Soil-pile-structure interaction analysis using 3D FEM

Size: px
Start display at page:

Download "Soil-pile-structure interaction analysis using 3D FEM"

Transcription

1 Soil-pile-structure interaction analysis using 3D FEM R. Tuladhar 1, H. Mutsuyoshi 2, T. Maki 3 1. Corresponding Author: Postdoctoral Fellow, Structural Material Laboratory, Saitama University, 255 Shimo Okubo, Sakura Ku, Saitama Shi, Saitama , JAPAN, rabin@mtr.civil.saitama-u.ac.jp 2. Professor, Graduate School of Science and Engineering, Saitama University 3. Associate Professor, Graduate School of Science and Engineering, Saitama University Abstract The importance of soil-structure interaction during earthquake ground motions has been emphasized by damage produced in the structures in recent earthquakes. Currently available analytical tools to consider soil-structure interaction oversimplify the interaction between the soil and structure and lack proper calibration with full-scale testing. This research aims to study the non-linear behavior of pile-soil interaction during earthquakes using 3D Finite Element Analysis based on full-scale lateral loading tests. Full-scale concrete piles embedded into cohesive soil were tested under monotonic and reversed cyclic loading. The experimental results were used as the basis for 3D Finite Element Analysis. The applicability of a three node fiber based beam element for modeling concrete piles was investigated based on the results from fullscale testing and 3D FEM analysis. The analysis showed that three node fiber based beam elements with rough mesh division and perfect bond between pile and soil can adequately simulate the behavior of concrete piles. Keywords: Soil-structure interaction, 3D finite element analysis, seismic behavior, concrete piles

2 1. INTRODUCTION Recent earthquakes, such as the 1995 Hyogo-ken Nanbu (Kobe) earthquake, have highlighted that the seismic behavior of a structure is highly influenced not only by the superstructure, but also by the response of the foundation and the ground as well. Hence, the modern seismic design codes stipulate that the response analysis should be conducted by taking into consideration the whole structural system including the superstructure, foundation and ground. For the development of a seismic response analysis method for a whole structural system, however, it is first imperative to clarify the behavior of soil and pile during earthquakes. With the advancement in computation capability, three dimensional (3D) finite element methods (FEM) have become more appealing, as in this method the nonlinearity of pile and soil can be taken into consideration more rigorously. In addition, soil can be modeled as continuum media taking into account the damping and inertial effects of soil. However, for a structure with a large number of piles, it is computationally difficult to carry out full 3D FEM analysis using solid elements for both structure and piles. The degrees of freedom of the model will greatly be reduced if beam elements are used for modeling the pile instead of solid elements, and thus, saving computation time. This paper, investigates the use of 3-node fiber based beam elements for the modeling of piles using a full-scale lateral loading test on concrete piles and 3D FEM analysis. The authors conducted a comprehensive study on the behavior of concrete piles using full scale lateral loading tests on single piles, the experimental details and results of which has already been published in Tuladhar et al. (27). In this research, based on the experimental results from the full-scale tests on single concrete piles, 3D FEM analysis was carried out to investigate the lateral behavior of piles and soil. The adequacy of modeling the pile by a fiber based beam element was investigated based on the experimental results and comparison with full 3D FEM analysis with piles modeled as 2-node solid elements. In the 3D FEM analysis, the soil was modeled as 2-node solid elements. For the modeling of the concrete pile, comparisons between 3-node fiber theory based beam element and 2-node solid element were carried out. 2. FULL SCALED LATERAL LOADING TEST ON SINGLE CONCRETE PILE Lateral loading tests were carried out on two full scale concrete piles embedded into the ground. Both of the test piles were hollow precast prestressed concrete piles (Figure 1). 12 prestressing steel bars of 7mm diameter were used for longitudinal reinforcements. Compressive strength of concrete (f c ) was 79 N/mm 2 and yielding stress (f y ) of longitudinal prestressing steel was 1325 N/mm 2. The test piles were embedded into the soil to a depth of 12.8m from ground level (GL). The head of the pile and the loading point was 1.2m and.6m from GL, respectively. Figure 2 shows the N-SPT profile at the test site. Test pile (SP1) was subjected to monotonic loading whereas test pile (SP2) was subjected to reversed cyclic loading. A load displacement relationship for the monotonic test (SP1) is shown in Section 4 along

3 with the analytical results. Yielding of the pile occurred at V y = 12kN and maximum load achieved was V u = 135kN. The maximum displacement at the failure was 75mm. Other experimental details and results are explained in Tuladhar et al. (27)..6m 12 no. 7mm dia PC bar.45m N-SPT soil type clay silt.31m Depth (m) sand silt and sand silt silt and sand Figure 1 Details of test piles 3. 3D FINITE ELEMENT ANALYSIS clay 3 3 Figure 2 NSPT profile at test site The experimental study was used as the basis to study the behavior of concrete piles and soil using 3D FEM analysis. 3.1 Constitutive model for concrete and soil Nonlinearity of concrete before cracking was modeled by an elasto-plastic fracture model (Maekawa et al., 23). A smeared crack model based on average stress-average strain was used to model concrete after cracking. For post cracking behavior compression and tension models proposed by Maekawa et al. (23), as shown in the Figure 3(a), were used. For reinforcement, a nonlinear path dependent constitutive model of Fukuura and Maekawa (1975) as shown in Figure 3(b) was used. Soil elements were formulated in both deviatoric and volumetric components separately. The volumetric component of the soil element was taken here as linear elastic. For the deviatoric component, the non-linear path dependency of soil in shear was modeled by Ohsaki model (198) as shown in the Figure 3(c). # f y τ " s E s S u R f f " f c t ff! ct!! y G. 1 γ # p # (a) (b) (c) # E sh! Figure 3 Constitutive models for (a) concrete (b) reinforcement and (c) soil

4 3.2 Analytical model of concrete pile and soil In the analytical model, soil is modeled using a 2-node isoparametric solid element. For the modeling of the concrete pile, comparison between a 3-node fiber-theory based beam element and a 2-node solid element was carried out. The analytical parameters used are illustrated in Table 1. FEM code COM3 developed by Tokyo University was used for the analysis. Table 1 Soil properties used in the analysis Depth from GL (m) Soil type Unit weight (kn/m 3 ) Shear strength (kpa) Shear Modulus (kpa) 6 Clay Sand node solid element model of pile In this modeling (SL-Mon), both the pile and soil are modeled as 2-node solid elements as shown in Figure 4. Soil and pile were modeled up to 12.8 m depth, and 9.5m and 3.15m in length and width, respectively. Soil properties used in the analysis are shown in Table 1. Only half of the domain was considered taking into account the symmetry in the geometry and load. The base was fixed in all X, Y, and Z directions. The two lateral faces of the soil model, perpendicular to the direction of loading were fixed in the X direction and the remaining two lateral faces were fixed in the Y direction. To simulate the gap formation between the soil and pile surface, a 16-node interface element is used between the soil and pile surface (Figure 5). In this opening-closure model, there is no stress transfer between pile and soil during opening or tension. During closure or compression, however, high rigidity (K) is assumed to avoid the overlapping of the soil and pile elements in compression. In this case, no shear stress between the RC and soil elements is assumed. Loading point F n Normal stress 12.8m Opening S Normal strain Interface element Closure K m 9.5m Figure 4 Finite element model for pile and soil for case SL-Mon Figure 5 Opening-closure model for interface element

5 node beam element model of pile In these cases, the soil was modeled as 2-node solid elements, whereas the pile was modeled as 3-node RC beam elements based on the fiber model (Maekawa et al., 23). Soil and pile were modeled up to 12.8 m depth, 9.5m length and 6.3m width. Soil properties as mentioned in Table 1 were used for the analysis. The base was fixed in all X, Y, and Z directions. Two lateral faces of the soil model, perpendicular to the direction of loading were fixed in the X direction and the remaining two lateral faces were fixed in the Y direction. Here, perfect bond between pile and soil is assumed. Variations in the mesh divisions were considered as illustrated in Figure 6(a) and Figure 6(b). For the fine mesh, FB-Mon1, the mesh division around the pile was.5d (diameter) of the pile. Whereas, the width of mesh around the pile was considered as 2D of the pile for the rough mesh case FB-Mon2. The applied beam elements for modeling of the pile are formulated based on the flexural theory and fiber model (Maekawa et al., 23). In the RC beam elements, axial force and two directional flexural moments are calculated using the averaged axial strain and two directional curvatures. The cross section of the element is divided into minute cells (fibers) according to the longitudinal reinforcement arrangements. 12.8m m 6.3m 9.5m 6.3m 9.5m 67.5cm 22.5cm 22.5cm 67.5cm 9cm 9cm Soil 22.5cm 67.5cm Soil 9cm 67.5cm 22.5cm 9cm (a) (b) Figure 6 Finite element model with pile modeled as 3-node beam element (a) Fine mesh (FB-Mon1) and (b) Rough mesh (FB-Mon2)

6 4. FINITE ELEMENT ANALYSIS RESULTS The 3D-FEM analysis results for the 2-node solid element modeling and 3-node beam element modeling of the pile are compared with the experimental results in Figure 7. As shown in the Figure 7, the 2-node solid element with interface element between soil and pile can simulate the behavior of the pile very accurately. For the case of the 3-node beam element modeling, case FB-Mon1 which considers fine mesh divisions (.5D), the model underestimates the lateral load carrying capacity of the pile compared to the experimental observations, whereas, case FB-Mon2 with rough mesh divisions (2D), gives reasonable accuracy. While modeling the pile as a beam element, the subgrade reaction from soil is underestimated as the volume of the pile is being neglected. However, as no interface element is considered between pile and soil, the soil in the active side (tension side) also contributes to the total subgrade reaction from the soil. For the case FB-Mon1, where the soil around the pile is divided into fine mesh, only small portion of soil around the pile in active side (tension side) contributes to the subgrade soil reaction. Hence, the lateral load carrying capacity of pile is largely underestimated in case FB-Mon1. However, when the rough mesh is considered, the larger soil mesh in the active side (tension side) can contribute to the subgrade soil reaction. Hence, the case FB-Mon2 with the rough mesh division gives a higher lateral load carrying capacity for the pile compared to the case FB-Mon1. Figure 8 shows the curvature distribution along the pile for case FB-Mon2. Maximum curvature for case FB-Mon2 occurred at.9 m from the GL, which agrees well with the experimental observations. This suggests that, if beam elements are used for the pile modeling, a realistic soil stress state can be obtained by using a coarse mesh division around the pile and considering the perfect bond between soil and pile. For the reversed cyclic case, Figure 9 shows the load displacement curve from the experiment (SP2) and FEM analysis with pile modeled as a beam element (FB-Rev). 15 Load (kn) Displacement (mm) Experiment Experiment (SP1) (SP1) Figure 7 Load displacement curves from experiment SL-Mon SL-Mon and analysis FB-Mon1 FB-Mon1 FB-Mon2 FB-Mon2

7 Curvature (1/cm).2.4 Curvature (1/cm) Depth Displacement at loading point (a) 1mm 2mm 3mm 4mm 5mm 6mm Figure 8 Curvature distribution (a) Experiment (b) FB-Mon2 5. CONCLUSIONS (b) Load (kn) 7-7 Experiment (SP2) Experiment (SP2) FB-Rev FB-Rev Displacement at loading point (mm) Figure 9 7 Load displacement curves for reversed cyclic loading (a) Experiment (b) FB-Rev In this study, on the basis of full-scale lateral loading tests on concrete piles, 3D FEM analysis was carried out on single concrete piles subjected to lateral loading. In the analysis, the adequacy of modeling of concrete piles with 3-node beam elements was tested by comparing with experimental and full 3D analysis results. From the 3D FEM analysis it was found that the 3-node fiber based beam element shows reasonable accuracy in simulating the behavior of concrete piles subjected to lateral loading. The use of a beam element in modeling the pile reduced the number of elements in the model and hence could save the computation time by 6%. 3-node beam element modeling for piles ignores the volume of the pile, hence the subgrade reaction of soil on the surface of pile is smaller and it underestimates the lateral load carrying capacity of the pile when a fine mesh division is used. Reasonable accuracy can, however, be obtained by using a rough mesh division (2D) in the soil around the pile and assuming perfect bond between soil and pile. 5. REFERENCES Fukuura, N. and Maekawa, K. (1975). Computational Model of Reinforcing Bar under Reversed Cyclic Loading for RC Nonlinear Analysis, Proceedings of Japan Society of Civil Engineers, No. 564/V-35, pp Maekawa, K., Pimanmas, A. and Okamura, H. (23). Nonlinear Mechanics of Reinforced Concrete, Spon Press, London Ohsaki, Y. (198) Some notes on Masing s Law and Non-linear Response of Soil Deposits, Journal of the Faculty of Engineering, The University of Tokyo, Vol. 35, No. 4, pp Tuladhar, R., Maki T., and Mutsuyoshi, H. (27). Cyclic Behavior of Concrete Embedded into Cohesive Soil, Earthquake Engineering and Structural Dynamics, DOI: 1.12/ eqe.744

3-D FINITE ELEMENT ANALYSIS OF PILE-TO-PILE CAP CONNECTIONS SUBJECTED TO SEISMIC ACTION

3-D FINITE ELEMENT ANALYSIS OF PILE-TO-PILE CAP CONNECTIONS SUBJECTED TO SEISMIC ACTION 3-D FINITE ELEMENT ANALYSIS OF PILE-TO-PILE CAP CONNECTIONS SUBJECTED TO SEISMIC ACTION M. Teguh 1,2), C.F. Duffield 1), P. A. Mendis 1), G.L. Hutchinson 1) 1) University of Melbourne, Melbourne, Victoria

More information

INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD. Guangfeng Zhang 1, Shigeki Unjoh 2

INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD. Guangfeng Zhang 1, Shigeki Unjoh 2 INELASTIC SEISMIC RESPONSE ANALYSES OF REINFORCED CONCRETE BRIDGE PIERS WITH THREE-DIMENSIONAL FE ANALYSIS METHOD Abstract Guangfeng Zhang 1, Shigeki Unjoh 2 This paper aims to provide an analysis method

More information

RESPONSE BEHAVIOR OF RC PILES UNDER SEVERE EARTHQUAKE

RESPONSE BEHAVIOR OF RC PILES UNDER SEVERE EARTHQUAKE RESPONSE BEHAVIOR OF RC PILES UNDER SEVERE EARTHQUAKE Takeshi MAKI 1 And Hiroshi MUTSUYOSHI 2 SUMMARY In this paper, restoring force characteristic of RC pile-soil system is considered experimentally and

More information

A Method of Dynamic Nonlinear Analysis for RC Frames under Seismic Loadings

A Method of Dynamic Nonlinear Analysis for RC Frames under Seismic Loadings A Method of Dynamic Nonlinear Analysis for RC Frames under Seismic Loadings M Matsuura^, I. Shimada^, H Kobayashi^ and K Sonoda^ ^Department of Civil Engineering, Osaka City University, 3-3-138 Sugimoto,

More information

SEISMIC BEHAVIOR OF BRIDGE PIER AND FOUNDATION AFTER STRENGTHENING

SEISMIC BEHAVIOR OF BRIDGE PIER AND FOUNDATION AFTER STRENGTHENING - Technical Paper - SEISMIC BEHAVIOR OF BRIDGE PIER AND FOUNDATION AFTER STRENGTHENING Anawat CHOTESUWAN *1, Hiroshi MUTSUYOSHI *2, Takeshi MAKI *3 and Junichiro KOYAMA *4 ABSTRACT This study investigates

More information

INFLUENCE OF PRSTRESS LEVEL ON SHEAR BEHAVIOR OF SEGMENTAL CONCRETE BEAMS WITH EXTERNAL TENDONS

INFLUENCE OF PRSTRESS LEVEL ON SHEAR BEHAVIOR OF SEGMENTAL CONCRETE BEAMS WITH EXTERNAL TENDONS - Technical Paper - INFLUENCE OF PRSTRESS LEVEL ON SHEAR BEHAVIOR OF SEGMENTAL CONCRETE BEAMS WITH EXTERNAL TENDONS Dinh Hung NGUYEN *1, Ken WATANABE *2, Junichiro NIWA *3 and Tsuyoshi HASEGAWA *4 ABSTRACT

More information

CHAPTER 5 FINITE ELEMENT MODELLING

CHAPTER 5 FINITE ELEMENT MODELLING 53 CHAPTER 5 FINITE ELEMENT MODELLING 5.1 GENERAL Reinforced concrete structures are largely employed in engineering practice in a variety of situations and applications. In most cases these structures

More information

SHEAR BEHAVIOR OF MULTI-STORY RC STRUCTURAL WALLS WITH ECCENTRIC OPENINGS

SHEAR BEHAVIOR OF MULTI-STORY RC STRUCTURAL WALLS WITH ECCENTRIC OPENINGS SHEAR BEHAVIOR OF MULTI-STORY RC STRUCTURAL WALLS WITH ECCENTRIC OPENINGS Makoto Warashina 1, Susumu Kono 2, Masanobu Sakashita 3, Hitoshi Tanaka 4 1 Ex-Graduate Student, Dept. of Architecture and Architectural

More information

LARGE-SCALE FEM ANALYSIS OF THE DYNAMIC BEHAVIOR OF REIN-FORCED CONCRETE BUILDINGS

LARGE-SCALE FEM ANALYSIS OF THE DYNAMIC BEHAVIOR OF REIN-FORCED CONCRETE BUILDINGS International Symposium on Disaster Simulation & Structural Safty in the Next Generation(DS 11) September 17-18, 2011, JAPAN LARGE-SCALE FEM ANALYSIS OF THE DYNAMIC BEHAVIOR OF REIN-FORCED CONCRETE BUILDINGS

More information

Title. Author(s)MOHAMMED, AHMED MOHAMMED YOUSSEF; AHMED, ALI; MAEKAW. Issue Date Doc URL. Type. Note. File Information CROSS-SECTIONS

Title. Author(s)MOHAMMED, AHMED MOHAMMED YOUSSEF; AHMED, ALI; MAEKAW. Issue Date Doc URL. Type. Note. File Information CROSS-SECTIONS Title SEISMIC EVALUATION OF RC COLUMNS CONSIDERING EQUIVAL CROSS-SECTIONS Author(s)MOHAMMED, AHMED MOHAMMED YOUSSEF; AHMED, ALI; MAEKAW Issue Date 2013-09-12 Doc URL http://hdl.handle.net/2115/54308 Type

More information

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams

Nonlinear Models of Reinforced and Post-tensioned Concrete Beams 111 Nonlinear Models of Reinforced and Post-tensioned Concrete Beams ABSTRACT P. Fanning Lecturer, Department of Civil Engineering, University College Dublin Earlsfort Terrace, Dublin 2, Ireland. Email:

More information

NON-LINEAR FEM ANALYSIS FOR CES SHEAR WALLS

NON-LINEAR FEM ANALYSIS FOR CES SHEAR WALLS 1NCEE Tenth U.S. National Conference on Earthquake Engineering Frontiers of Earthquake Engineering July 21-25, 214 Anchorage, Alaska NON-LINEAR FEM ANALYSIS FOR CES SHEAR WALLS S. SUZUKI 1, H. KURAMOTO

More information

Research on Weight Reduction of PC Composite Members Using Ultra High Strength Fiber Reinforced Cementitious Composites (UFC)

Research on Weight Reduction of PC Composite Members Using Ultra High Strength Fiber Reinforced Cementitious Composites (UFC) Research on Weight Reduction of PC Composite Members Using Ultra High Strength Fiber Reinforced Cementitious Composites (UFC) H. Murata 1), J. Niwa 2), and C. Sivaleepunth 3) 1) Master course 2nd year

More information

Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns

Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns Inelastic Behavior of Hollow Reinforced Concrete Bridge Columns T.-H. Kim Construction Product Technology Research Institute, Samsung Construction & Trading Corporation, Korea SUMMARY The purpose of this

More information

Damage Assessment of Reinforced Concrete Columns Under High Axial Loading

Damage Assessment of Reinforced Concrete Columns Under High Axial Loading SP-237 11 Damage Assessment of Reinforced Concrete Columns Under High Axial Loading by S. Kono, H. Bechtoula, M. Sakashita, H. Tanaka, F. Watanabe, and M.O. Eberhard Synopsis: Damage assessment has become

More information

STRUCTURAL PERFORMANCES OF PRESTRESSED CONCRETE INTERIOR BEAM-COLUMN JOINTS

STRUCTURAL PERFORMANCES OF PRESTRESSED CONCRETE INTERIOR BEAM-COLUMN JOINTS STRUCTURAL PERFORMANCES OF PRESTRESSED CONCRETE INTERIOR BEAM-COLUMN JOINTS Takashi KASHIWAZAKI 1 And Hiroshi NOGUCHI 2 SUMMARY Four one-third scaled PC interior beam-column joints were tested by the authors.

More information

CAUSES OF ELONGATION IN REINFORCED CONCRETE BEAMS SUBJECTED TO CYCLIC LOADING

CAUSES OF ELONGATION IN REINFORCED CONCRETE BEAMS SUBJECTED TO CYCLIC LOADING CAUSES OF ELONGATION IN REINFORCED CONCRETE BEAMS SUBJECTED TO CYCLIC LOADING By Brian PENG 1, Rajesh DHAKAL 2, Richard C. FENWICK 3 ABSTRACT: Elongation in the plastic hinge regions of reinforced concrete

More information

Evaluation of Structural Properties of the Freeze Thaw-Damaged RC Beam Members by Nonlinear Finite-Element Analysis

Evaluation of Structural Properties of the Freeze Thaw-Damaged RC Beam Members by Nonlinear Finite-Element Analysis 4 th International Conference on the Durability of Concrete Structures 24 26 July 214 Purdue University, West Lafayette, IN, USA Evaluation of Structural Properties of the Freeze Thaw-Damaged RC Beam Members

More information

Effect of perpendicular beams on failure of beam-column knee joints with mechanical anchorages by 3D RBSM

Effect of perpendicular beams on failure of beam-column knee joints with mechanical anchorages by 3D RBSM Journal of Asian Concrete Federation Vol., No. 1, pp. 56-66, June 016 ISSN 465-7964 / eissn 465-797 http://dx.doi.org/10.1870/acf.016.06..1.56 Effect of perpendicular beams on failure of beam-column knee

More information

SEISMIC RETROFITTING OF REINFORCED CONCRETE BRIDGE FRAMES USING EXTERNALLY BONDED FRP SHEETS

SEISMIC RETROFITTING OF REINFORCED CONCRETE BRIDGE FRAMES USING EXTERNALLY BONDED FRP SHEETS SEISMIC RETROFITTING OF REINFORCED CONCRETE BRIDGE FRAMES USING EXTERNALLY BONDED FRP SHEETS G.R. Pandey 1, H. Mutsuyoshi 2 and R. Tuladhar 3 1 Lecturer, School of Engineering, James Cook University, Townsville,

More information

INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE FOUNDATION FOR RC FRAME WITH STRUCTURAL WALL

INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE FOUNDATION FOR RC FRAME WITH STRUCTURAL WALL ICOVP, 3 th International Conference on Vibration Problems 29 th November 2 nd December, 27, Indian Institute of Technology Guwahati, INDIA INFLUENCE OF BNWF SOIL MODELLING ON DYNAMIC BEHAVIOUR OF PILE

More information

Truss Analysis for Evaluating the Behavior of Reinforced Concrete Moment-Resisting Frames with Poorly Reinforcing Details

Truss Analysis for Evaluating the Behavior of Reinforced Concrete Moment-Resisting Frames with Poorly Reinforcing Details October 12-17, 28, Beijing, China Truss Analysis for Evaluating the Behavior of Reinforced Concrete Moment-Resisting Frames with Poorly Reinforcing Details Yung-Chin Wang 1, Kai Hsu 2 1 Associate Professor,

More information

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor

Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor Effect of Seismic Reinforcement of Sheet Pile Quay Wall Using Ground Anchor M. Yoshida & M. Mitou Penta-Ocean Construction Co., Ltd., Japan O. Kiyomiya Waseda University, Japan S. Tashiro TOA Corporation,

More information

Three Dimensional Modeling of Masonry Structures and Interaction of In- Plane and Out-of-Plane Deformation of Masonry Walls

Three Dimensional Modeling of Masonry Structures and Interaction of In- Plane and Out-of-Plane Deformation of Masonry Walls Three Dimensional Modeling of Masonry Structures and Interaction of In- Plane and Out-of-Plane Deformation of Masonry Walls Kiarash M. Dolatshahi a and Amjad J. Aref b a Ph.D Candidate, Department of Civil,

More information

3D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials

3D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials D fatigue analysis of RC bridge slabs and slab repairs by fiber cementitious materials P. Suthiwarapirak & T. Matsumoto The University of Tokyo, Tokyo, Japan. ABSTRACT: The present paper considers the

More information

Finite Element Simulation of Low Concrete Strength Beam-Column Joint Strengthened with CFRP

Finite Element Simulation of Low Concrete Strength Beam-Column Joint Strengthened with CFRP Finite Element Simulation of Low Concrete Strength Beam-Column Joint Strengthened with CFRP M. H. Baluch, D. Ahmed & M. K. Rahman King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia A.

More information

Tensile Stress-Strain Relationship of High-Performance Fiber Reinforced Cement Composites

Tensile Stress-Strain Relationship of High-Performance Fiber Reinforced Cement Composites October -17, 8, Beijing, China ABSTRACT : Tensile Stress-Strain Relationship of High-Performance Fiber Reinforced Cement Composites Masayuki Nagayama 1 and Takashi Miyashita 1 Graduate Student, Graduate

More information

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress

Fagà, Bianco, Bolognini, and Nascimbene 3rd fib International Congress COMPARISON BETWEEN NUMERICAL AND EXPERIMENTAL CYCLIC RESPONSE OF ALTERNATIVE COLUMN TO FOUNDATION CONNECTIONS OF REINFORCED CONCRETEC PRECAST STRUCTURES Ettore Fagà, Dr, EUCENTRE, Pavia, Italy Lorenzo

More information

NUMERICAL MODELING OF BUCKLING OF THE LONGITUDINAL REINFORCEMENT IN BRIDGE COLUMNS

NUMERICAL MODELING OF BUCKLING OF THE LONGITUDINAL REINFORCEMENT IN BRIDGE COLUMNS NUMERICAL MODELING OF BUCKLING OF THE LONGITUDINAL REINFORCEMENT IN BRIDGE COLUMNS Andrej ANŽLIN 1, Tatjana ISAKOVIĆ 2 and Yasin FAHJAN 3 ABSTRACT Before the modern principles of earthquake engineering

More information

Nonlinear Finite Element Modeling & Simulation

Nonlinear Finite Element Modeling & Simulation Full-Scale Structural and Nonstructural Building System Performance during Earthquakes & Post-Earthquake Fire A Joint Venture between Academe, Industry and Government Nonlinear Finite Element Modeling

More information

Chapter 7. Finite Elements Model and Results

Chapter 7. Finite Elements Model and Results Chapter 7 Finite Elements Model and Results 7.1 Introduction In this chapter, a three dimensional model was presented. The analytical model was developed by using the finite elements method to simulate

More information

A simple computational tool for the verification of concrete walls reinforced by embedded steel profiles.

A simple computational tool for the verification of concrete walls reinforced by embedded steel profiles. A simple computational tool for the verification of concrete walls reinforced by embedded steel profiles. T. Bogdan, H. Degée, A. Plumier University of Liège, Belgium C. Campian Technical University of

More information

Modelling of RC moment resisting frames with precast-prestressed flooring system

Modelling of RC moment resisting frames with precast-prestressed flooring system Modelling of RC moment resisting frames with precast-prestressed flooring system B.H.H. Peng, R.P. Dhakal, R.C. Fenwick & A.J. Carr Department of Civil Engineering, University of Canterbury, Christchurch.

More information

Gravity Load Collapse of Reinforced Concrete Columns with Brittle Failure Modes

Gravity Load Collapse of Reinforced Concrete Columns with Brittle Failure Modes Gravity Load Collapse of Reinforced Concrete Columns with Brittle Failure Modes Takaya Nakamura 1 and Manabu Yoshimura 2 1 Research Associate, Department of Architecture, Graduate School of Engineering,

More information

Analytical Study on Input Shear Forces and Bond Conditions of Beam Main Bars of RC Interior Beam-Column Joints

Analytical Study on Input Shear Forces and Bond Conditions of Beam Main Bars of RC Interior Beam-Column Joints Analytical Study on Input Shear Forces and Bond Conditions of Beam Main Bars of RC Interior Beam-Column s T. Kashiwazaki Chiba University, Japan C. Jin MIDAS IT Japan Co.,Ltd., Japan H. Noguchi Kogakuin

More information

STUDY ON MODELING OF STEEL RIGID FRAME BRIDGE FOR DYNAMIC ELASTO-PLASTIC ANALYSIS

STUDY ON MODELING OF STEEL RIGID FRAME BRIDGE FOR DYNAMIC ELASTO-PLASTIC ANALYSIS STUDY ON MODELING OF STEEL RIGID FRAME BRIDGE FOR DYNAMIC ELASTO-PLASTIC ANALYSIS 83 Tsutomu YOSHIZAWA 1, Masaru NARITOMI 2, Osamu ISHIBASHI 3 And Masahide KAWAKAMI 4 SUMMARY The modeling method of the

More information

FATIGUE BEHAVIOR OF RC BEAMS UNDER FIXED PULSATING AND MOVING LOADS

FATIGUE BEHAVIOR OF RC BEAMS UNDER FIXED PULSATING AND MOVING LOADS - Technical Paper - FATIGUE BEHAVIOR OF RC BEAMS UNDER FIXED PULSATING AND MOVING LOADS Esayas GEBREYOUHANNES *1, Nobuhiro CHIJIWA *2,Chikako FUJIYAMA *3,Koichi MAEKAWA *4 ABSTRACT Shear Fatigue behavior

More information

BUCKLING ANALYSIS OF PULTRUDED GFRP HOLLOW BOX BEAM

BUCKLING ANALYSIS OF PULTRUDED GFRP HOLLOW BOX BEAM BUCKLING ANALYSIS OF PULTRUDED GFRP HOLLOW BOX BEAM Donna CHEN Ph.D. Candidate University of Calgary, Department of Civil Engineering 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada dsmchen@ucalgary.ca

More information

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS

CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 87 CHAPTER 7 ANALYTICAL PROGRAMME USING ABAQUS 7.1 GENERAL With the advances in modern computing techniques, finite element analysis has become a practical and powerful tool for engineering analysis and

More information

Analytical Modeling of the Contribution of Transverse Reinforcement in Prestressed Concrete Bridge Girders

Analytical Modeling of the Contribution of Transverse Reinforcement in Prestressed Concrete Bridge Girders Analytical Modeling of the Contribution of Transverse Reinforcement in Prestressed Concrete Bridge Girders Katie Boris, REU Student Padmanabha Rao Tadepalli, Graduate Mentor Y. L. Mo, Faculty Advisor Final

More information

NONLINEAR FINITE ELEMENT ANALYSIS OF NON- SEISMICALLY DETAILED INTERIOR RC BEAM-COLUMN CONNECTION UNDER REVERSED CYCLIC LOAD

NONLINEAR FINITE ELEMENT ANALYSIS OF NON- SEISMICALLY DETAILED INTERIOR RC BEAM-COLUMN CONNECTION UNDER REVERSED CYCLIC LOAD AJSTD Vol. 24 Issue 4 pp. 369-386 (2007) NONLINEAR FINITE ELEMENT ANALYSIS OF NON- SEISMICALLY DETAILED INTERIOR RC BEAM-COLUMN CONNECTION UNDER REVERSED CYCLIC LOAD Teeraphot Supaviriyakit, Amorn Pimanmas

More information

FINITE ELEMENT SIMULATION ANALYSIS ON STRENGTHENING OF REINFORCED CONCRETE COLUMNS WITH DIFFERENT KINDS OF FRP SHEETS

FINITE ELEMENT SIMULATION ANALYSIS ON STRENGTHENING OF REINFORCED CONCRETE COLUMNS WITH DIFFERENT KINDS OF FRP SHEETS 4th International Conference on Earthquake Engineering Taipei, Taiwan October 12-13, 26 Paper No. 98 FINITE ELEMENT SIMULATION ANALYSIS ON STRENGTHENING OF REINFORCED CONCRETE COLUMNS WITH DIFFERENT KINDS

More information

Flexural, Axial Load and Elongation Response of Plastic Hinges in Reinforced Concrete Member

Flexural, Axial Load and Elongation Response of Plastic Hinges in Reinforced Concrete Member Flexural, Axial Load and Elongation Response of Plastic Hinges in Reinforced Concrete Member Brian H.H. Peng University of Canterbury, Christchurch, New Zealand Rajesh P. Dhakal, Richard C. Fenwick, Athol

More information

Effect of beam dimensions on structural performance of wide beam-column joints

Effect of beam dimensions on structural performance of wide beam-column joints Effect of beam dimensions on structural performance of wide beam-column joints J.S. Kuang 1) and *Wing Shan Kam 2) 1), 2) Department of Civil and Environmental Engineering, Hong Kong University of Science

More information

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017

ABC-UTC. Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC. March, 2017 ABC-UTC Research Progress Report (Feasibility Study) Title: Alternative ABC Connections Utilizing UHPC ABSTRACT March, 2017 Accelerated Bridge Construction (ABC) is a method of bridge construction designed

More information

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs

Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs Flexural Behaviour of Composite Girders Using FRP and Precast Ultra-High-Strength Fiber-Reinforced Concrete Slabs S.V.T. Janaka Perera 1*, Hiroshi Mutsuyoshi 1 and Nguyen Duc Hai 2 1 Saitama University,

More information

Finite Element Studies on the Behavior of Reinforced Concrete Structures Using LUSAS

Finite Element Studies on the Behavior of Reinforced Concrete Structures Using LUSAS ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Finite Element Studies on the Behavior of Reinforced Concrete Structures Using LUSAS M.Z. Yusof School

More information

Modelling of Sheared Behaviour Bolts Across Joints

Modelling of Sheared Behaviour Bolts Across Joints University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2004 Modelling of Sheared Behaviour Bolts Across Joints H. Jalalifar University of Wollongong

More information

The Investigation of Earthquake Resistance for the PC continuous Rigid Frame Bridge considering Nonlinearity in Superstructure

The Investigation of Earthquake Resistance for the PC continuous Rigid Frame Bridge considering Nonlinearity in Superstructure The Investigation of Earthquake Resistance for the PC continuous Rigid Frame Bridge considering Nonlinearity in Superstructure (l)graduate School of Civil Engineering, Kyusyu University, 6-10-1, Hakozaki,

More information

Shake Table Testing of Bridge Reinforced Concrete Columns under Combined Actions

Shake Table Testing of Bridge Reinforced Concrete Columns under Combined Actions Shake Table Testing of Bridge Reinforced Concrete Columns under Combined Actions by Juan G. Arias-Acosta 1 and David H. Sanders 2 ABSTRACT Combined loadings (axial, shear, bending and torsion) can have

More information

STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING

STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING STRUCTURAL APPLICATIONS OF A REINFORCED CONCRETE BEAM-COLUMN-SLAB CONNECTION MODEL FOR EARTHQUAKE LOADING B.B. Canbolat 1 1 Assistant Professor, Dept. of Civil Engineering, Middle East Technical University,

More information

DAMAGE INDEX FOR CROSS SECTION OF RC BEAM-COLUMN MEMBERS SUBJECTED TO MULTI-AXIS LOADING

DAMAGE INDEX FOR CROSS SECTION OF RC BEAM-COLUMN MEMBERS SUBJECTED TO MULTI-AXIS LOADING DAMAGE INDEX FOR CROSS SECTION OF RC BEAM-COLUMN MEMBERS SUBJECTED TO MULTI-AXIS LOADING (Translation from Proceedings of JSCE, No.718/V-57, November 2002) Satoshi TSUCHIYA Koichi MAEKAWA A damage index

More information

SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE

SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE - Technical Paper - SHEAR STRENGTHENING OF RC BRIDGE PIERS BY STEEL JACKETING WITH EXPANSIVE CEMENT MORTAR AS ADHESIVE Aloke RAJBHANDARY *1, Govinda R. PANDEY *2, Hiroshi MUTSUYOSHI *3 and Takeshi MAKI

More information

ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM

ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM ANALYSIS OF CARBON-FIBER COMPOSITE STRENGTHENING TECHNIQUE FOR REINFORCED BEAM S.D. Vanjara 2, J.M. Dave 1, Professor 1, Department of Mechanical Engineering, Institute of Technology, Nirma university

More information

Experimental and Analytical Study on Flexural Behavior Of Curved Beams

Experimental and Analytical Study on Flexural Behavior Of Curved Beams Experimental and Analytical Study on Flexural Behavior Of Curved Beams D.K.Kayathri Mepco Schlenk Engineering College Sivakasi 626 005, Tamil Nadu, India C.D.R.Balaji Mepco Schlenk Engineering College

More information

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section

Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 41 (2016) (2016) - 31-37 Structural Characteristics of New Composite Girder Bridge Using Rolled Steel H-Section by Mohammad Hamid ELMY *1 and Shunichi

More information

Fiber-Based Modeling for Investigating the Effect of Load History on the Behavior of RC Bridge Columns

Fiber-Based Modeling for Investigating the Effect of Load History on the Behavior of RC Bridge Columns Fiber-Based Modeling for Investigating the Effect of Load History on the Behavior of RC Bridge Columns Y. Feng, M.J. Kowalsky & J.M. Nau North Carolina State University, Raleigh SUMMARY: Ensuring that

More information

beni-suef university journal of basic and applied sciences 5 (2016) Available online at ScienceDirect

beni-suef university journal of basic and applied sciences 5 (2016) Available online at   ScienceDirect beni-suef university journal of basic and applied sciences 5 (2016) 31 44 HOSTED BY Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/bjbas Full Length Article

More information

A NOVEL ELASTOMERIC BASE ISOLATION SYSTEM FOR SEISMIC MITIGATION OF LOW-RISE BUILDINGS

A NOVEL ELASTOMERIC BASE ISOLATION SYSTEM FOR SEISMIC MITIGATION OF LOW-RISE BUILDINGS A NOVEL ELASTOMERIC BASE ISOLATION SYSTEM FOR SEISMIC MITIGATION OF LOW-RISE BUILDINGS H. Toopchi-Nezhad 1, M. J. Tait 2, and R. G. Drysdale 3 1 Ph.D. Candidate, Dept. of Civil Engineering, McMaster University,

More information

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING

FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE BRIDGE PIER COLUMNS SUBJECTED TO SEISMIS LOADING By Benjamin M. Schlick University of Massachusetts Amherst Department of Civil and Environmental Engineering

More information

Effective Length of RC Column with Spandrel Wall

Effective Length of RC Column with Spandrel Wall Effective Length of RC Column with Spandrel Wall *Eun-Lim Baek 1), and Sang-Hoon Oh 2) and Sang-Ho Lee 3) 1), 2) Department of Architectural Engineering, Pusan National University, Busan 69-735, Korea

More information

3D FINITE ELEMENT MODELS OF PLAIN AND BOND-BEAMED HOLLOW MASONRY WALLS SUBJECTED TO CONCENTRIC AND ECCENTRIC CONCENTRATED LOADS

3D FINITE ELEMENT MODELS OF PLAIN AND BOND-BEAMED HOLLOW MASONRY WALLS SUBJECTED TO CONCENTRIC AND ECCENTRIC CONCENTRATED LOADS 3D FINITE ELEMENT MODELS OF PLAIN AND BOND-BEAMED HOLLOW MASONRY WALLS SUBJECTED TO CONCENTRIC AND ECCENTRIC CONCENTRATED LOADS Junyi Yi 1 and Nigel G. Shrive 2 ABSTRACT 3-D finite element models have

More information

Influence of Vertical Acceleration on Seismic Response of Endbearing

Influence of Vertical Acceleration on Seismic Response of Endbearing American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-4 pp-33-41 www.ajer.org Research Paper Open Access Influence of Vertical Acceleration on Seismic Response of

More information

D. Y. Abebe 1, J. W. Kim 2, and J. H. Choi 3

D. Y. Abebe 1, J. W. Kim 2, and J. H. Choi 3 Steel Innovations Conference 213 Christchurch, New Zealand 21-22 February 213 HYSTERESIS CHARACTERSTICS OF CIRCULAR PIPE STEEL DAMPER USING LYP225 D. Y. Abebe 1, J. W. Kim 2, and J. H. Choi 3 ABSTRACT

More information

ULTIMATE EARTHQUAKE RESISTANT CAPACITY OF CFT-FRAME

ULTIMATE EARTHQUAKE RESISTANT CAPACITY OF CFT-FRAME 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No.2613 ULTIMATE EARTHQUAKE RESISTANT CAPACITY OF CFT-FRAME Motoo SAISHO 1 and Katsuhiko GOTO 2 SUMMARY Seismic

More information

VERTICAL COMPONENT EFFECT OF EARTHQUAKE IN SEISMIC PERFORMANCE OF REINFORCED CONCRETE BRIDGE PIERS

VERTICAL COMPONENT EFFECT OF EARTHQUAKE IN SEISMIC PERFORMANCE OF REINFORCED CONCRETE BRIDGE PIERS VERTICAL COMPONENT EFFECT OF EARTHQUAKE IN SEISMIC PERFORMANCE OF REINFORCED CONCRETE BRIDGE PIERS N. Hosseinzadeh Assistant Professor, Dept. of Structural Engineering, International Institute of Earthquake

More information

STRUCTURAL PERFORMANCE OF MIXED MEMBER COMPOSED OF STEEL REINFORCED CONCRETE AND REINFORCED CONCRETE

STRUCTURAL PERFORMANCE OF MIXED MEMBER COMPOSED OF STEEL REINFORCED CONCRETE AND REINFORCED CONCRETE STRUCTURAL PERFORMANCE OF MIXED MEMBER COMPOSED OF STEEL REINFORCED CONCRETE AND REINFORCED CONCRETE Hideyuki SUZUKI 1, Hiroshi NISHIHARA 2, Yasuhiro MATSUZAKI 3 And Koichi MINAMI 4 SUMMARY On the assumption

More information

GRAVITY LOAD COLLAPSE OF REINFORCED CONCRETE COLUMNS WITH DECREASED AXIAL LOAD

GRAVITY LOAD COLLAPSE OF REINFORCED CONCRETE COLUMNS WITH DECREASED AXIAL LOAD GRAVITY LOAD COLLAPSE OF REINFORCED CONCRETE COLUMNS WITH DECREASED AXIAL LOAD Takaya NAKAMURA 1 and Manabu YOSHIMURA 2 ABSTRACT When reinforced concrete (RC) columns reach near-collapse and undergo axial

More information

SEISMIC DAMAGE AND REPARABILITY EVALUATION OF RC COLUMNS IN TERMS OF CRACK VOLUME

SEISMIC DAMAGE AND REPARABILITY EVALUATION OF RC COLUMNS IN TERMS OF CRACK VOLUME SEISMIC DAMAGE AND REPARABILITY EVALUATION OF RC COLUMNS IN TERMS OF CRACK VOLUME Takeshi MAKI ) and Asim RAUF ) ) Associate Professor, Department of Civil and Environmental Engineering, Saitama University

More information

SEISMIC FORCE RESISTING MECHANISM OF THE MULTI-STORY PRECAST CONCRETE SHEAR WALL SUPPORTED ON PILES

SEISMIC FORCE RESISTING MECHANISM OF THE MULTI-STORY PRECAST CONCRETE SHEAR WALL SUPPORTED ON PILES SEISMIC FORCE RESISTING MECHANISM OF THE MULTI-STORY PRECAST CONCRETE SHEAR WALL SUPPORTED ON PILES Hiroaki Hasegawa 1, Masanobu Sakashita 2, Ai Urabe 3, Susumu Kono 4, Hitoshi Tanaka 5 and Fumio Watanabe

More information

Nonlinear concrete behaviour

Nonlinear concrete behaviour Universidad de la Costa From the SelectedWorks of Marian Sabau November, 2011 Nonlinear concrete behaviour Marian Sabau, Universidad de la Costa Traian Onet, Technical University of Cluj-Napoca Available

More information

Experimental and analytical study of the steel-concrete-steel beam under flexural behavior

Experimental and analytical study of the steel-concrete-steel beam under flexural behavior Experimental and analytical study of the steel-concrete-steel beam under flexural behavior Dr. Amjad Hameed Abdul-Razaq Civil Eng. Dept. College of Engineering, Kufa University Al-Najaf, Iraq E-mail: amjad881980@yahoo.com

More information

DEVELOPMENT OF UNBONDED BAR REINFORCED CONCRETE STRUCTURE

DEVELOPMENT OF UNBONDED BAR REINFORCED CONCRETE STRUCTURE 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1537 DEVELOPMENT OF UNBONDED BAR REINFORCED CONCRETE STRUCTURE Hirokazu IEMURA 1, Yoshikazu TAKAHASHI

More information

EFFECT OF VERTICAL MOTION OF EARTHQUAKE ON RC BRIDGE PIER

EFFECT OF VERTICAL MOTION OF EARTHQUAKE ON RC BRIDGE PIER EFFECT OF VERTICAL MOTION OF EARTHQUAKE ON RC BRIDGE PIER ABSTRACT : A.RAHAI 1 and M.AREZOUMANDI 2 1 Professor, Dept. of Structural Engineering, Amirkabir University, Tehran, Iran 2 Research assistant,

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 2, 2011 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Nonlinear Seismic Behavior

More information

Damage assessment of hollow core reinforced and prestressed concrete slabs subjected to blast loading

Damage assessment of hollow core reinforced and prestressed concrete slabs subjected to blast loading Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 199 (2017) 2476 2481 X International Conference on Structural Dynamics, EURODYN 2017 Damage assessment of hollow core reinforced

More information

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF INTERIOR JOINTS OF PRECAST PRESTRESSED CONCRETE FRAMES

EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF INTERIOR JOINTS OF PRECAST PRESTRESSED CONCRETE FRAMES EXPERIMENTAL STUDY ON SEISMIC BEHAVIOR OF INTERIOR JOINTS OF PRECAST PRESTRESSED CONCRETE FRAMES J. Feng, J.G. Cai, H.J. Zhu, L.F. Huang 4 and Y. Chen 5 Professor, School of Civil Engineering, Southeast

More information

EFFICIENCY OF MICROPILE FOR SEISMIC RETROFIT OF FOUNDATION SYSTEM

EFFICIENCY OF MICROPILE FOR SEISMIC RETROFIT OF FOUNDATION SYSTEM EFFICIENCY OF MICROPILE FOR SEISMIC RETROFIT OF FOUNDATION SYSTEM YAMANE TAKASHI, NAKATA YOSHINORI And OTANI YOSHINORI SUMMARY Micropile is drilled and grouted pile with steel pipes which diameters is

More information

LATEST ACHIEVEMENT IN TECHNOLOGY AND RESEARCH OF RETROFITTING CONCRETE STRUCTURES

LATEST ACHIEVEMENT IN TECHNOLOGY AND RESEARCH OF RETROFITTING CONCRETE STRUCTURES LATEST ACHIEVEMENT IN TECHNOLOGY AND RESEARCH OF RETROFITTING CONCRETE STRUCTURES Ueda T, Hokkaido University, Japan Wu Z, Ibaraki University, Japan Kanakubo T, Tsukuba University, Japan Abstract Major

More information

In-plane testing of precast concrete wall panels with grouted sleeve

In-plane testing of precast concrete wall panels with grouted sleeve In-plane testing of precast concrete wall panels with grouted sleeve P. Seifi, R.S. Henry & J.M. Ingham Department of Civil Engineering, University of Auckland, Auckland. 2017 NZSEE Conference ABSTRACT:

More information

A STUDY OF RC MEMBERS STRENGTHENED WITH A LONGITUDINALLY PRESTRESSED CONCRETE JACKET

A STUDY OF RC MEMBERS STRENGTHENED WITH A LONGITUDINALLY PRESTRESSED CONCRETE JACKET CONCRETE LIBRARY OF JSCE NO. 39, JUNE 2002 A STUDY OF RC MEMBERS STRENGTHENED WITH A LONGITUDINALLY PRESTRESSED CONCRETE JACKET (Translation from Proceedings of JSCE, No. 683/V-52, 1-12, Aug. 2001) Takashi

More information

On the Numerical Modelling of Bond for the Failure Analysis of Reinforced Concrete

On the Numerical Modelling of Bond for the Failure Analysis of Reinforced Concrete On the Numerical Modelling of Bond for the Failure Analysis of Reinforced Concrete Peter Grassl 1,, Morgan Johansson 2,3 and Joosef Leppänen 2 1 School of Engineering, University of Glasgow, Glasgow G128LT,

More information

Numerical and Experimental Behaviour of Moment Resisting Connections using Blind Bolts within CFSHS columns

Numerical and Experimental Behaviour of Moment Resisting Connections using Blind Bolts within CFSHS columns Proceedings of the Tenth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Pacific 6-8 November 2015, Sydney, Australia Numerical and Experimental Behaviour of Moment Resisting

More information

ANALYTICAL STUDIES OF A FULL-SCALE STEEL BUILDING SHAKEN TO COLLAPSE

ANALYTICAL STUDIES OF A FULL-SCALE STEEL BUILDING SHAKEN TO COLLAPSE SDSS Rio STABILITY AND DUCTILITY OF STEEL STRUCTURES E. Batista, P. Vellasco, L. de Lima (Eds.) Rio de Janeiro, Brazil, September 8 -, ANALYTICAL STUDIES OF A FULL-SCALE STEEL BUILDING SHAKEN TO COLLAPSE

More information

Upgrading ductility of RC beam-column connection with high performance FRP laminates

Upgrading ductility of RC beam-column connection with high performance FRP laminates Upgrading ductility of RC beam-column connection with high performance FRP laminates M, Z, Kabir, H. R. Ashrafi & M. N, Varzaneh Dept. of Civil Engineering, Amirkabir University of Technology, Tehran,

More information

Encased Beam with Variable Upper Steel Flange Position

Encased Beam with Variable Upper Steel Flange Position Encased Beam with Variable Upper Steel Flange Position Ahmed Youssef Kamal Civil Engineering Department, Benha Faculty of Engineering, Benha University, Egypt. ABSTRACT Encased beam composite construction

More information

Modeling of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls

Modeling of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls ing of Coupled Nonlinear Shear and Flexural Responses in Medium-Rise RC Walls Burak HOROZ 1, M.Fethi GÜLLÜ 2, and Kutay ORAKÇAL 3 1 Research Assistant Bogazici University, Istanbul, Turkey 2 Research Assistant

More information

NUMERICAL SIMULATION ON LOCAL BOND-SLIP BETWEEN STEEL AND CONCRETE WITH EXPERIMENTAL VERIFICATION

NUMERICAL SIMULATION ON LOCAL BOND-SLIP BETWEEN STEEL AND CONCRETE WITH EXPERIMENTAL VERIFICATION TPT TPT TPT Professor, TPT Ph. NUMERICAL SIMULATION ON LOCAL BOND-SLIP BETWEEN STEEL AND CONCRETE WITH EXPERIMENTAL VERIFICATION 1 Xilin LuTP PT, Yuguang DongTP PT ABSTRACT The bond stress vs. slip relationship

More information

NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT

NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT NONLINEAR FINITE ELEMENT ANALYSIS OF SHALLOW REINFORCED CONCRETE BEAMS USING SOLID65 ELEMENT M. A. Musmar 1, M. I. Rjoub 2 and M. A. Abdel Hadi 1 1 Department of Civil Engineering, Al-Ahliyya Amman University,

More information

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING

BEHAVIOR OF REINFORCED CONCRETE BEAM WITH OPENING International Journal of Civil Engineering and Technology (IJCIET) Volume 8, Issue 7, July 2017, pp. 581 593, Article ID: IJCIET_08_07_062 Available online at http:// http://www.iaeme.com/ijciet/issues.asp?jtype=ijciet&vtype=8&itype=7

More information

IDEA OF HYBRID COLUMN WITH ENERGY ABSORPTION ELEMENT

IDEA OF HYBRID COLUMN WITH ENERGY ABSORPTION ELEMENT 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 24 Paper No. 66 IDEA OF HYBRID COLUMN WITH ENERGY ABSORPTION ELEMENT Masato ISO 1, Ayato HOMMA 2, Katsumi KOBAYASHI

More information

Finite Element Analysis of Reinforced Concrete Corbels

Finite Element Analysis of Reinforced Concrete Corbels Finite Element Analysis of Reinforced Concrete Corbels MEHDI REZAEI, S.A.OSMAN AND N.E. SHANMUGAM Department of Civil & Structural Engineering,Faculty of Engineering & Built Environment Universiti Kebangsaan

More information

EFFECTS OF INTERACTION BETWEEN JOINT SHEAR AND BOND STRENGTH ON THE ELAST-PLASTIC BEHAVIOR OF R/C BEAM-COLUMN JOINTS

EFFECTS OF INTERACTION BETWEEN JOINT SHEAR AND BOND STRENGTH ON THE ELAST-PLASTIC BEHAVIOR OF R/C BEAM-COLUMN JOINTS EFFECTS OF INTERACTION BETWEEN JOINT SHEAR AND BOND STRENGTH ON THE ELAST-PLASTIC BEHAVIOR OF R/C BEAM-COLUMN JOINTS Hitoshi SHIOHARA 1 ABSTRACT The effects of the interaction between (a) joint shear force

More information

Modelling of Reinforced Concrete Core Walls Under Bi-directional Loading

Modelling of Reinforced Concrete Core Walls Under Bi-directional Loading Modelling of Reinforced Concrete Core Walls Under Bi-directional Loading R. Constantin & K. Beyer Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland SUMMARY: Reinforced concrete core walls with

More information

Analysis of skin friction in prebored and precast piles

Analysis of skin friction in prebored and precast piles Japanese Geotechnical Society Special Publication The 6th Japan-Korea Geotechnical Workshop Analysis of skin friction in prebored and precast piles Sangseom Jeong i), Gyoungja Jung ii), Dohyun Kim iii)

More information

SEISMIC RESPONSE OF AN ISOLATION METHOD FOR CUT AND COVER TUNNEL USING POLYMER MATERIAL

SEISMIC RESPONSE OF AN ISOLATION METHOD FOR CUT AND COVER TUNNEL USING POLYMER MATERIAL SEISMIC RESPONSE OF AN ISOLATION METHOD FOR CUT AND COVER TUNNEL USING POLYMER MATERIAL Satoshi KIRYU 1, Yoshitaka MURONO 2 and Hitoshi MORIKAWA 3 1 Structure Engineering Division, JR East Consultants

More information

FINITE ELEMENT MODELING OF REINFORCED CONCRETE BEAM COLUMN JOINT USING ANSYS

FINITE ELEMENT MODELING OF REINFORCED CONCRETE BEAM COLUMN JOINT USING ANSYS Int. J. Struct. & Civil Engg. Res. 2013 Syed Sohailuddin S S and M G Shaikh, 2013 Research Paper ISSN 2319 6009 www.ijscer.com Vol. 2, No. 3, August 2013 2013 IJSCER. All Rights Reserved FINITE ELEMENT

More information

NONLINEAR RESPONSES OF LOW STRENGTH RC COLUMNS RETROFITTED WITH EXTERNAL HIGH-STRENGTH HOOPS

NONLINEAR RESPONSES OF LOW STRENGTH RC COLUMNS RETROFITTED WITH EXTERNAL HIGH-STRENGTH HOOPS SECED 215 Conference: Earthquake Risk and Engineering towards a Resilient World 9-1 July 215, Cambridge UK NONLINEAR RESPONSES OF LOW STRENGTH RC COLUMNS RETROFITTED WITH EXTERNAL HIGH-STRENGTH HOOPS Wencong

More information

Study the Behavior of Reinforced Concrete Beam Using Finite Element Analysis

Study the Behavior of Reinforced Concrete Beam Using Finite Element Analysis Proceedings of the 3 rd World Congress on Civil, Structural, and Environmental Engineering (CSEE 18) Budapest, Hungary April 8-10, 2018 Paper No. ICSENM 103 DOI: 10.11159/icsenm18.103 Study the Behavior

More information

Effect of Flange Width on Flexural Behavior of Reinforced Concrete T-Beam

Effect of Flange Width on Flexural Behavior of Reinforced Concrete T-Beam Effect of Flange Width on Flexural Behavior of Reinforced Concrete T-Beam Ofonime A. Harry Institute for Infrastructure and Environment, University of Edinburgh, UK Department of Civil Engineering Ndifreke

More information