOKA 2, Susumu KONO 3, Yoshihiro OHTA 4 and Fumio WATANABE 5 1 Graduate Student, Dept. of Architecture and

More information

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017 ABC-UTC Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC ABSTRACT March, 2017 Accelerated Bridge Construction (ABC) is a method of bridge construction designed

More information

SEISMIC PERFORMANCE AND RETROFIT OF BRIDGE FOOTINGS. David I. McLean 1

SEISMIC PERFORMANCE AND RETROFIT OF BRIDGE FOOTINGS. David I. McLean 1 Abstract SEISMIC PERFORMANCE AND RETROFIT OF BRIDGE FOOTINGS David I. McLean 1 This study investigated retrofitting measures for improving the seismic performance of the foundations of existing bridges.

More information

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars

Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars October 1-17, 8, Beijing, China Tests of R/C Beam-Column Joint with Variant Boundary Conditions and Irregular Details on Anchorage of Beam Bars F. Kusuhara 1 and H. Shiohara 1 Assistant Professor, Dept.

More information

Analysis, Design, and Construction of SMA-Reinforced FRP- Confined Concrete Columns

Analysis, Design, and Construction of SMA-Reinforced FRP- Confined Concrete Columns Analysis, Design, and Construction of SMA-Reinforced FRP- Confined Concrete Columns Mostafa Tazarv 1 and M. Saiid Saiidi 2 1 Assistant Professor, Dept. of Civil and Env. Eng., South Dakota State University,

More information

Pile to Slab Bridge Connections

Pile to Slab Bridge Connections Pile to Slab Bridge Connections Mohamed I. Ayoub 1, David H. Sanders 2 and Ahmed Ibrahim 3 Abstract Slab bridges are a common bridge type, where the pile extends directly from the ground to the superstructure.

More information

Project Title: Mechanical Bar Splices for Accelerated Bridge Construction of Columns

Project Title: Mechanical Bar Splices for Accelerated Bridge Construction of Columns MPC-511 May 5, 2016 Project Title: Mechanical Bar Splices for Accelerated Bridge Construction of Columns University: Principal Investigators: PI: Mostafa Tazarv, PhD Assistant Professor Department of Civil

More information

Rapidly Constructible Large-Bar Precast Bridge-Bent Seismic Connection

Rapidly Constructible Large-Bar Precast Bridge-Bent Seismic Connection Rapidly Constructible Large-Bar Precast Bridge-Bent Seismic Connection WA-RD 684.2 Jason B.K. Pang Kyle P. Steuck Laila Cohagen John F. Stanton Marc O Eberhard October 2008 Office of Research & Library

More information

EXPERIMENTAL INVESTIGATION ON THE INTERACTION OF REINFORCED CONCRETE FRAMES WITH PRECAST-PRESTRESSED CONCRETE FLOOR SYSTEMS

EXPERIMENTAL INVESTIGATION ON THE INTERACTION OF REINFORCED CONCRETE FRAMES WITH PRECAST-PRESTRESSED CONCRETE FLOOR SYSTEMS EXPERIMENTAL INVESTIGATION ON THE INTERACTION OF REINFORCED CONCRETE FRAMES WITH PRECAST-PRESTRESSED CONCRETE FLOOR SYSTEMS B.H.H. Peng 1, R.P. Dhakal 2, R.C. Fenwick 3, A.J. Carr 4 and D.K. Bull 5 1 PhD

More information

Seismic Performance of Hollow-core Flooring: the Significance of Negative Bending Moments

Seismic Performance of Hollow-core Flooring: the Significance of Negative Bending Moments Seismic Performance of Hollow-core Flooring: the Significance of Negative Bending Moments L.J. Woods University of Canterbury and Holmes Consulting Group, New Zealand. R.C. Fenwick University of Canterbury,

More information

SUMMARY SHEETS OF GROUTED DUCT CONNECTIONS

SUMMARY SHEETS OF GROUTED DUCT CONNECTIONS APPENDIX B SUMMARY SHEETS OF GROUTED DUCT CONNECTIONS NCHRP 12-88 Connection Evaluations Appendix B B-1 APPENDIX B SUMMARY SHEETS OF GROUTED DUCT CONNECTIONS NCHRP 12-88 Connection Evaluations Appendix

More information

NCHRP Project Michael Culmo, PE CME Associates, Inc.

NCHRP Project Michael Culmo, PE CME Associates, Inc. NCHRP Project 12-102 Michael Culmo, PE CME Associates, Inc. Acknowledgements NCHRP: Waseem Dekelbab Project Panel Ahmad Abu-Hawash Iowa DOT Norman P. Marzano Jr. Rhode Island DOT Carmen Swanwick Utah DOT

More information

Quasi-static cyclic testing of half-scale fully precast bridge substructure system in high seismicity

Quasi-static cyclic testing of half-scale fully precast bridge substructure system in high seismicity Quasi-static cyclic testing of half-scale fully precast bridge substructure system in high seismicity M. Mashal & A. Palermo Department of Civil and Natural Resources Engineering, University of Canterbury,

More information

Disaster Risk Management, National Institute for Land and Infrastructure Management (NILIM)

Disaster Risk Management, National Institute for Land and Infrastructure Management (NILIM) SEISMIC PERFORMNACE AND STRUCTURAL DETAILS OF PRECAST SEGMENTAL CONCRETE BRIDGE COLUMNS Jun-ichi Hoshikuma 1, Shigeki Unjoh 2, Junichi Sakai 3 Abstract The precast segmental concrete bridge column would

More information

QUASI-STATIC CYCLIC TESTS OF HALF-SCALE FULLY PRECAST BRIDGE BENTS INCORPORATING EMULATIVE AND POST- TENSIONED LOW DAMAGE SOLUTIONS

QUASI-STATIC CYCLIC TESTS OF HALF-SCALE FULLY PRECAST BRIDGE BENTS INCORPORATING EMULATIVE AND POST- TENSIONED LOW DAMAGE SOLUTIONS QUASI-STATIC CYCLIC TESTS OF HALF-SCALE FULLY PRECAST BRIDGE BENTS INCORPORATING EMULATIVE AND POST- TENSIONED LOW DAMAGE SOLUTIONS Mustafa MASHAL 1, Alessandro PALERMO 2, and Zeinab CHEGINI 3 ABSTRACT

More information

DESIGN IMPLICATIONS FOR EARTHQUAKE DURATION ON CONCRETE BRIDGE COLUMNS

DESIGN IMPLICATIONS FOR EARTHQUAKE DURATION ON CONCRETE BRIDGE COLUMNS Abstract 17th U.S.-Japan-New Zealand Workshop on the Improvement of Structural Engineering and Resilience DESIGN IMPLICATIONS FOR EARTHQUAKE DURATION ON CONCRETE BRIDGE COLUMNS David Sanders, PhD 1, Mohammed

More information

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING By Benjamin M. Schlick University of Massachusetts Amherst Department of Civil and Environmental Engineering

More information

SEISMIC PERFORMANCE OF BRIDGE SLAB-COLUMN JOINTS WITH HEADED REINFORCEMENT

SEISMIC PERFORMANCE OF BRIDGE SLAB-COLUMN JOINTS WITH HEADED REINFORCEMENT Eleventh U.S. National Conference on Earthquake Engineering Integrating Science, Engineering & Policy June 25-29, 2018 Los Angeles, California SEISMIC PERFORMANCE OF BRIDGE SLAB-COLUMN JOINTS WITH HEADED

More information

Title. Author(s)KIM, D. W.; SHIM, C. S. Issue Date Doc URL. Type. Note. File Information

Title. Author(s)KIM, D. W.; SHIM, C. S. Issue Date Doc URL. Type. Note. File Information Title EVALUATION OF STRUCTURAL PERFORMANCE OF PRECAST MODU Author(s)KIM, D. W.; SHIM, C. S. Issue Date 2013-09-13 Doc URL http://hdl.handle.net/2115/54437 Type proceedings Note The Thirteenth East Asia-Pacific

More information

Chapter 2 Notation and Terminology

Chapter 2 Notation and Terminology Reorganized 318 Chapter Titles Chapter 1 General 1.1 Scope 1.2 Purpose 1.3 Interpretation 1.4 Drawings and Specifications 1.5 Testing and Inspection 1.6 Administatration and Enforcement 1.6.1 Retention

More information

SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE

SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE - Technical Paper - SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE Aloke RAJBHANDARY *1, Govinda R. PANDEY *2, Hiroshi MUTSUYOSHI *3 and Takeshi MAKI

More information

EXPERIMENTAL RESPONSE OF BOUNDARY ELEMENTS OF CODE- COMPLIANT REINFORCED CONCRETE SHEAR WALLS

EXPERIMENTAL RESPONSE OF BOUNDARY ELEMENTS OF CODE- COMPLIANT REINFORCED CONCRETE SHEAR WALLS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska EXPERIMENTAL RESPONSE OF BOUNDARY ELEMENTS OF CODE- COMPLIANT REINFORCED

More information

USING NEES TO INVESTIGATE SOIL-FOUNDATION-STRUCTURE INTERACTION

USING NEES TO INVESTIGATE SOIL-FOUNDATION-STRUCTURE INTERACTION 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2344 USING NEES TO INVESTIGATE SOIL-FOUNDATION-STRUCTURE INTERACTION Sharon L. WOOD 1, Thalia ANAGNOS

More information

SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS

SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS SHAKE TABLE TESTING OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS Juan G. Arias Acosta, Graduate Student David H. Sanders, Professor and Project PI University of Nevada, Reno NEESR SG 53737

More information

A Precast Concrete Bridge Bent Designed to Re-Center After an Earthquake

A Precast Concrete Bridge Bent Designed to Re-Center After an Earthquake A Precast Concrete Bridge Bent Designed to Re-Center After an Earthquake WA-RD 684.3 Laila S. Cohagen Jason B.K. Pang John F. Stanton Marc O. Eberhard October 2008 Office of Research & Library Services

More information

SHAKE-TABLE TESTING OF A 3-STORY, FULL-SCALE, REINFORCED MASONRY WALL SYSTEM

SHAKE-TABLE TESTING OF A 3-STORY, FULL-SCALE, REINFORCED MASONRY WALL SYSTEM 15 th International Brick and Block Masonry Conference Florianópolis Brazil 2012 SHAKE-TABLE TESTING OF A 3-STORY, FULL-SCALE, REINFORCED MASONRY WALL SYSTEM Stavridis, Andreas 1 ; Mavridis, Marios 2 ;

More information

EVALUATION OF THE SEISMIC PERFORMANCE OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS USING SHAKE TABLE

EVALUATION OF THE SEISMIC PERFORMANCE OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS USING SHAKE TABLE EVALUATION OF THE SEISMIC PERFORMANCE OF BRIDGE REINFORCED CONCRETE COLUMNS UNDER COMBINED ACTIONS USING SHAKE TABLE Juan G. Arias-Acosta 1 and David H. Sanders 2 Abstract Combined actions (axial, shear,

More information

EFFECTS OF END REGION CONFINEMENT ON SEISMIC PERFORMANCE OF RC CANTILEVER WALLS

EFFECTS OF END REGION CONFINEMENT ON SEISMIC PERFORMANCE OF RC CANTILEVER WALLS 10NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 2014 Anchorage, Alaska EFFECTS OF END REGION CONFINEMENT ON SEISMIC PERFORMANCE OF RC CANTILEVER

More information

Application of Shape Memory Alloy to Seismic Design of Multi-column Bridge Bents Using Controlled Rocking Approach

Application of Shape Memory Alloy to Seismic Design of Multi-column Bridge Bents Using Controlled Rocking Approach Application of Shape Memory Alloy to Seismic Design of Multi-column Bridge Bents Using Controlled Rocking Approach R. Davoudi, M. Khanmohammadi, M. Ghassemieh & S. Rafiee School of Civil Engineering, University

More information

Development and Seismic Evaluation of Pier Systems w/pocket Connections and Advanced Materials in Plastic Hinges

Development and Seismic Evaluation of Pier Systems w/pocket Connections and Advanced Materials in Plastic Hinges Development and Seismic Evaluation of Pier Systems w/pocket Connections and Advanced Materials in Plastic Hinges Test Model: Precast square columns with UHPC and ECC in plastic hinge zone and pocket connection

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT October 1, 2016 to December 31, 2016 Period Year 2 Project Shake Table Studies of a Bridge System with ABC Connections Submitted by M. Saiidi,

More information

Summary of Comments on Dissertation-Sarira.pdf

Summary of Comments on Dissertation-Sarira.pdf Abstract Precast construction systems are an excellent alternative for accelerated bridge construction in congested areas and environmentally sensitive regions because y minimize traffic delays and construction

More information

EXPERIMENTAL TESTING OF EMULATIVE FULLY PRECAST CONCRETE BRIDGE BENT IN SEISMIC REGIONS

EXPERIMENTAL TESTING OF EMULATIVE FULLY PRECAST CONCRETE BRIDGE BENT IN SEISMIC REGIONS EXPERIMENTAL TESTING OF EMULATIVE FULLY PRECAST CONCRETE BRIDGE BENT IN SEISMIC REGIONS Mustafa Mashal 1, Alessandro Palermo 2 ABSTRACT: Concrete bridge bent also known as multi-column pier support is

More information

SEISMIC FORCE RESISTING MECHANISM OF THE MULTI-STORY PRECAST CONCRETE SHEAR WALL SUPPORTED ON PILES

SEISMIC FORCE RESISTING MECHANISM OF THE MULTI-STORY PRECAST CONCRETE SHEAR WALL SUPPORTED ON PILES SEISMIC FORCE RESISTING MECHANISM OF THE MULTI-STORY PRECAST CONCRETE SHEAR WALL SUPPORTED ON PILES Hiroaki Hasegawa 1, Masanobu Sakashita 2, Ai Urabe 3, Susumu Kono 4, Hitoshi Tanaka 5 and Fumio Watanabe

More information

Shake Table Testing of Bridge Reinforced Concrete Columns under Combined Actions

Shake Table Testing of Bridge Reinforced Concrete Columns under Combined Actions Shake Table Testing of Bridge Reinforced Concrete Columns under Combined Actions by Juan G. Arias-Acosta 1 and David H. Sanders 2 ABSTRACT Combined loadings (axial, shear, bending and torsion) can have

More information

SUMMARY SHEETS OF INTEGRAL CONNECTIONS

SUMMARY SHEETS OF INTEGRAL CONNECTIONS APPENDIX F SUMMARY SHEETS OF INTEGRAL CONNECTIONS NCHRP 12-88 Connection Evaluations Appendix F F-1 APPENDIX F SUMMARY SHEETS OF INTEGRAL CONNECTIONS NCHRP 12-88 Connection Evaluations Appendix F F-2

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT October 1, 2017 to December 31, 2017 Period Year 2 Project Shake Table Studies of a Bridge System with ABC Connections Submitted by M. Saiidi,

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT July 1, 2017 to September 30, 2017 Period Year 2 Project Shake Table Studies of a Bridge System with ABC Connections Submitted by M. Saiidi,

More information

Damage Assessment of Reinforced Concrete Columns Under High Axial Loading

Damage Assessment of Reinforced Concrete Columns Under High Axial Loading SP-237 11 Damage Assessment of Reinforced Concrete Columns Under High Axial Loading by S. Kono, H. Bechtoula, M. Sakashita, H. Tanaka, F. Watanabe, and M.O. Eberhard Synopsis: Damage assessment has become

More information

Seismic Resilient Systems: Concepts and Challenges

Seismic Resilient Systems: Concepts and Challenges Workshop on Engineering Resilient Tall CLT Buildings in Seismic Regions January 24, 2014 Seattle WA Seismic Resilient Systems: Concepts and Challenges James D. Dolan Professor Washington State University

More information

SUITABILITY OF BRIDGE MADE WITH PRECAST COMPONENTS IN AREAS OF HIGH OR MODERATE SEISMISITY. Bijan Khaleghi 1

SUITABILITY OF BRIDGE MADE WITH PRECAST COMPONENTS IN AREAS OF HIGH OR MODERATE SEISMISITY. Bijan Khaleghi 1 SUITABILITY OF BRIDGE ADE WITH PRECAST COPONENTS IN AREAS OF HIGH OR ODERATE SEISISITY Bijan Khaleghi 1 Abstract The need for rapid construction arises from the inevitable increases in traffic congestion

More information

STRENGTH AND DUCTILITY OF RETROFITTED R/C BUILDING BY MULTI-STORY STEEL-BRACED FRAME SUBJECTED TO TRI-LATERAL EARTHQUAKE LOADING

STRENGTH AND DUCTILITY OF RETROFITTED R/C BUILDING BY MULTI-STORY STEEL-BRACED FRAME SUBJECTED TO TRI-LATERAL EARTHQUAKE LOADING STRENGTH AND DUCTILITY OF RETROFITTED R/C BUILDING BY MULTI-STORY STEEL-BRACED FRAME SUBJECTED TO TRI-LATERAL EARTHQUAKE LOADING ABSTRACT : KITAYAMA Kazuhiro 1 and NAKANUMA Hiroki 2 1 Associate Professor,

More information

CFT Column-to-Cap Beam Connections for. Accelerated Bridge Construction in Seismic Regions. Lisa Marie Berg. Master of Science in Civil Engineering

CFT Column-to-Cap Beam Connections for. Accelerated Bridge Construction in Seismic Regions. Lisa Marie Berg. Master of Science in Civil Engineering CFT Column-to-Cap Beam Connections for Accelerated Bridge Construction in Seismic Regions Lisa Marie Berg A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science

More information

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO

RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO RESEARCH PROJECT AT UNIVERSITY OF NEVADA, RENO QUARTERLY REPORT January 1, 2017 to March 31, 2017 Period Year 1 Project Development and Seismic Evaluation of Pier Systems w/ Pocket Connections and Square

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Nonlinear Seismic Behavior

More information

Hybrid Simulation Based on Finite Element Analysis of a Continuous Gird Bridge with Fiber Reinforced Polymer composition

Hybrid Simulation Based on Finite Element Analysis of a Continuous Gird Bridge with Fiber Reinforced Polymer composition 6 th International Conference on Advances in Experimental Structural Engineering 11 th International Workshop on Advanced Smart Materials and Smart Structures Technology August 1-2, 215, University of

More information

Why high seismic zone matters?

Why high seismic zone matters? Emerging ABC Connection Details for High Seismic Areas Performance and Design of Mechanical Splices (Couplers) M. Saiidi, M. Tazarv, S. Varela, & B. Nakashoji Department of Civil and Environmental Engineering

More information

Seismic Performance and Modeling of Post-Tensioned, Precast Concrete Shear Walls

Seismic Performance and Modeling of Post-Tensioned, Precast Concrete Shear Walls Seismic Performance and Modeling of Post-Tensioned, Precast Concrete Shear Walls A.C. Tanyeri & J.P. Moehle University of California, Berkeley, USA T. Nagae National Research Institute for Earth Science

More information

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP)

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP) Asia-Pacific Conference on FRP in Structures (APFIS 7) S.T. Smith (ed) 7 International Institute for FRP in Construction SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED

More information

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION

SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, Paper No. SHEAR STRENGTH CAPACITY OF PRESTRESSED CONCRETE BEAM- COLUMN JOINT FOCUSING ON TENDON ANCHORAGE LOCATION Wei YUE,

More information

SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS

SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS SEISMIC PERFORMANCE OF CONCRETE TILT-UP BUILDINGS: CURRENT WALL-TO-SLAB CONNECTIONS Frank Devine, 1 Omri Olund, 2 Ken Elwood 3 and Perry Adebar 4 1 Graduate Student, Dept. of Civil Engineering, University

More information

BS EN :2004 EN :2004 (E)

BS EN :2004 EN :2004 (E) Contents List 1. General 1.1 Scope 1.1.1 Scope of Eurocode 2 1.1.2 Scope of Part 1-1 of Eurocode 2 1.2 Normative references 1.2.1 General reference standards 1.2.2 Other reference standards 1.3 Assumptions

More information

Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns

Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns T.-H. Kim Construction Product Technology Research Institute, Samsung Construction & Trading Corporation, Korea SUMMARY The purpose of this

More information

Bijan Khaleghi, Ph, D. P.E., S.E.

Bijan Khaleghi, Ph, D. P.E., S.E. 0 Submission date: July, 0 Word count: 0 Author Name: Bijan Khaleghi Affiliations: Washington State D.O.T. Address: Linderson Way SW, Tumwater WA 0 INTEGRAL BENT CAP FOR CONTINUOUS PRECAST PRESTRESSED

More information

DESIGN OF A SHEAR CONNECTOR FOR A NEW SELF-CENTERING WALL SYSTEM

DESIGN OF A SHEAR CONNECTOR FOR A NEW SELF-CENTERING WALL SYSTEM DESIGN OF A SHEAR CONNECTOR FOR A NEW SELF-CENTERING WALL SYSTEM R.S. Henry 1, S. Aaleti 2, S. Sritharan 3 and J.M. Ingham 4 1 Ph.D Candidate, Dept. of Civil and Environmental Engineering, University of

More information

EXPERIMENTAL INVESTIGATION OF PRECAST CONCRETE BEAM TO COLUMN CONNECTIONS SUBJECTED TO REVERSED CYCLIC LOADS

EXPERIMENTAL INVESTIGATION OF PRECAST CONCRETE BEAM TO COLUMN CONNECTIONS SUBJECTED TO REVERSED CYCLIC LOADS 6 th International Conference on Seismology and Earthquake Engineering EXPERIMENTAL INVESTIGATION OF PRECAST CONCRETE BEAM TO COLUMN CONNECTIONS SUBJECTED TO REVERSED CYCLIC LOADS H. Shariatmadar 1, E.

More information

EXPERIMENTAL STUDY AND ACTUAL STRUCTURE DESIGNING OF LOOP JOINT USED FOR SEGMENTED PRECAST CONCRETE BRIDGE PIER AND CAISSON.

EXPERIMENTAL STUDY AND ACTUAL STRUCTURE DESIGNING OF LOOP JOINT USED FOR SEGMENTED PRECAST CONCRETE BRIDGE PIER AND CAISSON. EXPERIMENTAL STUDY AND ACTUAL STRUCTURE DESIGNING OF LOOP JOINT USED FOR SEGMENTED PRECAST CONCRETE BRIDGE PIER AND CAISSON. Abstract Nobuaki Arai 1 Hiroshi Shima 2 Masahiro Nakai 3 Generally, the pre-cast

More information

SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS

SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 4 Paper No. 2198 SEISMIC PERFORMANCE OF BRIDGE COLUMNS WITH DOUBLE INTERLOCKING SPIRALS Juan F. Correal 1, M. Saiid

More information

Smart materials for accelerated bridge construction in high seismic zones

Smart materials for accelerated bridge construction in high seismic zones Smart materials for accelerated bridge construction in high seismic zones M. Saiid Saiidi 1, Sebastian Varela 2, and Mostafa Tazarv 3 1 Professor, Dept. of Civil and Environmental Engineering, University

More information

SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS

SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS SEISMIC BEHAVIOR OF FOUR-CIDH PILE SUPPORTED FOUNDATIONS José I. Restrepo 1, Inho Ha 2 and M.J.Nigel Priestley 3 Abstract This paper discusses the results of two large-scale models of Four-Cast-In-Drilled-

More information

Effect of UFC Segments for Enhancing the Seismic Performance of Bridge Columns

Effect of UFC Segments for Enhancing the Seismic Performance of Bridge Columns Effect of UFC Segments for Enhancing the Seismic Performance of Bridge Columns K. Kawashima, S. Ichikawa Tokyo Institute of Technology, Japan Mohamed ElGawady University of South Australia, Australia T.

More information

Research on seismic performance of design detailing based segmental prestressed concrete bridge pier

Research on seismic performance of design detailing based segmental prestressed concrete bridge pier Research on seismic performance of design detailing based segmental prestressed concrete bridge pier Hongyi Wei & Hao Wang & Tiantian Li & Zhiqiang Wang Department of Bridge Engineering, Tongji University,

More information

Concrete-filled fiber reinforced polymer tube-footing interaction in bending

Concrete-filled fiber reinforced polymer tube-footing interaction in bending Fourth International Conference on FRP Composites in Civil Engineering (CICE2008) 22-24July 2008, Zurich, Switzerland Concrete-filled fiber reinforced polymer tube-footing interaction in bending Y. C.

More information

M. Bruneau 1, Y. Alzeni 2, P. Fouché 2

M. Bruneau 1, Y. Alzeni 2, P. Fouché 2 Steel Innovations Conference 2013 Christchurch, New Zealand 21-22 February 2013 SEISMIC BEHAVIOR OF CONCRETE-FILLED STEEL SANDWICH WALLS AND CONCRETE-FILLED STEEL TUBE COLUMNS M. Bruneau 1, Y. Alzeni 2,

More information

APPENDIX G SUMMARY SHEETS OF EMERGING TECHNOLOGY AND DEFORMABLE ELEMENT CONNECTIONS

APPENDIX G SUMMARY SHEETS OF EMERGING TECHNOLOGY AND DEFORMABLE ELEMENT CONNECTIONS APPENDIX G SUMMARY SHEETS OF EMERGING TECHNOLOGY AND DEFORMABLE ELEMENT CONNECTIONS NCHRP 12-88 Connection Evaluations Appendix G G-1 APPENDIX G SUMMARY SHEETS OF EMERGING TECHNOLOGY AND DEFORMABLE ELEMENT

More information

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS

SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS SEISMIC RESPONSE OF LINEAR, FLANGED, AND CONFINED MASONRY SHEAR WALLS M. T. Shedid 1, W. W. El-Dakhakhni 2, and R. G. Drysdale 3 1 Ph.D. Candidate, Dept. of Civil Engineering, McMaster University, Hamilton.

More information

SECTION 1 INTRODUCTION TO POST-TENSIONED CONCRETE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE

SECTION 1 INTRODUCTION TO POST-TENSIONED CONCRETE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE SECTION 1 INTRODUCTION TO POST-TENSIONED CONCRETE DEVELOPED BY THE PTI EDC-130 EDUCATION COMMITTEE NOTE: MOMENT DIAGRAM CONVENTION In PT design, it is preferable to draw moment diagrams to the tensile

More information

DEVELOPMENT OF ACCELERATED BRIDGE CONSTRUCTION DETAIL FOR SEISMIC REGIONS. W. Phillip Yen 1 and Amjad Aref 2

DEVELOPMENT OF ACCELERATED BRIDGE CONSTRUCTION DETAIL FOR SEISMIC REGIONS. W. Phillip Yen 1 and Amjad Aref 2 DEVELOPMENT OF ACCELERATED BRIDGE CONSTRUCTION DETAIL FOR SEISMIC REGIONS Abstract W. Phillip Yen 1 and Amjad Aref 2 This paper provides an overview of current research in development of the seismic detailing

More information