INTERFACIAL STRESS DISTRIBUTION OF FRP-TO-CONCRETE JOINTS USING ADVANCED COMPOSITE PROCESSING TECHNIQUES

Size: px
Start display at page:

Download "INTERFACIAL STRESS DISTRIBUTION OF FRP-TO-CONCRETE JOINTS USING ADVANCED COMPOSITE PROCESSING TECHNIQUES"

Transcription

1 INTERFACIAL STRESS DISTRIBUTION OF FRP-TO-CONCRETE JOINTS USING ADVANCED COMPOSITE PROCESSING TECHNIQUES Seyed Ali HADIGHEH Mr. RMIT University School of Civil, Environmental and Chemical Eng., RMIT University, Melbourne, VIC 3000, Australia Rebecca GRAVINA Senior Lecturer RMIT University School of Civil, Environmental and Chemical Eng., RMIT University, Melbourne, VIC 3000, Australia Sujeeva SETUNGE Associate Professor RMIT University School of Civil, Environmental and Chemical Eng., RMIT University, Melbourne, VIC 3000, Australia Abstract Fibre reinforced polymer (FRP) materials have been used to enhance the structural capability of deteriorated structures based on the high performance of composites. A sufficient strengthening methodology can be achieved by considering accurate bond behaviour between FRP and concrete substrate in RC structures externally bonded with FRP materials. Since, debonding of FRP materials from the substrate is a brittle failure, it is essential to study this phenomenon and propose significant ways to improve the behaviour of bond line. In this research, the fundamental characteristics of bond line in retrofitted specimens will be examined using advanced composite processing technique. An innovative processing method, called Sitecure, has been applied to joint fibre reinforced polymer strips to the concrete as substrate in the typical single shear push-pull test set-up. Results show that the stress in bond line for Sitecured specimens can be well distributed which leads to more appropriate bond characteristics of FRP jointed concrete. Keywords: Bondline, Concrete Prism, FRP, Single lap shear test, Sitecure. 1. Introduction The major concern in strengthening of structures with composite materials is utilizing their ultimate tensile strength during loading regime. It has been observed during the previous experiments that composite plates/sheets have been detached from the substrate before reaching the expected designed ultimate strength. This can be caused by improper surface preparation, insufficient curing time for the adhesive used between laminates and substrate, low tensile strength of epoxy, or concentrated stresses near the cracks. Based on past experiments, the main reason for debonding of FRP materials from the substrate is the low surface tensile strength of concrete, which can be proved by observing a thin layer of concrete (about 1 to 3 mm) beneath the composite materials is detached from the surface of concrete samples during loading. Hence, the behaviour of the bond line between FRP and substrate has Page 1 of 8

2 been investigated by different researchers during the past decade. Taljsten [1] performed simple lap shear tests on the concrete prisms on which steel and fibre reinforced polymer materials were attached. He considered different lengths for bonded area and studied the strain regime in the bond line (between concrete and FRP). Then, using the elastic theory of Volkersen [2], he compared the variation of the shear force per unit width in the bond line in pure shear with the experimental results. He suggested that there is a length beyond which no increase in the maximum shear load happens and based on energy theory he suggested a relation for calculating this effective bond length. Brosens and Van Gemert [3] suggested some relations for calculating the maximum transmissible shear force and the anchorage length of FRP in both the serviceability and the ultimate limit state based on the classical differential equation of Volkersen. Other researchers; such as, Chajes et al. [4], Nakaba et al. [5], De Lorenzis [6], Mazzotti et al. [7], Bizindavyi and Neale [8] and Pan and Leung [9] have studied the behaviour of the bond line between FRP materials and concrete surface. They have proposed that this interfacial behaviour depends on different factors; e.g. surface preparation, FRP bond length, width ratio between FRP to concrete, aggregate content and concrete strength. Nakaba et al. [5] showed that as the stiffness of FRP increases, the maximum load increases. They also concluded that the maximum local bond stress increases when the compressive strength of concrete increases but is independent from the type of FRP. Chen and Teng [10], assessed the empirical, fracture mechanics and simple design models based on a massive experimental results and proposed new simple design models using fracture mechanics model to predict the anchorage strength and the effective bond length. Recently, a new method, Sitecure, has been developed to achieve good bond using vacuum consolidation in comparison to standard resin application methods. Sitecure is an innovative evolved processing technique in which the air is removed from the bond line with vacuum consolidation leads to a good bonding. Through application of heat, a repeatable, reliable and fast cure can be achieved and FRP can be more resistant to long term thermal degradation. From technical observations, the initial quality of materials and consistency are high as well as moisture and chemical resistance of cured composites and overall quality assurance would be superior. Environmentally, there is no demolition or removal of defected material or construction of new concrete members. In addition, since neither heavy lifting equipment is required nor contractors are exposed to the chemical resins, the improved OHS & E is taken into account. Finally, considering the cost of repair, the labour force and job time are reduced, the cure time and process are fast and independent from weather or temperature condition and also there is no need to shutdown the structure during strengthening process takes place. In this article, the effects of bondline thickness on the interfacial performance are studied. For this reason, three different bond line thicknesses have been examined using Sitecure technique for applying FRP plates on the surface of concrete and the bond-slip behaviour was monitored during the experiment. The interfacial thickness was change by application of resin films between FRP plates and concrete surface. 2. Geometry of specimens and test setup 2.1 Specimens To study the intermediate flexural crack, 9 concrete prisms were tested in a direct pull out test. The dimensions of the concrete block specimens were 150mm in height, 150mm in width and 300mm in length, with a target concrete characteristic strength of 25 MPa (Figure1). Concrete was poured in the wooden forms under laboratory conditions and cured for 28 days covered by a plastic sheet. Prisms were vibrated using the shaking table and the top surface were Page 2 of 8

3 flattened by steel-trowel. Three standard concrete cylinders, 100mm in diameter and 200mm in height, were made for each batch and cured in a water tank for 28 days. At the 28 th day, curing was stopped for both cylinders and concrete blocks and kept in the room ambient condition until the day of testing. Figure 1. Geometry of specimens in the single pull out test (dimensions are in mm). Pre-impregnated FRP laminates consist of 4 plies of unidirectional carbon fibres with the weight of 300 grams per square metre (gsm). The properties of FRP materials, which are mentioned here, are reported by manufacturer. The fibre content of FRP laminates is 69.17% with Young modulus of elasticity E = MPa and tensile strength of 1601 MPa. The number of resin film layers was varied in the experimental program and consisted of 2, 4 and 8 layers of resin film, with lap shear strength of 34 MPa between the outer surface of concrete and FRP laminates. 2.2 Sitecure Process and FRP position on the prisms CFRP plates are bonded on the centreline of the top surface of concrete prisms using the Sitecure technique (Figure 2). Application of vacuum on the samples while inducing steam leads to a higher quality of bondline for plates compared to traditional methods such as, wet lay-up or pultrusion systems, in which the labour is not able to control the condition of bonding at the time of applying or cure [11] Because of this superiority of Sitecure technique, the authors were able to change the thickness of bond line. FRP laminates were initiated 25 mm away from the loaded end to assure the prevention of concrete splitting in the front side of concrete blocks in which high tensile stresses occur (Figure 1). This initial gap is used successfully by other researchers; such as, [7 and 8]. Figure 2. Application of Sitecure system to attach the laminates on the concrete. To study the effects of thickness on the bond line behaviour, three different thicknesses for FRP plates were examined applying 2, 4 and 8 layers of resin film. The resin film was placed between the pre-impregnated laminates and concrete surface in order to increase the bond Page 3 of 8

4 thickness. For each feature, three repeated samples were tested to gain reliable results. Table 1 represents the geometry of FRP plates attached on the samples using different layers of resin film. The average bondline thickness consists of the pre-impregnated laminate thickness and the resin film layer. Table 1. Details of the bondline. Specimens ID S1-1 S1-2 S1-3 S2-1 S2-2 S2-3 S3-1 S3-2 S3-3 Initial Gap Bond Length Layers of Resin Film Bonded Width Ave. Laminate Thickness Ave. Resin Film Thickness Ave. Bondline Thickness Instrumentation and measurements The concrete blocks were placed tightly on a platform which was designed specifically for these experiments. The vertical and horizontal movement were prevented using reaction and supporting frames in front and the back of blocks, respectively. The height of reaction plate was chosen 100 mm based on the recommendations of [12]. According to [13], the test equipment have been aligned in the way that the maximum eccentricity was ±2 mm. A monotonic shear load was applied by means of an actuator. Since, the ultimate displacements are small; the speed for applying the load was 0.2 mm/min. The slip of FRP was monitored by three linear variable displacement transducers (LVDTs), two on the loaded end and far end and one at the back of concrete sample (Figure 3). Meanwhile, the data was gathered with an automatic data logger system. Figure 3. Test set-up for pull out tests. 3. Results of single shear pull out test To examine the effects of the FRP thickness on the bond behaviour between concrete and FRP laminates, 9 concrete samples with different bondline thickness were tested under tensile load up to failure. The failure mechanism and load-slip relationships were investigated. 3.1 Failure mechanism The mechanism of failure was similar for all of the samples in the way which was occurred with a high sound at the end of tests. A thin layer of concrete was detached from the samples in all of Page 4 of 8

5 the tests, about 1.1mm, 1.26mm and 0.93mm for S1, S2 and S3, respectively (Figure 4). It can be seen from this figure that the melted resin film was penetrated well into the voids on the surface of concrete and made a good bond between FRP and concrete. Figure 4. S1.3 sample after single shear pull out test. For the most of samples, the maximum displacement before debonding was less than 1mm, except sample S1.2 which was 1.4 mm, that indicates the behaviour of bondline is brittle (Table 2). Table 2. Test results for different bondline thickness. Specimen Max Dis., X max Max Load, F max (kn) Test Failure Mode S CD S CD, NEF S CD Mean S.D COV. (%) S CD, NEF S CD, NEF S CD Mean S.D COV. (%) S CD S CD, NEF S CD, NEF Mean S.D COV. (%) CD: Concrete debonding, NEF: near end failure 3.2 Maximum load The maximum load of samples is presented in the Table 2. According to this table, when the thickness of bondline increases, the load carrying capacity of the FRP bonded to the concrete substrate will improve. However, considering the mean value for S2 and S1 groups, it can be seen that the maximum load for S2 series, with 4 layers of resin film, are almost the same, as S3 series consists of 8 layers of resin film (Figure 5). In addition, if a comparison is made between the maximum displacement of these two series, the laminates with 4 layers of resin film shows higher displacement than the third series (Figure 6). Therefore, there should be an optimum thickness and/or effective bondline (resin) thickness, through which the bond characteristics are constant. This concept is similar to the effective bond length beyond which no increase can be Page 5 of 8

6 observed in the maximum load of bonded FRP. Figure 5. Maximum load vs bondline thickness for samples. Figure 6. Maximum dislacement vs bondline thickness for samples. 3.3 Load-slip relationship During the experiment, the applied load and slip of FRP relative to the concrete substrate was collected by means of a data logger. The load vs slip for S1.2, S2.1 and S3.1 samples are plotted in Figure 7 and 8. The maximum load for S2.1 and S3.1 with 4 and 8 resin films, respectively, is almost the same. In addition, the initial stiffness of the bond for these two samples is higher than the FRP attached on the concrete with 2 layers of resin film. As it can be seen from Figure 8 and Table 2, as long as the bondline thickness increases the maximum ultimate displacement for the FRP decreases. It shows that if the bond thickness increases, the bond behaviour between FRP and substrate tends to be brittle which can be a deficiency for the retrofitting of members with fibre reinforced polymers. Page 6 of 8

7 Figure 7. Load-slip relationship for samples with 2 layers of resin film. 4. Conclusion Figure 8. Load-slip relationship for FRP with, 2, 4 and 8 layers of resin film. In this experimental program, the pull out test was done on nine samples in which FRP materials were attached to the concrete cubes using resin films in order to study the effects of thickness on the behaviour of bondline. The results showed that the bondline thickness of FRP is one of the important factors which has to be considered in the shear stress between FRP and concrete surface. Investigating the maximum load-slip diagrams for samples indicates that like the effective bond length, there is an effective bond thickness beyond which the maximum load does not increase dramatically and the behaviour of the joint tends to be brittle. 5. Acknowledgment Authors would like to thank Industrial Composite Contractors Co. (ICC) for helping to provide material and technical supports. Also, authors are grateful for the financial support provided by RMIT University. 6. References [1] TALJSTEN, B., Defining Anchor Length of Steel and CFRP Plates Bonded to Concrete, Int. J. Adhesion and Adhesives, Vol. 17, 1997, pp Page 7 of 8

8 [2] VOLKERSEN, O., Die Nietkraftverteilung in Zugbean Spruchten Nietverbindungen Mit Konstanten Laschenquerscnitten, Luftfahrforschung, 1938, 15, pp [3] BROSENS, K., VAN GEMERT, D., Plate End Shear Design for External CFRP Laminates, Proceedings of Fracture Mechanics of Concrete Structures (FRAMCOS-3), Vol. 3, 1998, pp [4] CHAJES, M., FINCH, W.W., JANUSZKA, T.F., THOMSON, T.A., Bond and Force Transfer of Composite Material Plates Bonded to Concrete, ACI Structural Journal, Vol. 93, No. 2, 1996, pp [5] NAKABA, K., KANAKUBO, T., FURUTA, T., YOSHIZAWA, H., Bond Behavior between Fiber-reinforced Polymer Laminates and Concrete, ACI Structural Journal, Vol. 98, No. 3, 2001, pp [6] DE LORENZIS, L., MILLER, B., NANNI, A., Bond of FRP Laminates to Concrete, ACI Material Journal, Vol. 98, No. 3, May-June 2001, pp [7] MAZZOTTI, C., SAVOIA, M., FERRACUTI, B., An Experimental Study on Delamination of FRP Plates Bonded to Concrete, Construction and Building Materials, Vol. 22, 2008, pp [8] BIZINDAVYI, L., NEALE, K.W., Transfer Lengths and Bond Strengths for Composites Bonded to Concrete, Jounal of Composites for Construction, Vol. 3, No. 4, November 1999, pp [9] PAN, J., LEUNG, C.K.Y., Effects of Concrete Composition on FRP/Concrete Bond Capacity, Jounal of Composites for Construction, Vol. 11, No. 6, December 2007, pp [10] CHEN, J.F., TENG, J.G., Anchorage Strength Models for FRP and Steel Plates Bonded to Concrete, Jounal of Structural Engineering, Vol. 127, No. 7, July 2001, pp [11] GRAVINA, R., HADIGHEH, S.A., SETUNGE, SUJEEVA, Bond and Force Transfer of FRP Materials Bonded to Concrete Using Sitecure System, The Third Asia Pacific Conference on FRP in Structures (APFIS 2012), Japan, Feb 2012, Full Paper is Accepted. [12] YAO, J., TENG, J.G., CHEN, J.F, Experimental Study on FRP-to-concrete Bonded Joints, Journal of Composites: Part B, Vol. 36, 2005, pp [13] HB 305, Design Handbook for RC Structures Retrofitted with FRP and Metal Plates: Beams and Slabs, Standards Australia, 2008, p. 67. Page 8 of 8

Tests on FRP-Concrete Bond Behaviour in the presence of Steel

Tests on FRP-Concrete Bond Behaviour in the presence of Steel Tests on FRP-Concrete Bond Behaviour in the presence of Steel M. Taher Khorramabadi and C.J. Burgoyne Engineering Department, University of Cambridge Trumpington St., Cambridge, UK ABSTRACT The bond behaviour

More information

Debonding Behavior of Skew FRP-Bonded Concrete Joints

Debonding Behavior of Skew FRP-Bonded Concrete Joints CICE 2010 - The 5th International Conference on FRP Composites in Civil Engineering September 27-29, 2010 Beijing, China Debonding Behavior of Skew FRP-Bonded Concrete Joints J. G. Dai (cejgdai@polyu.edu.hk)

More information

Fracture Analysis of the Debonding between FRP and Concrete using Digital Image Correlation

Fracture Analysis of the Debonding between FRP and Concrete using Digital Image Correlation Fracture Analysis of the Debonding between FRP and Concrete using Digital Image Correlation Mohamad Ali-Ahmad The Graduate Center of the City University of New York, New York, NY, USA. Kolluru Subramaniam

More information

SHEAR PERFORMANCE OF RC MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP WRAPS

SHEAR PERFORMANCE OF RC MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP WRAPS Proc., 12th World Conference on Earthquake Engineering, Jan 3- Feb 4, 2, Auckland, New Zealand, paper 35,1 pp SHEAR PERFORMANCE OF RC MEMBERS STRENGTHENED WITH EXTERNALLY BONDED FRP WRAPS AHMED KHALIFA,

More information

BASIC CHARACTERISTICS OF FRP STRAND SHEETS AND FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH FRP STRAND SHEETS

BASIC CHARACTERISTICS OF FRP STRAND SHEETS AND FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH FRP STRAND SHEETS BASIC CHARACTERISTICS OF FRP STRAND SHEETS AND FLEXURAL BEHAVIOR OF RC BEAMS STRENGTHENED WITH FRP STRAND SHEETS A. Kobayashi 1, Y. Sato 2 and Y. Takahashi 3 1 Technical Development Department, Nippon

More information

L Shaped End Anchors to Eliminate Premature Plate End Debonding in Strengthened RC Beams

L Shaped End Anchors to Eliminate Premature Plate End Debonding in Strengthened RC Beams L Shaped End Anchors to Eliminate Premature Plate End Debonding in Strengthened RC Beams M. Obaydullah *, Mohd Zamin Jumaat, Md. Ashraful Alam, Kh. Mahfuz Ud Darain, and Md. Akter Hosen Department of Civil

More information

Mechanical Response of the Composite Material Concrete Interface in FRP-Strengthened Concrete Elements: Finite Element Simulation

Mechanical Response of the Composite Material Concrete Interface in FRP-Strengthened Concrete Elements: Finite Element Simulation Journal of Mechanics Engineering and Automation 8 (2018) 30-34 doi: 10.17265/2159-5275/2018.01.005 D DAVID PUBLISHING Mechanical Response of the Composite Material Concrete Interface in FRP-Strengthened

More information

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP)

Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Ultimate strength prediction for reinforced concrete slabs externally strengthened by fiber reinforced polymer (FRP) Abstract This paper presents the potential use of externally bonded fiber reinforced

More information

DEBONDING STRENGTH OF STEEL JOINTS STRENGTHENED USING STRAND CFRP SHEETS UNDER AXIAL TENSION

DEBONDING STRENGTH OF STEEL JOINTS STRENGTHENED USING STRAND CFRP SHEETS UNDER AXIAL TENSION Fourth Asia-Pacific Conference on FRP in Structures (APFIS 2013) 11-13 December 2013, Melbourne, Australia 2013 International Institute for FRP in Construction DEBONDING STRENGTH OF STEEL JOINTS STRENGTHENED

More information

MODIFIED CEMENT-BASED ADHESIVE FOR NEAR-SURFACE MOUNTED CFRP STRENGTHENING SYSTEM

MODIFIED CEMENT-BASED ADHESIVE FOR NEAR-SURFACE MOUNTED CFRP STRENGTHENING SYSTEM Fourth Asia-Pacific Conference on FRP in Structures (APFIS 13) 11-13 December 13, Melbourne, Australia 13 International Institute for FRP in Construction MODIFIED CEMENT-BASED ADHESIVE FOR NEAR-SURFACE

More information

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2012 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet Flexural Behavior of RC

More information

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates

Flexural Behavior of RC T- Section Beams Strengthened with Different Configurations of CFRP Laminates I NPRESSCO NTERNATIONAL PRESS CORPORATION Research Article International Journal of Current Engineering and Technology ISSN 2277-4106 2012 INPRESSCO. All Rights Reserved. Available at http://inpressco.com/category/ijcet

More information

PULLOUT CAPACITY BEHAVIOUR OF FRP-HEADED REBARS

PULLOUT CAPACITY BEHAVIOUR OF FRP-HEADED REBARS PULLOUT CAPACITY BEHAVIOUR OF FRP-HEADED REBARS Hamdy M. Mohamed NSERC Post-Doctoral Fellow University of Sherbrooke Sherbrooke, Quebec, Canada. Hamdy.Mohamed@usherbrooke.ca Brahim Benmokrane Professor

More information

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams

Experimental investigation of the use of CFRP grid for shear strengthening of RC beams Journal of Asian Concrete Federation Vol. 2, No. 2, Dec. 2016, pp. 117-127 ISSN 2465-7964 / eissn 2465-7972 http://dx.doi.org/10.18702/acf.2016.12.2.2.117 Experimental investigation of the use of CFRP

More information

Finite Element Analysis of CFRP Strengthened Concrete Beams

Finite Element Analysis of CFRP Strengthened Concrete Beams Finite Element Analysis of CFRP Strengthened Concrete Beams R.Arunothayan 1, J.C.P.H.Gamage 1 and U.N.D.Perera 1 1 Department of Civil Engineering University of Moratuwa Moratuwa SRI LANKA E-Mail: arunothayan91@gmail.com

More information

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES

STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES STRENGTHENING OF UNBONDED POST-TENSIONED CONCRETE SLABS USING EXTERNAL FRP COMPOSITES F. El M e s k i 1 ; M. Harajli 2 1 PhD student, Dept. of Civil and Environmental Engineering, American Univ. of Beirut;

More information

FLEXURAL BEHAVIOR OF RC BEAMS REINFORCED WITH NSM AFRP RODS

FLEXURAL BEHAVIOR OF RC BEAMS REINFORCED WITH NSM AFRP RODS Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005) Chen and Teng (eds) 2005 International Institute for FRP in Construction FLEXURAL BEHAVIOR OF RC BEAMS REINFORCED

More information

SEISMIC STRENGTHENING AND REPAIR OF REINFORCED CONCRETE SHEAR WALLS

SEISMIC STRENGTHENING AND REPAIR OF REINFORCED CONCRETE SHEAR WALLS SEISMIC STRENGTHENING AND REPAIR OF REINFORCED CONCRETE SHEAR WALLS Josh LOMBARD 1, David T LAU 2, Jag L HUMAR 3, Simon FOO 4 And M S CHEUNG 5 SUMMARY This paper presents the results obtained in a feasibility

More information

Performance of NSM FRP strengthened concrete slabs at low temperatures

Performance of NSM FRP strengthened concrete slabs at low temperatures Fourth International Conference on FRP Composites in Civil Engineering (CICE8) 22-24July 8, Zurich, Switzerland Performance of NSM FRP strengthened concrete slabs at low temperatures P. Burke, L.A. Bisby

More information

INFLUENCE OF WATER IMMERSION ON THE BOND BEHAVIOR BETWEEN CFRP AND CONCRETE SUBSTRATE

INFLUENCE OF WATER IMMERSION ON THE BOND BEHAVIOR BETWEEN CFRP AND CONCRETE SUBSTRATE Singapore, 19-21 st July 2017 1 INFLUENCE OF WATER IMMERSION ON THE BOND BEHAVIOR BETWEEN CFRP AND CONCRETE SUBSTRATE Yunfeng Pan 1, Guijun Xian 1*, Jian-Fei Chen 2 and Hui Li 1 1 School of Civil Engineering,

More information

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP.

Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Experimental Study of Reinforced Concrete (RC) Beams Strengthened by Carbon Fiber Reinforced Polymer (CFRP): Effect of Beam Size and Length of CFRP. Mohit Jaiswal Assistant Professor, Department of Civil

More information

CFRP STRENGTHENING OF CONCRETE BRIDGES WITH CURVED SOFFITS

CFRP STRENGTHENING OF CONCRETE BRIDGES WITH CURVED SOFFITS CFRP STRENGTHENING OF CONCRETE BRIDGES WITH CURVED SOFFITS Nagaraj Eshwar Dr Tim Ibell Dr Antonio Nanni Graduate Research Assistant Senior Lecturer Jones Professor CIES, # 223 ERL University of Bath CIES,

More information

s urfa c e mo unted C FR P rods by s ta tic a nd dyna mic

s urfa c e mo unted C FR P rods by s ta tic a nd dyna mic As s es s me nt of R C beams s trengthe ne d with ne a r s urfa c e mo unted C FR P rods by s ta tic a nd dyna mic tests Roberto Capozucca 1 1 Struct. Section of Dept. DACS, Università Politecnica delle

More information

The Joining Method for Permanent Formwork

The Joining Method for Permanent Formwork The Joining Method for Permanent Formwork Q. JIN 1, C.K.Y. Leung 2, and W.L. Chung 3 1,2,3 Department of Civil and Environmental Engineering of HKUST, HKSAR, China ABSTRACT: In this paper, the combined

More information

AFRP retrofitting of RC structures in Japan

AFRP retrofitting of RC structures in Japan AFRP retrofitting of RC structures in Japan H. Shinozaki Civil Engineering R&D Department, Sumitomo Mitsui Construction Corporation, Japan G.R. Pandey School of Engineering, James Cook University, Australia

More information

Hybrid FRP-concrete-steel double-skin tubular columns: Cyclic axial compression tests

Hybrid FRP-concrete-steel double-skin tubular columns: Cyclic axial compression tests University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 212 Hybrid FRP-concrete-steel double-skin tubular

More information

Experimental study on FRP-to-concrete bonded joints

Experimental study on FRP-to-concrete bonded joints Composites: Part B 36 (2005) 99 113 www.elsevier.com/locate/compositesb Experimental study on FRP-to-concrete bonded joints J. Yao a,b, J.G. Teng b, J.F. Chen c, * a Department of Civil Engineering, Zhejiang

More information

EFFECT OF EMBEDMENT LENGTH ON THE PERFORMANCE OF SHEAR-STRENGTHENED RC BEAMS WITH L-SHAPED CFRP PLATES

EFFECT OF EMBEDMENT LENGTH ON THE PERFORMANCE OF SHEAR-STRENGTHENED RC BEAMS WITH L-SHAPED CFRP PLATES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS EFFECT OF EMBEDMENT LENGTH ON THE PERFORMANCE OF SHEAR-STRENGTHENED RC BEAMS WITH L-SHAPED CFRP PLATES 1 A. Mofidi 1 *, S. Thivierge 2, O. Chaallal

More information

Unidirectional Carbon Fibre Anchorage Length Effect on Flexural Strength Capacity For Concrete Beams

Unidirectional Carbon Fibre Anchorage Length Effect on Flexural Strength Capacity For Concrete Beams ISBN 978-93-84422-62-2 Proceedings of 2016 2nd International Conference on Architecture, Structure and Civil Engineering (ICASCE'16) London (UK), March 26-27, 2016 Unidirectional Carbon Fibre Anchorage

More information

1514. Structural behavior of concrete filled carbon fiber reinforced polymer sheet tube column

1514. Structural behavior of concrete filled carbon fiber reinforced polymer sheet tube column 1514. Structural behavior of concrete filled carbon fiber reinforced polymer sheet tube column Kyoung Hun Lee 1, Heecheul Kim 2, Jaehong Kim 3, Young Hak Lee 4 1 Provincial Fire and Disaster Headquarters,

More information

INNOVATIVE ASSET MANAGEMENT. Research Project C. Challenges in Keeping Bridges in Good Operation Condition

INNOVATIVE ASSET MANAGEMENT. Research Project C. Challenges in Keeping Bridges in Good Operation Condition INNOVATIVE ASSET MANAGEMENT A USER FRIENDLY GUIDE FOR REHABILITATION OR STRENGTHENING OF BRIDGE STRUCTURES USING FRP COMPOSITES Abe Nezamian and Sujeeva Setunge CRC for Construction Innovation School of

More information

FLEXURAL AND SHEAR STRENGTHENING OF REINFORCED CONCRETE STRUCTURES WITH NEAR SURFACE MOUNTED FRP RODS

FLEXURAL AND SHEAR STRENGTHENING OF REINFORCED CONCRETE STRUCTURES WITH NEAR SURFACE MOUNTED FRP RODS FLEXURAL AND SHEAR STRENGTHENING OF REINFORCED CONCRETE STRUCTURES WITH NEAR SURFACE MOUNTED FRP RODS ABSTRACT The use of Near Surface Mounted (NSM) Fiber Reinforced Polymer (FRP) rods is a new and promising

More information

Mechanical Behaviour of Concrete Beams Reinforced with CFRP U- Channels

Mechanical Behaviour of Concrete Beams Reinforced with CFRP U- Channels Mechanical Behaviour of Concrete Beams Reinforced with CFRP U- Channels Mithila Achintha 1 *, Fikri Alami 1, Sian Harry 1, Alan Bloodworth 2 1 Faculty of Engineering and the Environment, University of

More information

SEISMIC RETROFITTING OF REINFORCED CONCRETE BRIDGE FRAMES USING EXTERNALLY BONDED FRP SHEETS

SEISMIC RETROFITTING OF REINFORCED CONCRETE BRIDGE FRAMES USING EXTERNALLY BONDED FRP SHEETS SEISMIC RETROFITTING OF REINFORCED CONCRETE BRIDGE FRAMES USING EXTERNALLY BONDED FRP SHEETS G.R. Pandey 1, H. Mutsuyoshi 2 and R. Tuladhar 3 1 Lecturer, School of Engineering, James Cook University, Townsville,

More information

Mechanisms of Bond Failure Between Existing Concrete and Sprayed Polymer Cement Mortar with CFRP Grid by Acoustic Emission

Mechanisms of Bond Failure Between Existing Concrete and Sprayed Polymer Cement Mortar with CFRP Grid by Acoustic Emission Mechanisms of Bond Failure Between Existing Concrete and Sprayed Polymer Cement Mortar with CFRP Grid by Acoustic Emission Junlei Zhang 1, Kentaro Ohno 2, Ryo Kikuchi 1, Tran Vu Dung 1, Kimitaka Uji 3

More information

BOND SHEAR STRESS-SLIP RELATIONSHIPS FOR FRP-NSM SYSTEMS AT ELEVATED TEMPERATURE

BOND SHEAR STRESS-SLIP RELATIONSHIPS FOR FRP-NSM SYSTEMS AT ELEVATED TEMPERATURE IFireSS 2017 2 nd International Fire Safety Symposium Naples, Italy, June 7-9, 2017 BOND SHEAR STRESS-SLIP RELATIONSHIPS FOR FRP-NSM SYSTEMS AT ELEVATED TEMPERATURE Alessandro Proia 1 Stijn Matthys 2 ABSTRACT

More information

Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain 1, Khaled Fawzy 2, and Mahmoud Nasr 3

Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain 1, Khaled Fawzy 2, and Mahmoud Nasr 3 ISSN: 239-5967 ISO 900:2008 Certified Volume 4, Issue 5, September 205 Strengthening of Reinforced Concrete Beams using Near-Surface Mounted FRP Mohamed Husain, Khaled Fawzy 2, and Mahmoud Nasr 3 Abstract-

More information

Fiber-Reinforced Polymer Bond Test in Presence of Steel and Cracks

Fiber-Reinforced Polymer Bond Test in Presence of Steel and Cracks ACI STRUCTURAL JOURNAL TECHNICAL PAPER Title no. 108-S69 Fiber-Reinforced Polymer Bond Test in Presence of Steel and Cracks by Mehdi Taher Khorramabadi and Chris J. Burgoyne The understanding of failure

More information

Finite Element Analysis of RC Beams Strengthened with FRP Sheets under Bending

Finite Element Analysis of RC Beams Strengthened with FRP Sheets under Bending Australian Journal of Basic and Applied Sciences, 4(5): 773-778, 2010 ISSN 1991-8178 Finite Element Analysis of RC Beams Strengthened with FRP Sheets under Bending 1 2 Reza Mahjoub, Seyed Hamid Hashemi

More information

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs S.V.T. Janaka Perera 1*, Hiroshi Mutsuyoshi 1 and Nguyen Duc Hai 2 1 Saitama University,

More information

Effects of FRP-Concrete Interface Bond Properties on the Performance of RC Beams Strengthened in Flexure with Externally Bonded FRP Sheets

Effects of FRP-Concrete Interface Bond Properties on the Performance of RC Beams Strengthened in Flexure with Externally Bonded FRP Sheets Effects of FRP-Concrete Interface Bond Properties on the Performance of RC Beams Strengthened in Flexure with Externally Bonded FRP Sheets Hedong Niu 1 and Zhishen Wu 2 Abstract: Fiber reinforced polymer

More information

AFFECT OF ENVIRONMENTAL CONDITIONS DURING INSTALLATION PROCESS ON BOND STRENGTH BETWEEN CFRP LAMINATE AND CONCRETE SUBSTRATE

AFFECT OF ENVIRONMENTAL CONDITIONS DURING INSTALLATION PROCESS ON BOND STRENGTH BETWEEN CFRP LAMINATE AND CONCRETE SUBSTRATE AFFECT OF ENVIRONMENTAL CONDITIONS DURING INSTALLATION PROCESS ON BOND STRENGTH BETWEEN CFRP LAMINATE AND CONCRETE SUBSTRATE M. Ekenel, J. J. Myers and A. L. Khataukar Center for Infrastructure Engineering

More information

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING

FE MODELING OF CFRP STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING FE MODELING OF STRENGTHENED CONCRETE BEAM EXPOSED TO CYCLIC TEMPERATURE, HUMIDITY AND SUSTAINED LOADING H. R. C. S. Bandara (Email: chinthanasandun@yahoo.com) J. C. P. H. Gamage (Email: kgamage@uom.lk)

More information

Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied Environmental Conditions

Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied Environmental Conditions International Journal of Concrete Structures and Materials Vol.11, No.1, pp.69 84, March 217 DOI 1.17/s469-16-173-4 ISSN 1976-485 / eissn 2234-1315 Pull-out Strengths of GFRP-Concrete Bond Exposed to Applied

More information

EXPERIMENTAL ANALYSIS ON THE SHEAR BEHAVIOUR OF RC BEAMS STRENGTHENED WITH GFRP SHEETS

EXPERIMENTAL ANALYSIS ON THE SHEAR BEHAVIOUR OF RC BEAMS STRENGTHENED WITH GFRP SHEETS EXPERIMENTAL ANALYSIS ON THE SHEAR BEHAVIOUR OF RC BEAMS STRENGTHENED WITH GFRP SHEETS Ugo Ianniruberto Department of Civil Engineering, University of Rome Tor Vergata, ITALY Via del Politecnico, 1, 00133

More information

A STUDY ON STRENGTHENING OF HOLLOW STEEL SECTION BY USING CFRP AND AFRP

A STUDY ON STRENGTHENING OF HOLLOW STEEL SECTION BY USING CFRP AND AFRP Int. J. Chem. Sci.: 14(S1), 2016, 367-376 ISSN 0972-768X www.sadgurupublications.com A STUDY ON STRENGTHENING OF HOLLOW STEEL SECTION BY USING CFRP AND AFRP N. ELANGOVAN and P. SRIRAM * Department of Civil

More information

DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS

DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS DURABILITY PERFORMANCE OF EPOXY INJECTED REINFORCED CONCRETE BEAMS WITH AND WITHOUT FRP FABRICS Prof. John J. Myers Associate Professor CIES / Department of Civil, Arch., & Env. Engineering University

More information

FRP-Concrete Bond Behavior: A Parametric Study Through Pull-Off Testing

FRP-Concrete Bond Behavior: A Parametric Study Through Pull-Off Testing SP-230 26 FRP-Concrete Bond Behavior: A Parametric Study Through Pull-Off Testing by B.M. McSweeney and M.M. Lopez Synopsis: The sensitivity of the FRP-concrete bond failure load to changes in geometric

More information

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS

BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS BEHAVIOR OF INFILL MASONRY WALLS STRENGTHENED WITH FRP MATERIALS D.S. Lunn 1,2, V. Hariharan 1, G. Lucier 1, S.H. Rizkalla 1, and Z. Smith 3 1 North Carolina State University, Constructed Facilities Laboratory,

More information

A NEW CFRP STRENGTHENING TECHNIQUE TO ENHANCE PUNCHING SHEAR STRENGTH OF RC SLAB-COLUMN CONNECTIONS

A NEW CFRP STRENGTHENING TECHNIQUE TO ENHANCE PUNCHING SHEAR STRENGTH OF RC SLAB-COLUMN CONNECTIONS Asia-Pacific Conference on FRP in Structures (APFIS 2007) S.T. Smith (ed) 2007 International Institute for FRP in Construction A NEW STRENGTHENING TECHNIQUE TO ENHANCE PUNCHING SHEAR STRENGTH OF RC SLAB-COLUMN

More information

LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER

LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER LOAD TESTS ON 2-SPAN REINFORCED CONCRETE BEAMS STRENGTHENED WITH FIBRE REINFORCED POLYMER Lander Vasseur 1, Stijn Matthys 2, Luc Taerwe 3 Department of Structural Engineering, Ghent University, Magnel

More information

Improvement of the seismic retrofit performance of damaged reinforcement concrete piers using a fiber steel composite plate

Improvement of the seismic retrofit performance of damaged reinforcement concrete piers using a fiber steel composite plate Safety and Security Engineering V 853 Improvement of the seismic retrofit performance of damaged reinforcement concrete piers using a fiber steel composite plate K.-B. Han, P.-Y. Song, H.-S. Yang, J.-H.

More information

PRELOADING EFFECT ON LOAD CAPACITY AND DUCTILITY OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP STRIPS

PRELOADING EFFECT ON LOAD CAPACITY AND DUCTILITY OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP STRIPS PRELOADING EFFECT ON LOAD CAPACITY AND DUCTILITY OF RC BEAMS STRENGTHENED WITH PRESTRESSED CFRP STRIPS Renata Kotynia Ph.D., Assistant Professor Technical University of Lodz, Poland Al. Politechniki 6,

More information

THE EFFECT OF FATIGUE LOADING ON BOND STRENGTH OF CFRP BONDED STEEL PLATE JOINTS

THE EFFECT OF FATIGUE LOADING ON BOND STRENGTH OF CFRP BONDED STEEL PLATE JOINTS Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 2005) Chen and Teng (eds) 2005 International Institute for FRP in Construction THE EFFECT OF FATIGUE LOADING ON BOND

More information

Numerical Study on Interaction between Steel Stirrups and Shear- Strengthening NSM FRP Strips in RC Beams

Numerical Study on Interaction between Steel Stirrups and Shear- Strengthening NSM FRP Strips in RC Beams Fourth Asia-Pacific Conference on FRP in Structures (APFIS 2013) 11-13 December 2013, Melbourne, Australia 2013 International Institute for FRP in Construction Numerical Study on Interaction between Steel

More information

Use of CFRP in Confining High Strength Concrete Columns Subject to Axial Loading

Use of CFRP in Confining High Strength Concrete Columns Subject to Axial Loading 6th International Conference on Green Buildings, Civil and Architecture Engineering (ICGBCAE'17) Paris (France) April 25-26, 2017 Use of CFRP in Confining High Strength Concrete Columns Subject to Axial

More information

EXPERIMENTAL STUDY ON DOUBLE LAP JOINTS COMPOSED OF HYBRID CFRP/GFRP LAMINATE

EXPERIMENTAL STUDY ON DOUBLE LAP JOINTS COMPOSED OF HYBRID CFRP/GFRP LAMINATE EXPERIMENTAL STUDY ON DOUBLE LAP JOINTS COMPOSED OF HYBRID CFRP/GFRP LAMINATE Hiroshi MUTSUYOSHI 1) and Nguyen Duc HAI 1) 1) Structural Material Lab., Department of Civil and Environmental Engineering,

More information

EFFECTS OF SUSTAINED LOAD AND FREEZE-THAW EXPOSURE ON RC BEAMS STRENGTHENED WITH PRESTRESSED NSM-CFRP STRIPS

EFFECTS OF SUSTAINED LOAD AND FREEZE-THAW EXPOSURE ON RC BEAMS STRENGTHENED WITH PRESTRESSED NSM-CFRP STRIPS Fourth Asia-Pacific Conference on FRP in Structures (APFIS 2013) 11-13 December 2013, Melbourne, Australia 2013 International Institute for FRP in Construction EFFECTS OF SUSTAINED LOAD AND FREEZE-THAW

More information

UPGRADING SHEAR-STRENGTHENED RC BEAMS IN FATIGUE USING EXTERNALLY-BONDED CFRP

UPGRADING SHEAR-STRENGTHENED RC BEAMS IN FATIGUE USING EXTERNALLY-BONDED CFRP UPGRADING SHEAR-STRENGTHENED RC BEAMS IN FATIGUE USING EXTERNALLY-BONDED CFRP Georges El-Saikaly 1 and Omar Chaallal 2 1 PhD candidate, Department of Construction Engineering, University of Quebec, École

More information

LATEST ACHIEVEMENT IN TECHNOLOGY AND RESEARCH OF RETROFITTING CONCRETE STRUCTURES

LATEST ACHIEVEMENT IN TECHNOLOGY AND RESEARCH OF RETROFITTING CONCRETE STRUCTURES LATEST ACHIEVEMENT IN TECHNOLOGY AND RESEARCH OF RETROFITTING CONCRETE STRUCTURES Ueda T, Hokkaido University, Japan Wu Z, Ibaraki University, Japan Kanakubo T, Tsukuba University, Japan Abstract Major

More information

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP)

SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED POLYMER (CFRP) Asia-Pacific Conference on FRP in Structures (APFIS 7) S.T. Smith (ed) 7 International Institute for FRP in Construction SEISMIC RETROFITTING OF REINFORCED CONCRETE COLUMNS USING CARBON FIBER REINFORCED

More information

FRP-strengthened RC Structures

FRP-strengthened RC Structures FRP-strengthened RC Structures J. G. Teng The Hong Kong Polytechnic University, China J. F. Chen The University of Nottingham, UK S. T. Smith The Hong Kong Polytechnic University, China L. Lam The Hong

More information

Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened with CFRP Plates

Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened with CFRP Plates CICE 2010 - The 5th International Conference on FRP Composites in Civil Engineering September 27-29, 2010 Beijing, China Effect of Bar-cutoff and Bent-point Locations on Debonding Loads in RC Beams Strengthened

More information

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp ,

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.7, No.5, pp , International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: 0974-4290 Vol.7, No.5, pp 2368-2373, 2014-2015 Experimental Studies on Strengthening of Masonry Walls with GFRP Subjected to Lateral

More information

A STUDY ON THE BEHAVIOUR OF RC BEAMS RETROFITTED USING CFRP LAMINATES UNDER SINGLE POINT LOADING

A STUDY ON THE BEHAVIOUR OF RC BEAMS RETROFITTED USING CFRP LAMINATES UNDER SINGLE POINT LOADING Int. J. Chem. Sci.: 14(S1), 2016, 302-310 ISSN 0972-768X www.sadgurupublications.com A STUDY ON THE BEHAVIOUR OF RC BEAMS RETROFITTED USING CFRP LAMINATES UNDER SINGLE POINT LOADING P. L. KARUPPIAH a,*,

More information

Strengthening of R.C. Beams Using Externally Bonded Plates and Anchorages.

Strengthening of R.C. Beams Using Externally Bonded Plates and Anchorages. Australian Journal of Basic and Applied Sciences, 3(3): 2207-2211, 2008 ISSN 1991-8178 Strengthening of R.C. Beams Using Externally Bonded Plates and Anchorages. 1 2 Mohd Zamin Jumaat and Md. Ashraful

More information

Bond Characteristics of GFRP Sheet on Strengthened Concrete Beams due to Flexural Loading

Bond Characteristics of GFRP Sheet on Strengthened Concrete Beams due to Flexural Loading Bond Characteristics of GFRP Sheet on Strengthened Concrete Beams due to Flexural Loading Rudy Djamaluddin, Mufti Amir Sultan, Rita Irmawati, and Hino Shinichi Abstract Fiber reinforced polymer (FRP) has

More information

Finite element modeling of RC deep beams strengthened in shear with CFRP strips

Finite element modeling of RC deep beams strengthened in shear with CFRP strips Finite element modeling of RC deep beams strengthened in shear with CFRP strips Mitali R. Patel and Tejendra Tank Carbon Fibre Reinforced Polymer (CFRP) and steel plates are adopted for strengthening of

More information

FRP STRENGTHENING OF 60 YEAR OLD PRE-STRESSED CONCRETE BRIDGE DECK UNITS

FRP STRENGTHENING OF 60 YEAR OLD PRE-STRESSED CONCRETE BRIDGE DECK UNITS FRP STRENGTHENING OF 60 YEAR OLD PRE-STRESSED CONCRETE BRIDGE DECK UNITS Ryan Cork, Jack Foote, Leo de Waal, Van Thuan Nguyen, Dilum Fernando School of Civil Engineering, The University of Queensland,

More information

BEHAVIOR OF REINFORCED CONCRETE ONE-WAY SLABS STRENGTHENED BY CFRP SHEETS IN FLEXURAL ZONE

BEHAVIOR OF REINFORCED CONCRETE ONE-WAY SLABS STRENGTHENED BY CFRP SHEETS IN FLEXURAL ZONE International Journal of Civil Engineering and Technology (IJCIET) Volume 9, Issue 10, October 2018, pp. 1872 1881, Article ID: IJCIET_09_10_097 Available online at http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=9&itype=10

More information

Maximum usable strain of FRP-confined concrete cylinders

Maximum usable strain of FRP-confined concrete cylinders Southern Cross University epublications@scu 23rd Australasian Conference on the Mechanics of Structures and Materials 2014 Maximum usable strain of FRP-confined concrete cylinders M NS Hadi University

More information

Bonding Behavior of Interface between CFRP Strand Sheet and Concrete with Various Types of Adhesive

Bonding Behavior of Interface between CFRP Strand Sheet and Concrete with Various Types of Adhesive Memoirs of the Faculty of Engineering, Kyushu University, Vol.75, No.1, July 2015 Bonding Behavior of Interface between CFRP Strand Sheet and Concrete with Various Types of Adhesive by Rifadli BAHSUAN

More information

HYBRID FRP ROD FOR REINFORCEMENT AND SMART-MONITORING IN CONCRETE STRUCTURE

HYBRID FRP ROD FOR REINFORCEMENT AND SMART-MONITORING IN CONCRETE STRUCTURE Proceedings of the International Symposium on Bond Behaviour of FRP in Structures (BBFS 5) Chen and Teng (eds) 5 International Institute for FRP in Construction HYBRID FRP ROD FOR REINFORCEMENT AND SMART-MONITORING

More information

COMPARATIVE STUDY OF BEAMS BY USING DIFFERENT TYPES OF RETROFITING TECHNIQUES

COMPARATIVE STUDY OF BEAMS BY USING DIFFERENT TYPES OF RETROFITING TECHNIQUES International Journal of Civil Engineering and Technology (IJCIET) Volume 10, Issue 04, April 2019, pp. 864 870, Article ID: IJCIET_10_04_091 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijciet&vtype=10&itype=4

More information

STUDY ON THE FLEXURAL BEHAVIOUR OF CFRP-GRID REINFORCED CONCRETE ONE-WAY SLABS

STUDY ON THE FLEXURAL BEHAVIOUR OF CFRP-GRID REINFORCED CONCRETE ONE-WAY SLABS Fourth Asia-Pacific Conference on FRP in Structures (APFIS 13) 11-13 December 13, Melbourne, Australia 13 International Institute for FRP in Construction STUDY ON THE FLEXURAL BEHAVIOUR OF CFRP-GRID REINFORCED

More information

SHEAR AND BUCKLING STRENGTHENING OF STEEL BRIDGE GIRDER USING SMALL-DIAMETER CFRP STRANDS

SHEAR AND BUCKLING STRENGTHENING OF STEEL BRIDGE GIRDER USING SMALL-DIAMETER CFRP STRANDS 20 th International Conference on Composite Materials Copenhagen, 19-24 th July 2015 SHEAR AND BUCKLING STRENGTHENING OF STEEL BRIDGE GIRDER USING SMALL-DIAMETER CFRP STRANDS Hamid Kazem 1, Sami Rizkalla

More information

Flexural strengthening of reinforced concrete beams using externally bonded FRP laminates prestressed with a new method

Flexural strengthening of reinforced concrete beams using externally bonded FRP laminates prestressed with a new method Flexural strengthening of reinforced concrete beams using externally bonded FRP laminates prestressed with a new method Jincheng Yang 1, Reza Haghani 1, Mohammad Al-Emrani 1 1 Chalmers University of Technology,

More information

Analytical study of a 2-span reinforced concrete beam strengthened with fibre reinforced polymer

Analytical study of a 2-span reinforced concrete beam strengthened with fibre reinforced polymer Analytical study of a 2-span reinforced concrete beam strengthened with fibre reinforced polymer Lander VASSEUR Civil Engineer Magnel Laboratory for Concrete Research, Ghent University, Ghent, BELGIUM

More information

AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION. Abstract

AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION. Abstract AXIAL TESTING OF CONCRETE COLUMNS CONFINED WITH CARBON FRP: EFFECT OF FIBER ORIENTATION Renato Parretti, Co-Force America, Inc., Rolla, MO Antonio Nanni, University of Missouri-Rolla, Rolla, MO Abstract

More information

(FRP) ( CFRP

(FRP) ( CFRP ISSN: 23195967 Effect of Temperature on Strength of Concrete Strengthening With CFRP H. Shehab El Din, Heba A. Mohamed hshehabeldin@yahoo.com, hebawahbe@yahoo.com Dean & Professor of Reinforced Concrete,

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 1, 2012 Copyright by the authors - Licensee IPA- Under Creative Commons license 3.0 Research article ISSN 0976 4399 The new Steel-CFRP

More information

FRP Anchorage Systems for Infill Masonry Structures

FRP Anchorage Systems for Infill Masonry Structures FRP Anchorage Systems for Infill Masonry Structures Dillon S. Lunn Graduate Research Assistant, Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh,

More information

Structural behaviour of recycled concrete filled steel tube columns strengthened with CFRP sheets under axial loading

Structural behaviour of recycled concrete filled steel tube columns strengthened with CFRP sheets under axial loading Structural behaviour of recycled concrete filled steel tube columns strengthened with CFRP sheets under axial loading J.F. Dong 1,2, Q.Y. Wang 1*, Z.W. Guan 2 1 School of Architecture and Environment,

More information

Flexural Behavior of Steel I Beams Bounded With Different Fiber Reinforced Polymer Sheets

Flexural Behavior of Steel I Beams Bounded With Different Fiber Reinforced Polymer Sheets Flexural Behavior of Steel I Beams Bounded With Different Fiber Reinforced Polymer Sheets Sadashiv Tavashi 1, V S Kshirsagar 2, Rahul Kapase 3, Avinash Thorat 4 1 PG Student SVERI s COE, Pandharpur, solapur

More information

DEVELOPMENT OF ANCHORAGE SYSTEM FOR CFRP SHEET IN STRENGTHENING OF REINFORCED CONCRETE STRUCTURES

DEVELOPMENT OF ANCHORAGE SYSTEM FOR CFRP SHEET IN STRENGTHENING OF REINFORCED CONCRETE STRUCTURES DEVELOPMENT OF ANCHORAGE SYSTEM FOR CFRP SHEET IN STRENGTHENING OF REINFORCED CONCRETE STRUCTURES Toshiyuki KANAKUBO 1, Yoshiro ARIDOME 2, Naoto FUJITA 3 And Masaaki MATSUI 4 SUMMARY A strengthening method

More information

A Comparative Study On CFRP Confined RC Capsule Column With Varying Reinforcement Ratio

A Comparative Study On CFRP Confined RC Capsule Column With Varying Reinforcement Ratio International Journal of Civil Engineering and Mechanics. Volume 2, Number 1 (215), pp. 23-33 International Research Publication House http://www.irphouse.com A Comparative Study On CFRP Confined RC Capsule

More information

Characterization of Physical Properties of Roadware Clear Repair Product

Characterization of Physical Properties of Roadware Clear Repair Product Characterization of Physical Properties of Roadware Clear Repair Product November 5, 2009 Prof. David A. Lange University of Illinois at Urbana-Champaign Introduction Roadware MatchCrete Clear (MCC) is

More information

Strengthening of Continuous SCC Hollow Beams under Shear Stresses Using Warped CFRP Strips

Strengthening of Continuous SCC Hollow Beams under Shear Stresses Using Warped CFRP Strips Strengthening of Continuous SCC Hollow Beams under Shear Stresses Using Warped CFRP Strips Asst. Prof. Dr. Ali Hameed Aziz* Asst. Prof. Dr. Ashraf A. Alfeehan Eng. Fawaz Adel Hussein Al-Mustanseryah University

More information

Study on Strengthening of RC Slabs with Different Innovative Techniques

Study on Strengthening of RC Slabs with Different Innovative Techniques Open Journal of Civil Engineering, 2016, 6, 516-525 http://www.scirp.org/journal/ojce ISSN Online: 2164-3172 ISSN Print: 2164-3164 Study on Strengthening of RC Slabs with Different Innovative Techniques

More information

Structural Upgrade of Reinforced Concrete Column-Tie Beam Assembly using FRP Composites

Structural Upgrade of Reinforced Concrete Column-Tie Beam Assembly using FRP Composites SP-258 4 Structural Upgrade of Reinforced Concrete Column-Tie Beam Assembly using FRP Composites by A.S. Mosallam Synopsis: The paper discusses the potential use of fiber reinforced polymer composites

More information

COMARISON BETWEEN ACI 440 AND FIB 14 DESIGN GUIDELINES IN USING CFRP FOR STRENGTHENING OF A CONCRETE BRIDGE HEADSTOCK

COMARISON BETWEEN ACI 440 AND FIB 14 DESIGN GUIDELINES IN USING CFRP FOR STRENGTHENING OF A CONCRETE BRIDGE HEADSTOCK IV ACMBS MCAPC 4 th International Conference on Advanced Composite Materials in Bridges and Structures 4 ième Conférence Internationale sur les matériaux composites d avant-garde pour ponts et charpentes

More information

The Effect of Width, Multiple Layers and Strength of FRP Sheets on Strength and Ductility of Strengthened Reinforced Concrete Beams in Flexure

The Effect of Width, Multiple Layers and Strength of FRP Sheets on Strength and Ductility of Strengthened Reinforced Concrete Beams in Flexure Jordan Journal of Civil Engineering, Volume 9, No. 1, 2015 The Effect of Width, Multiple Layers and Strength of FRP Sheets on Strength and Ductility of Strengthened Reinforced Concrete Beams in Flexure

More information

COMPOSITE CARBON FIBRE EMBEDMENT DEPTH AND ANGLE CONFIGURATION INFLUENCE ON SINGLE FIBRE PULL-OUT FROM CONCRETE

COMPOSITE CARBON FIBRE EMBEDMENT DEPTH AND ANGLE CONFIGURATION INFLUENCE ON SINGLE FIBRE PULL-OUT FROM CONCRETE COMPOSITE CARBON FIBRE EMBEDMENT DEPTH AND ANGLE CONFIGURATION INFLUENCE ON SINGLE FIBRE PULL-OUT FROM CONCRETE Arturs Lukasenoks, Arturs Macanovskis, Andrejs Krasnikovs Riga Technical University, Latvia

More information

Strengthening of an Impact-Damaged PC Girder

Strengthening of an Impact-Damaged PC Girder Strengthening of an Impact- PC Girder By Antonio Nanni, PhD, PE R epair of impacted prestressed and reinforced concrete (PC and RC, respectively) structures using traditional and emerging technologies

More information

Effect of FRP strengthening on the behavior of shear walls with opening

Effect of FRP strengthening on the behavior of shear walls with opening CICE 2010 - The 5th International Conference on FRP Composites in Civil Engineering September 27-29, 2010 Beijing, China Effect of FRP strengthening on the behavior of shear walls with opening M. Asfa

More information

SHEAR STRENGTHENING USING CFRP SHEETS FOR PRESTRESSED CONCRETE BRIDGE GIRDERS IN MANITOBA, CANADA

SHEAR STRENGTHENING USING CFRP SHEETS FOR PRESTRESSED CONCRETE BRIDGE GIRDERS IN MANITOBA, CANADA SHEAR STRENGTHENING USING CFRP SHEETS FOR PRESTRESSED CONCRETE BRIDGE GIRDERS IN MANITOBA, CANADA R. Hutchinson, A. Abdelrahman and S. Rizkalla Corresponding Author: R. Hutchinson ISIS Canada Network of

More information

The Influence of Service Temperature on Bond between FRP Reinforcement and Concrete

The Influence of Service Temperature on Bond between FRP Reinforcement and Concrete Fédération Internationale du Béton Proceedings of the 2 nd International Congress ID 10-86 Session 10 The Influence of Service Temperature on Bond between FRP Reinforcement and Concrete Leone, M., Aiello,

More information

Enhanced Repair and Strengthening of Reinforced Concrete Beams Utilizing External Fiber Reinforced Polymer Sheets and Novel Anchoring Devices

Enhanced Repair and Strengthening of Reinforced Concrete Beams Utilizing External Fiber Reinforced Polymer Sheets and Novel Anchoring Devices Enhanced Repair and Strengthening of Reinforced Concrete Beams Utilizing External Fiber Reinforced Polymer Sheets and Novel Anchoring Devices G. C. Manos Laboratory of Experimental Strength of Materials

More information

EFFECT OF ADHESIVE STIFFNESS AND CFRP GEOMETRY ON THE BEHAVIOR OF EXTERNALLY BONDED CFRP RETROFIT MEASURES SUBJECT TO MONOTONIC LOADS

EFFECT OF ADHESIVE STIFFNESS AND CFRP GEOMETRY ON THE BEHAVIOR OF EXTERNALLY BONDED CFRP RETROFIT MEASURES SUBJECT TO MONOTONIC LOADS EFFECT OF ADHESIVE STIFFNESS AND CFRP GEOMETRY ON THE BEHAVIOR OF EXTERNALLY BONDED CFRP RETROFIT MEASURES SUBJECT TO MONOTONIC LOADS by Benjamin Zachary Reeve Bachelor of Science in Civil Engineering,

More information