Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source

Size: px
Start display at page:

Download "Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source"

Transcription

1 *Corresponding author. usherbrooke.ca Comparison of combined heat and power systems using an organic Rankine cycle and a low-temperature heat source... Mohammed Khennich *, Nicolas Galanis and Mikhail Sorin Département de génie mécanique, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1... Abstract Two combined heat and power (CHP) systems using an organic Rankine cycle with R134a and a source at 1008C are modeled. The vapor generator pressure which maximizes the specific (i.e. per unit mass flowrate of the heat source) net power output is determined for different values of the specific heat load and a characteristic temperature difference DT related to the temperature pinch of the heat exchangers. The optimal trade-offs between power and heat outputs are defined and explained for two CHP systems. The results show that both systems generate less mechanical power than the heat delivered to the heating load and that a higher fraction of the heat source is used as the heating load increases. The effects of the specific heat load and of DT on the total thermal conductance, the total exergy destruction and other variables are presented. Keywords: organic Rankine cycle; cogeneration; R134a; optimization Received 10 January 2013; revised 29 March 2013; accepted 7 April INTRODUCTION Two basic configurations of combined heat and power (CHP) systems using various free low-temperature (up to 2008C) heat sources, such as waste heat from various industries or geothermal energy, have been built and analyzed. Practically all of them include a power-generating unit operating according to the subcritical Rankine cycle. In the first one, the heating load is supplied by the heat source via a heat exchanger placed in series with the vapor generator of the power-generating unit [1, 2]. In the second configuration the heating load is supplied by the cooling fluid of the power-generating unit condenser [3, 4]. A variant of this second configuration incorporating a heat pump was recently analyzed by Guo et al. [5]. The choice of working fluid for such power-generating units is the subject of many studies. Water is not suitable at these low temperatures. Therefore, organic fluids or mixtures such as H 2 O/NH 3 have been used in prototypes and commercial systems [2, 6]. Theoretical studies have also considered trans-critical cycles with fluids such as CO 2 [7]. Most recent studies of such units fix the source and sink temperatures and compare the performance of different working fluids [8] or seek to optimize a particular performance indicator (maximize the thermal efficiency, minimize the exergy losses etc.) by varying the evaporation pressure of the working fluid [9]. However, these studies have not addressed the optimization problem when the power-generating unit is part of a CHP system that must satisfy a prescribed heating load. The present study analyzes and compares the performance of these two basic CHP configurations for fixed temperatures of the heat source, the heat sink and the fluid supplying the heating load. The power-generating unit is an organic Rankine cycle (ORC) using R134a. The evaporation pressure (P ev ) that maximizes the net power output is determined for different fixed values of the heating load. Corresponding values of other significant system variables are also determined and compared. 2 DESCRIPTION AND MODELING OF THE CHP SYSTEM Figure 1 shows a schematic representation of the two configurations under consideration. Cycle A, similar to the systems built in Altheim [1] and Husavik [2], comprises three heat exchangers with the heating load heat exchanger in series with the vapor generator of the ORC unit: the heat source supplies some of its energy to the working fluid of the ORC system and therefore its temperature at the exit from the vapor generator is T s*, T s,in ;it then flows through the heat load heat exchanger where its temperature decreases to T s,out while that of the secondary heat # The Author Published by Oxford University Press. All rights reserved. For Permissions, please journals.permissions@oup.com doi: /ijlct/ctt028 Advance Access Publication 12 May 2013 i42

2 Comparison of combined heat and power systems Figure 1. Schematic representation of the cogeneration systems under consideration. Table 1. Inputs and temperature relations used in the model. Cycle A Fixed inputs _M s ; T s,in, x 1, h T, h P,DT,T h,in, T h,out, T p,in,t s,out, Condenser pinch ¼ DT/2 Cycle B _M s ; T s,in, x 1, h T, h P,DT,T h,in, Condenser pinch ¼ DT/2 Variable inputs P ev, Q h P ev, Q h Temperature relations T 3 ¼ T s,in 2 DT, T 1 ¼ T p,in þ DT T 3 ¼ T s,in DT, T 1 ¼ T h,in þ DT transport fluid increases from T h,in to T h,out. Cycle B, similar to the system built in Lienz [4], comprises only two heat exchangers because the heating load is supplied by the condenser of the ORC unit (thus in this case _M p ; _M h and T p,in ; T h,in ). The systems are supposed to operate under steady-state conditions. Heat and pressure losses as well as kinetic and potential energies are neglected. The working fluid is assumed to be saturated liquid at the exit from the condenser. The heat source is an industrial gas which is modeled as air. The isentropic efficiency of the pump and the expander are fixed (80%). We also fix the temperature of the heat source entering the vapor generator (T s,in ¼ 1008C which corresponds to process waste gases of some metallurgical transformations), of the cooling water entering the condenser (T p,in ¼ 108C which corresponds to the yearly average temperature of the St. Lawrence river) and of the water which supplies the heating load at the inlet of the heat exchanger (T h,in ¼ 558C which is the average of the corresponding temperatures in two operating prototypes [1, 4]). The temperature difference (DT) between the working and external fluids at the inlet of the latter into the vapor generator and the condenser takes one of the three chosen values (5, 10 or 15 K). Two constraints are also imposed on the operating variables. First, we require that at the expander exit the liquid content of the working fluid must be,5%. Secondly, we specify that the temperature pinch in each heat exchanger must be no less than DT/2. In the case of Cycle A, we also fix the temperature of the water which supplies the heating load at the outlet of the heat exchanger (T h,out ¼ 708C which is between the corresponding temperatures of two operating systems [1, 4]) and of the heat source leaving the system (T s,out ¼ 708C). In the case of Cycle B, the temperature of the water at the position of the condenser pinch is equal to (T 1 2 DT/2) ¼ (T h,in þ DT/2). Table 1 recapitulates the inputs and temperature relations for the two systems under study. The model comprises the equations expressing mass and energy conservation for each component of the system, the expressions of the expander and pump isentropic efficiencies in terms of the appropriate thermodynamic properties as well as the expressions of the heat and power transfers in terms of the appropriate mass flowrates and enthalpies. It also includes the expression of each heat transfer rate in terms of the thermal conductance and logarithmic mean temperature difference of each heat exchanger (vapor generator, load heat exchanger and/or condenser). Thus, for example, for the heating load heat exchanger of Cycle A: _M s c p;s ðt s T s;out Þ¼ _M h c p;h ðt h;out T h;in Þ¼UA DT ln ; where _M is the mass flowrate; c p the specific heat; UA the thermal conductance (subscripts in, out, s and p denote inlet, outleft, source and sink, respectively) and DT ln ¼ ½ðT s T h;out Þ ðt s;out T h;in ÞŠ ln½ðt s T h;out Þ=ðT s;out T h;in ÞŠ and for the pump of both cycles _mðp 2 P 1 Þ¼h p _mðh 2 h 1 Þ; where _m is the mass flowrate of working fluid in the ORC (subscripts 1 and 2 denote thermodynamic states of working fluid in the ORC). These equations have been implemented in Engineering Equation Solver (EES [10]), which also includes relations between the thermodynamic properties of R134a and many other pure fluids. The resulting system of nonlinear algebraic i43

3 M. Khennich et al. equations has been validated [11] in the case of a simple ORC generating unit (i.e. which is not part of a CHP system). In the present case, this system of equations involves more variables than equations. We have therefore addressed an optimization problem for different specified values of the heating load Q h. Its objective is to determine the evaporation pressure of the R134a that maximizes the net power output of the ORC and satisfies the specified heating load. This approach is analogous to that in [9, 11] for ORC cycles which are not part of a CHP system. The maximization of the net power output is an important objective since the ORC converts only a small fraction of the source s thermal energy due to its low temperature. The investigated range of evaporation pressures is limited by the two saturation pressures of R134a corresponding to the condensation temperature (T 1 ¼ T p,in þ DT) and to its temperature at the exit from the vapor generator (T 3 ¼ T s,in 2 DT). 3 RESULTS The results for three values of DT (5, 10 and 15 K) and the two studied configurations are presented in Figures 2 4. The extensive quantities (heating load, maximum net power output, total exergy destruction and total thermal conductance of the heat exchangers) are presented per unit mass flowrate of the heat source (indicated as specific quantities). The dead state for exergy calculations is at atmospheric pressure and T DS ¼ 108C (the same as the temperature of the cooling water entering the condenser of Cycle A subscript DS represent dead state temperature). The intensive quantities are the optimum evaporation pressure (determined with the Golden Section Search method available in EES) and the corresponding vapor generator pinch (VGP). The energy utilization factor 1 is equal to the ratio of the total useful effects (heating load plus maximum net power output) to the enthalpy difference between the source inlet and the dead state ( _M s c ps ðt s;in T DS ÞÞ; therefore, 1 is independent of the heat source mass flowrate and its denominator is fixed for the conditions under investigation. It provides a non-dimensional index of the energy performance of the systems under consideration. Figure 2 illustrates the effects of the specific heating load on the maximum net power output per unit mass flowrate of the heat source and the corresponding optimum evaporation pressure (P 2 ¼ P 3 subscripts 2 and 3 denote the thermodynamic states of working fluid in the ORC). For both configurations, Q h is maximum when W n,max (subscript max denotes maximum) is Figure 2. Effects of Q h on W n,max and P ev,op (subscripts ev, h and op denote vapor generator, heat transport fluid and optimum, respectively) for three values of DT. Figure 3. Effects of Q h on UA and 1 for three values of DT. i44

4 Comparison of combined heat and power systems Figure 4. Effects of Q h on VGP and E d for three values of DT. nil (for this condition T s* ¼ T s,in ). The maximum value of Q h for Cycle A is independent of DT (approximately equal to 30 kj/kg) since the ORC unit is not operating under these conditions. This value is approximately the same as that for Cycle B with DT ¼ 10 K. The maximum value of Q h for Cycle B increases monotonically with DT. It should be noted that for most combinations of Q h and DT, Cycle A produces a higher net power output per unit mass flowrate of the heat source; Cycle B produces a higher W n,max only when DT ¼ 5 K and Q h kj/kg. Furthermore, it is important to note that for both cycles the value of W n,max is always much smaller than the corresponding value of Q h. Figure 2 also shows that in the case of Cycle A the quantity W n,max decreases monotonically as Q h increases. Qualitatively this behavior could have been predicted from the operating conditions of Cycle A. It is due to the fact that the enthalpy drop of the source, c ps.(t s,in 2 T s,out ), is constant since both T s,in and T s,out are fixed for this configuration. Therefore, the increase of Q h causes an increase of the intermediate source temperature T s* (see Figure 1) and a decrease of the heat supplied to the ORC unit which results in a decrease of the net power output. On the other hand, in the case of Cycle B the variation in W n,max with Q h is not monotonic. For low values of Q h, W n,max increases with Q h but for high values of Q h the trend is reversed while T s,out decreases monotonically as Q h increases. This behavior of W n,max is due to the fact that, for low values of the heating load, as Q h increases the decrease in the source outlet temperature is such that the source supplies to the system more energy than the increase in Q h. As a result, the ORC produces more net energy. On the other hand, for high values of Q h, as the heating load increases, the decrease in the source outlet temperature is small and thus the source supplies to the system less energy than the increase of Q h. As a result the ORC produces less energy under these conditions. The effect of the DT on W n,max is the same for both configurations: W n,max decreases when DT increases because the maximum temperature of the cycle (T 3 ) decreases while its minimum temperature (T 1 ) increases. Finally, Figure 2 shows that the effect of Q h on the optimum evaporation pressure is not the same for cycles A and B. In the first case, it increases with Q h while in the second one it decreases as Q h increases. This behavior is due to the fact that as Q h increases the average temperature of the heat source in the vapor generator increases in the case of Cycle A (since T s* increases with Q h ) but it decreases in the case of Cycle B (since T s,out decreases as Q h increases). The only exceptions are for Cycle A at high values of Q h and for Cycle B at very small values of Q h (and DT ¼ 158C); for these conditions, the evaporation pressure is equal to the saturation pressure corresponding to T 3 and remains therefore constant. Furthermore, Figure 2 shows that for both configurations the optimum evaporation pressure decreases as DT increases. The effect of DT on the optimum evaporation pressure is more pronounced in the case of Cycle B. For values of Q h smaller than 11 kj/kg the optimum evaporation pressure for Cycle A is lower than the corresponding value for Cycle B. For higher values of Q h, the optimum evaporation pressure for Cycle A is higher. Figure 3 shows the effects of Q h on the total thermal conductance UA of the heat exchangers and on the energy utilization factor 1. The latter decreases as DT increases but this effect is small, especially for large values of Q h ; therefore, only the results for DT ¼ 5 K are shown. For both cycles, the energy utilization factor increases with Q h since, as noted before, its denominator is constant while its numerator increases because Q h varies more rapidly than W n,max. The values of 1 are higher in the case of Cycle A when Q h is smaller than 23 kj/kg; on the other hand, when Q h is bigger 1 for Cycle B is slightly higher. Cycle B is particularly appropriate for heating loads exceeding 30 kj/kg for which Cycle A is inoperative (for higher heating loads T s,out must be lower than the imposed value of 708C). As shown in Figure 3 the qualitative effect of Q h on the total thermal conductance UA of the heat exchangers is strikingly different for the two configurations under consideration. As Q h increases, UA decreases for Cycle A while it increases for Cycle B. In the first case, this behavior is due to the progressive decrease of the size of the ORC unit which in the limit (T s* ¼ T s,in or equivalently W n,max ¼ 0) leads to the elimination of the vapor generator and condenser. On the other hand, in the case of Cycle B, the increase in Q h necessitates a bigger vapor i45

5 M. Khennich et al. generator and a bigger condenser since the heat supplied by the source to the heating load is transferred through the ORC unit. The values of UA are higher in the case of Cycle A when Q h is smaller than 16 kj/kg; on the other hand, when Q h is bigger UA for Cycle B is higher. The effect of DT on UA is the same for both configurations: as DT increases UA decreases since the DT between the two fluid streams in the vapor generator and condenser decreases. For Cycle A, this effect decreases as Q h increases since under these conditions the importance of the vapor generator and condenser of the ORC unit diminishes. In the case of Cycle B, the effect of DT on UA increases as Q h increases since under these conditions the vapor generator and condenser of the ORC unit grow bigger. Figure 4 shows the effects of Q h on the VGP and on the specific total exergy destruction E d for the operating conditions for which the specific net power output is maximum. The qualitative influence of Q h on these two quantities is different for the two cycles. Thus, as Q h increases E d decreases for Cycle A and increases for Cycle B. The reasons for this opposite behavior are the same as those explaining the influence of Q h on UA. The effect of DT on E d is the same for both configurations: as DT increases E d decreases since the temperature difference between the two fluid streams in the vapor generator and condenser decreases. For Cycle A, this effect decreases as Q h increases while the opposite is true in the case of Cycle B. The reasons for this opposite behavior are the same as those explaining the influence of Q h on UA. The VGP shown in Figure 4 increases with DT and remains constant over a fairly large range of Q h values for both cycles. These constant values of VGP are in each case equal to DT/2, the chosen minimum acceptable value. In the case of Cycle A, they occur at low values of Q h ;asq h increases the VGP for this cycle increases. However, this increase is not very important and does not change the decreasing trend of UA and E d despite the fact that it increases the logarithmic mean temperature difference of the vapor generator. It should be noted that for Cycle A with DT ¼ 5 K the VGP for Q h higher than 23 kj/kg is independent of Q h and equal to DT. This indicates that for these conditions the VGP occurs at the source inlet since it is equal to (T s,in 2 T 3 ). In the case of Cycle B, the constant values of VGP occur at high values of Q h ;asq h decreases the VGP for this cycle increases. However, this increase is not very important and does not change the decreasing trend of UA and E d despite the fact that it increases the logarithmic mean temperature difference of the vapor generator. 4 CONCLUSION The effects of the specific heat load Q h on the two CHP cycles under study are very different. Thus, for Cycle A, as Q h increases the maximum specific net power output, the total thermal conductance and the total exergy destruction decrease. On the other hand, for Cycle B, as Q h increases the maximum specific net power output does not vary monotonically (it reaches a maximum value) while the total thermal conductance and the total exergy destruction increase. In general, the maximum value of the specific net power output is higher for Cycle A. For low values of the specific heat load, Cycle A requires a lower optimum evaporation pressure, has a higher energy utilization factor but necessitates larger values of the total thermal conductance. Cycle B is particularly appropriate for high values of the specific heat loads for which Cycle A is inoperative. Both cycles generate considerably less mechanical power than the quantity of heat delivered to the heating load. Furthermore, in both cases a higher fraction of the energy content of the heat source is used as the heating load increases. The presented results indicate that the preliminary design of CHP systems should consider both cycles. For a given specific heat load and fixed values of the external fluids temperature, the choice between Cycles A and B must be based on their respective maximum net power output and the corresponding optimum evaporation pressure as well as on the thermal conductance of the heat exchangers since P ev and UA influence the size, and cost, of the system. REFERENCES [1] Pernecker G, Uhlig S. Low-enthalpy power generation with ORCturbogenerator. The Altheim project, Upper Austria. GHC Bull 2002; 23: [2] Hjartarson H, Maack R, Johannesson S. Husavik energy multiple use of geothermal energy. GHC Bull geoheat.oit.edu/bulletin/bull26-2/art3.pdf. [3] Schuster A, Karellas S, Kakaras E, et al. Energetic and economic investigation of Organic Rankine Cycles applications. Appl Therm Eng 2009;29: [4] Obernberger I, Thonhofer P, Reisenhofer E. Description and evaluation of the new 1000 kwel Organic Rankine Cycle process integrated in the biomass CHP plant in Lienz, Austria. Euroheat Power 2002;10:1 17. [5] Guo T, Wang HX, Zhang SJ. Fluids and parameters optimization for a novel cogeneration system driven by low-temperature geothermal sources. Energy 2011;36: [6] Di Pippo R. Second law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics 2004;33: [7] Cayer E, Galanis N, Nesreddine H. Parametric study and optimization of a transcritical power cycle using a low temperature source. Appl Energy 2010;87: [8] Saleh B, Koglbauer G, Wendland M, et al. Working fluids for lowtemperature organic Rankine cycles. Energy 2007;32: [9] Lakew AA, Bolland O. Working fluids for low-temperature heat source. Appl Therm Eng 2010;30: [10] Klein SA. Engineering Equation Solver (EES), Academic Commercial V McGraw Hill, [11] Khennich M, Galanis N. Thermodynamic analysis and optimization of power cycles using a finite low-temperature heat source. Int J Energy Res DOI: /er i46

Thermodynamic Analysis of Organic Rankine Cycle using Different Working Fluids

Thermodynamic Analysis of Organic Rankine Cycle using Different Working Fluids Thermodynamic Analysis of Organic Rankine Cycle using Different Working Fluids Jayaram Bhat 1, G.L. Arunkumar 2 Deapartment of mechanical engineering, NMIT Bangalore Abstract ORC (Organic Rankine Cycle)

More information

Second Law Analysis of a Carbon Dioxide Transcritical Power System in Low-grade Heat Source Recovery

Second Law Analysis of a Carbon Dioxide Transcritical Power System in Low-grade Heat Source Recovery Second Law Analysis of a Carbon Dioxide Transcritical Power System in Low-grade Heat Source Recovery Y. Chen, Almaz Bitew Workie, Per Lundqvist Div. of Applied Thermodynamics and Refrigeration, Department

More information

MODELING THERMODYNAMIC ANALYSIS AND SIMULATION OF ORGANIC RANKINE CYCLE USING GEOTHERMAL ENERGY AS HEAT SOURCE

MODELING THERMODYNAMIC ANALYSIS AND SIMULATION OF ORGANIC RANKINE CYCLE USING GEOTHERMAL ENERGY AS HEAT SOURCE MODELING THERMODYNAMIC ANALYSIS AND SIMULATION OF ORGANIC RANKINE CYCLE USING GEOTHERMAL ENERGY AS HEAT SOURCE Colak L.* and Bahadir T. *Author for correspondence Department of Mechanical Engineering,

More information

Thermodynamic performance of Kalina cycle system 11 (KCS11): feasibility of using alternative zeotropic mixtures

Thermodynamic performance of Kalina cycle system 11 (KCS11): feasibility of using alternative zeotropic mixtures *Corresponding author: r.k.al-dadah@bham.ac.uk Thermodynamic performance of Kalina cycle system 11 (KCS11): feasibility of using alternative zeotropic mixtures... Ahmed Elsayed, Mebrahtu Embaye, Raya AL-Dadah

More information

Exergy Analysis of Absorption Power Cycle Depending on Source Temperatures

Exergy Analysis of Absorption Power Cycle Depending on Source Temperatures Journal of Clean Energy Technologies, Vol. 4, No. 4, July 16 Exergy Analysis of Absorption Power Cycle Depending on Source Temperatures Kyoung Hoon Kim Abstract The absorption power generation systems

More information

PERFORMANCE EVALUATION OF HEAT PUMP SYSTEM USING R744/R161 MIXTURE REFRIGERANT

PERFORMANCE EVALUATION OF HEAT PUMP SYSTEM USING R744/R161 MIXTURE REFRIGERANT THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1673-1677 1673 PERFORMANCE EVALUATION OF HEAT PUMP SYSTEM USING R744/R161 MIXTURE REFRIGERANT by Xian-Ping ZHANG a,b, Xin-Li WEI b, Xiao-Wei FAN c*, Fu-Jun

More information

BINARY BLEND OF CARBON DIOXIDE AND FLUORO ETHANE AS WORKING FLUID IN TRANSCRITICAL HEAT PUMP SYSTEMS

BINARY BLEND OF CARBON DIOXIDE AND FLUORO ETHANE AS WORKING FLUID IN TRANSCRITICAL HEAT PUMP SYSTEMS THERMAL SCIENCE, Year 2015, Vol. 19, No. 4, pp. 1317-1321 1317 Introduction BINARY BLEND OF CARBON DIOXIDE AND FLUORO ETHANE AS WORKING FLUID IN TRANSCRITICAL HEAT PUMP SYSTEMS by Xian-Ping ZHANG a*, Fang

More information

Comparison of Thermodynamic Cycles for Electricity Production from Low-Temperature Geothermal Heat Sources

Comparison of Thermodynamic Cycles for Electricity Production from Low-Temperature Geothermal Heat Sources WP EN2012-006 Comparison of Thermodynamic Cycles for Electricity Production from Low-Temperature Geothermal Heat Sources Daniël Walraven, Ben Laenen en William D'haeseleer TME WORKING PAPER - Energy and

More information

ENERGY AND EXERGY ANALYSIS OF HEAT PUMP USING R744/R32 REFRIGERANT MIXTURE

ENERGY AND EXERGY ANALYSIS OF HEAT PUMP USING R744/R32 REFRIGERANT MIXTURE THERMAL SCIENCE, Year 2014, Vol. 18, No. 5, pp. 1649-1654 1649 ENERGY AND EXERGY ANALYSIS OF HEAT PUMP USING R744/R32 REFRIGERANT MIXTURE by Fang WANG, Xiao-Wei FAN, Jie CHEN, and Zhi-Wei LIAN School of

More information

Parametric Study of a Double Effect Absorption Refrigeration System

Parametric Study of a Double Effect Absorption Refrigeration System Parametric Study of a Double Effect Absorption Refrigeration System 1 Abbas Alpaslan KOCER, 2 Murat OZTURK 1 Uluborlu Selahattin Karasoy Vocational School, Suleyman Demirel University, 32260, Isparta Turkey,

More information

Thermoeconomic evaluation of combined heat and power generation for geothermal applications

Thermoeconomic evaluation of combined heat and power generation for geothermal applications Thermoeconomic evaluation of combined heat and power generation for geothermal applications Florian Heberle *, Markus Preißinger, Dieter Brüggemann University of Bayreuth, Germany * Corresponding author.

More information

Vapor and Combined Power Cycles

Vapor and Combined Power Cycles 9 CHAPTER Vapor and Combined Power Cycles 9-1 The Simple Ideal Rankine Cycle The 9-2 Rankine Cycle: Actual Vapor Power Deviation and Pump and Turbine Irreversibilities (a) Deviation of actual vapor power

More information

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction

Improvement of distillation column efficiency by integration with organic Rankine power generation cycle. Introduction Improvement of distillation column efficiency by integration with organic Rankine power generation cycle Dmitriy A. Sladkovskiy, St.Petersburg State Institute of Technology (technical university), Saint-

More information

Available online at ScienceDirect. Giuliano Cammarata, Luigi Cammarata, Giuseppe Petrone*

Available online at   ScienceDirect. Giuliano Cammarata, Luigi Cammarata, Giuseppe Petrone* Available online at www.sciencedirect.com ScienceDirect Energy Procedia 45 ( 2014 ) 1337 1343 68th Conference of the Italian Thermal Machines Engineering Association, ATI2013 Thermodynamic analysis of

More information

Chapter 10 VAPOR AND COMBINED POWER CYCLES

Chapter 10 VAPOR AND COMBINED POWER CYCLES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 10 VAPOR AND COMBINED POWER CYCLES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on off-design performance

Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on off-design performance Comparison of micro gas turbine heat recovery systems using ORC and trans-critical CO 2 cycle focusing on - performance IV International Seminar on ORC Power Systems September 13-15, 2017 Suk Young Yoon,

More information

Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis

Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Evaluation of Working Fluids for Organic Rankine Cycle Based on Exergy Analysis To cite this article: D Setiawan et al 2018 IOP

More information

Performance Analysis of a Combined Power and Ejector Refrigeration Cycle for Different Working Fluids

Performance Analysis of a Combined Power and Ejector Refrigeration Cycle for Different Working Fluids International Journal of Mining, Metallurgy & Mechanical Engineering (IJMMME) Volume 1, Issue (13) ISSN 23-42; EISSN 23-46 Performance Analysis of a Combined Power and Ejector Refrigeration Cycle for Different

More information

Organic Rankine cycles in waste heat recovery: a comparative study

Organic Rankine cycles in waste heat recovery: a comparative study *Corresponding author: a.m.c.auld@durham.ac.uk Organic Rankine cycles in waste heat recovery: a comparative study... Alison Auld, Arganthaël Berson and Simon Hogg * School of Engineering and Computing

More information

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle

Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine Cycle Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2010 Low-Grade Waste Heat Recovery for Power Production using an Absorption-Rankine

More information

Exergy in Processes. Flows and Destruction of Exergy

Exergy in Processes. Flows and Destruction of Exergy Exergy in Processes Flows and Destruction of Exergy Exergy of Different Forms of Energy Chemical Energy Heat Energy Pressurised Gas Electricity Kinetic Energy Oxidation of Methane ΔH = -890.1 kj/mol ΔS

More information

Performance Improvement of Single-Flash Geothermal Power Plant Applying Three Cases Development Scenarios Using Thermodynamic Methods

Performance Improvement of Single-Flash Geothermal Power Plant Applying Three Cases Development Scenarios Using Thermodynamic Methods Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Performance Improvement of Single-Flash Geothermal Power Plant Applying Three Cases Development Scenarios Using Thermodynamic

More information

COMPARATIVE ANALYSES OF TWO IMPROVED CO 2 COMBINED COOLING, HEATING, AND POWER SYSTEMS DRIVEN BY SOLAR ENERGY

COMPARATIVE ANALYSES OF TWO IMPROVED CO 2 COMBINED COOLING, HEATING, AND POWER SYSTEMS DRIVEN BY SOLAR ENERGY S93 Introduction COMPARATIVE ANALYSES OF TWO IMPROVED CO 2 COMBINED COOLING, HEATING, AND POWER SYSTEMS DRIVEN BY SOLAR ENERGY by Wanjin BAI a* and Xiaoxiao XU b a School of Mechanical and Vehicle Engineering,

More information

Energy Conversion and Management

Energy Conversion and Management Energy Conversion and Management 60 (2012) 188 195 Contents lists available at SciVerse ScienceDirect Energy Conversion and Management journal homepage: www.elsevier.com/locate/enconman Theoretical analysis

More information

Exergetic Sensitivity Analysis of ORC Geothermal Power Plant Considering Ambient Temperature

Exergetic Sensitivity Analysis of ORC Geothermal Power Plant Considering Ambient Temperature GRC Transactions, Vol. 40, 2016 Exergetic Sensitivity Analysis of ORC Geothermal Power Plant Considering Ambient Temperature Saeid Mohammadzadeh Bina, Saeid Jalilinasrabady, and Hikari Fujii Graduate School

More information

Chapter 10 POWER CYCLES. Department of Mechanical Engineering

Chapter 10 POWER CYCLES. Department of Mechanical Engineering Chapter 10 VAPOR AND COMBINED POWER CYCLES Dr Ali Jawarneh Department of Mechanical Engineering Hashemite University it 2 Objectives Analyze vapor power cycles in which h the working fluid is alternately

More information

ISOBUTANE GEOTHERMAL BINARY CYCLE SENSITIVITY ANALYSIS

ISOBUTANE GEOTHERMAL BINARY CYCLE SENSITIVITY ANALYSIS 131 ISOBUTANE GEOTHERMAL BINARY CYCLE SENSITIVITY ANALYSIS K. Z.Iqbal, L. W. Fish, and K. E. Starling School of Chemical Engineering and Materials Science, The University of Oklahoma, Norman, Oklahoma

More information

Exergy analysis of internal regeneration in supercritical cycles of ORC power plant

Exergy analysis of internal regeneration in supercritical cycles of ORC power plant archives of thermodynamics Vol. 33(2012), No. 3, 51 63 DOI: 10.2478/v10173-012-0017-9 Exergy analysis of internal regeneration in supercritical cycles of ORC power plant ALEKSANDRA BORSUKIEWICZ-GOZDUR

More information

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives Chapter 0 VAPOR AND COMBINED POWER CYCLES In Chap. 9 we discussed gas power cycles for which the working fluid remains a gas throughout the entire cycle. In this chapter, we consider vapor power cycles

More information

Design and Optimization of Kalina Cycle for Geothermal Energy in Kenya

Design and Optimization of Kalina Cycle for Geothermal Energy in Kenya GRC Transactions, Vol. 38, 2014 Design and Optimization of Kalina Cycle for Geothermal Energy in Kenya Wencheng Fu School of Electrical Engineering, Tianjin University of Technology, Tianjin, China fuwch@tju.edu.cn

More information

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives

Chapter 10. In Chap. 9 we discussed gas power cycles for which the VAPOR AND COMBINED POWER CYCLES. Objectives Chapter 0 VAPOR AND COMBINED POWER CYCLES In Chap. 9 we discussed gas power cycles for which the working fluid remains a gas throughout the entire cycle. In this chapter, we consider vapor power cycles

More information

PERFORMANCE ANALYZING OF AN ORGANIC RANKINE CYCLE UNDER DIFFERENT AMBIENT CONDITIONS

PERFORMANCE ANALYZING OF AN ORGANIC RANKINE CYCLE UNDER DIFFERENT AMBIENT CONDITIONS Journal of Thermal Engineering, Vol. 3, No. 5, pp. 1498-1504, October, 2017 Yildiz Technical University Press, Istanbul, Turkey PERFORMANCE ANALYZING OF AN ORGANIC RANKINE CYCLE UNDER DIFFERENT AMBIENT

More information

Durham Research Online

Durham Research Online Durham Research Online Deposited in DRO: 29 January 2014 Version of attached file: Published Version Peer-review status of attached file: Peer-reviewed Citation for published item: Auld, Alison and Berson,

More information

A COMPREHENSIVE STUDY ON WASTE HEAT RECOVERY FROM INTERNAL COMBUSTION ENGINES USING ORGANIC RANKINE CYCLE

A COMPREHENSIVE STUDY ON WASTE HEAT RECOVERY FROM INTERNAL COMBUSTION ENGINES USING ORGANIC RANKINE CYCLE THERMAL SCIENCE: Year 2013, Vol. 17, No. 2, pp. 611-624 611 A COMPREHENSIVE STUDY ON WASTE HEAT RECOVERY FROM INTERNAL COMBUSTION ENGINES USING ORGANIC RANKINE CYCLE by Mojtaba TAHANI a, b, Saeed JAVAN

More information

THEORETICAL STUDY OF HEAT PUMP SYSTEM USING CO 2 /DIMETHYLETHER AS REFRIGERANT

THEORETICAL STUDY OF HEAT PUMP SYSTEM USING CO 2 /DIMETHYLETHER AS REFRIGERANT THERMAL SCIENCE, Year 2013, Vol. 17, No. 5, pp. 1261-1268 1261 THEORETICAL STUDY OF HEAT PUMP SYSTEM USING CO 2 /DIMETHYLETHER AS REFRIGERANT by Xiao-Wei FAN a*, Xian-Ping ZHANG b,c, Fu-Jun JU a, and Fang

More information

Chapter 8. Vapor Power Systems

Chapter 8. Vapor Power Systems Chapter 8 Vapor Power Systems Introducing Power Generation To meet our national power needs there are challenges related to Declining economically recoverable supplies of nonrenewable energy resources.

More information

Lecture No.1. Vapour Power Cycles

Lecture No.1. Vapour Power Cycles Lecture No.1 1.1 INTRODUCTION Thermodynamic cycles can be primarily classified based on their utility such as for power generation, refrigeration etc. Based on this thermodynamic cycles can be categorized

More information

Optimal Configuration for Low-T Geothermal CHP Plants

Optimal Configuration for Low-T Geothermal CHP Plants GRC Transactions, Vol. 41, 2017 Optimal Configuration for Low-T Geothermal CHP Plants Sarah Van Erdeweghe a,c, Johan Van Bael b,c, Ben Laenen b, William D haeseleer a,c a KU Leuven, Applied Mechanics and

More information

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems

Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced Geothermal Systems Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2016 Fundamental Investigation Of Whole-Life Power Plant Performance For Enhanced

More information

Investigations of N 2 O Transcritical Refrigeration Cycle Using Dedicated Mechanical Subcooling. Sanjeev Kumar 1 and Dr. D.K.

Investigations of N 2 O Transcritical Refrigeration Cycle Using Dedicated Mechanical Subcooling. Sanjeev Kumar 1 and Dr. D.K. e t International Journal on Emerging Technologies (Special Issue NCETST-2017) 8(1): 340-344(2017) (Published by Research Trend, Website: www.researchtrend.net) ISSN No. (Print) : 0975-8364 ISSN No. (Online)

More information

Energy Conversion and Management

Energy Conversion and Management Energy Conversion and Management 50 (2009) 567 575 Contents lists available at ScienceDirect Energy Conversion and Management journal homepage: www.elsevier.com/locate/enconman A combined power cycle utilizing

More information

THERMODYNAMIC ANALYSIS OF ORGANIC RANKINE CYCLE USING LNG COLD ENERGY DEPENDING ON SOURCE TEMPERATURES

THERMODYNAMIC ANALYSIS OF ORGANIC RANKINE CYCLE USING LNG COLD ENERGY DEPENDING ON SOURCE TEMPERATURES THERMODYNAMIC ANALYSIS OF ORGANIC RANKINE CYCLE USING LNG COLD ENERGY DEPENDING ON SOURCE TEMPERATURES 1 KYOUNG HOON KIME, 2 SE WOONG KIM 1,2 Department of Mechanical Engineering, Kumoh National Institute

More information

PARAMETRIC STUDY OF GAS TURBINE CYCLE COUPLED WITH VAPOR COMPRESSION REFRIGERATION CYCLE FOR INTAKE AIR COOLING

PARAMETRIC STUDY OF GAS TURBINE CYCLE COUPLED WITH VAPOR COMPRESSION REFRIGERATION CYCLE FOR INTAKE AIR COOLING International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 9, September 2018, pp. 248 261, Article ID: IJMET_09_09_029 Available online at http://www.iaeme.com/ijmet/issues.asp?jtype=ijmet&vtype=9&itype=9

More information

Investigation of Separator Parameters in Kalina Cycle Systems

Investigation of Separator Parameters in Kalina Cycle Systems Research Article International Journal of Current Engineering and Technology E-ISSN 2277 46, P-ISSN 2347-56 24 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Investigation

More information

Performance Evaluation for a 10 kw Solar Organic Rankine Cycle Power System to Operate in the UK Climate Conditions

Performance Evaluation for a 10 kw Solar Organic Rankine Cycle Power System to Operate in the UK Climate Conditions Performance Evaluation for a 10 kw Solar Organic Rankine Cycle Power System to Operate in the UK Climate Conditions Khaled Hossin, Northumbria University, UK Khamid Mahkamov, Northumbria University, UK

More information

PERFORMANCE ANALYSIS OF ORGANIC RANKINE CYCLES USING DIFFERENT WORKING FLUIDS

PERFORMANCE ANALYSIS OF ORGANIC RANKINE CYCLES USING DIFFERENT WORKING FLUIDS THERMAL SCIENCE, Year 015, Vol. 19, No. 1, pp. 179-191 179 PERFORMANCE ANALYSIS OF ORGANIC RANKINE CYCLES USING DIFFERENT WORKING FLUIDS by Qidi ZHU, Zhiqiang SUN *, and Jiemin ZHOU School of Energy Science

More information

Comparative Efficiency of Geothermal Vapor-Turbine Cycles

Comparative Efficiency of Geothermal Vapor-Turbine Cycles Proceedings World Geothermal Congress 2005 ntalya, Turkey, 24-29 pril 2005 Comparative Efficiency of Geothermal Vapor-Turbine Cycles M. Boyarskiy, O. Povarov,. Nikolskiy,. Shipkov NUK Stock Company, 9.Krasnokazarmennaya

More information

Comparison of ORC and Kalina cycles for waste heat recovery in the steel industry

Comparison of ORC and Kalina cycles for waste heat recovery in the steel industry Open Access Journal journal homepage:papers.itc.pw.edu.pl Comparison of ORC and Kalina cycles for waste heat recovery in the steel industry Jarosław Milewski a,, Janusz Krasucki b a Warsaw University of

More information

Off-design operation of ORC and CO 2 power production cycles for low temperature surplus heat recovery

Off-design operation of ORC and CO 2 power production cycles for low temperature surplus heat recovery *Corresponding author: harald.taxt.walnum@sintef. no Off-design operation of ORC and CO 2 power production cycles for low temperature surplus heat recovery... Harald Taxt Walnum *, Yves Ladam, Petter Nekså

More information

CHAPTER 1 BASIC CONCEPTS

CHAPTER 1 BASIC CONCEPTS GTU Paper Analysis CHAPTER 1 BASIC CONCEPTS Sr. No. Questions Jan 15 Jun 15 Dec 15 May 16 Jan 17 Jun 17 Nov 17 May 18 Differentiate between the followings; 1) Intensive properties and extensive properties,

More information

Performance Benefits for Organic Rankine Cycles with Flooded Expansion

Performance Benefits for Organic Rankine Cycles with Flooded Expansion Purdue University Purdue e-pubs Publications of the Ray W. Herrick Laboratories School of Mechanical Engineering 6-2-2010 Performance Benefits for Organic Rankine Cycles with Flooded Expansion Brandon

More information

Thermodynamic Modeling of Binary Cycles Looking for Best Case Scenarios

Thermodynamic Modeling of Binary Cycles Looking for Best Case Scenarios Thermodynamic Modeling of Binary Cycles Looking for Best Case Scenarios Silke Köhler and Ali Saadat GFZ-Potsdam, Section Geothermics, Telegrafenberg, D-14473 Potsdam, Germany Email: skoe@gfz-potsdam.de,

More information

Analysis of the Thermal Exploitation of the Vinasse from Sugarcane Ethanol Production through Different Configurations of an Organic Rankine Cycle

Analysis of the Thermal Exploitation of the Vinasse from Sugarcane Ethanol Production through Different Configurations of an Organic Rankine Cycle A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 65, 2018 Guest Editors: Eliseo Ranzi, Mario Costa Copyright 2017, AIDIC Servizi S.r.l. ISBN 978-88-95608-62-4; ISSN 2283-9216 The Italian Association

More information

Permanent City Research Online URL:

Permanent City Research Online URL: Read, M. G., Smith, I. K. & Stosic, N. (2015). Comparison of Organic Rankine Cycle Under Varying Conditions Using Turbine and Twin-Screw Expanders. Paper presented at the 3rd International Seminar on ORC

More information

Supercritical Fluid Parameters in Organic Rankine Cycle Applications

Supercritical Fluid Parameters in Organic Rankine Cycle Applications Int. J. of Thermodynamics ISSN 131-9724 Vol. 11 (No. 3), pp. 11-18, September 28 Abstract Supercritical Fluid Parameters in Organic Rankine Cycle Applications Sotirios Karellas, Andreas Schuster* National

More information

Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion Transcritical CO 2 Refrigeration Cycle

Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion Transcritical CO 2 Refrigeration Cycle Entropy 2014, 16, 4309-4321; doi:10.3390/e16084309 Article OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Effect of Suction Nozzle Pressure Drop on the Performance of an Ejector-Expansion

More information

Evaluation of the Impact of Off-Design Operation on an Air-Cooled Binary Power Plant. G. L. Mines. September 22, 2002 September 25, 2002

Evaluation of the Impact of Off-Design Operation on an Air-Cooled Binary Power Plant. G. L. Mines. September 22, 2002 September 25, 2002 INEEL/CON-02-00793 PREPRINT Evaluation of the Impact of Off-Design Operation on an Air-Cooled Binary Power Plant G. L. Mines September 22, 2002 September 25, 2002 Geothermal Resources Council Annual Meeting

More information

Radial Turbine Preliminary Design and Modelling

Radial Turbine Preliminary Design and Modelling Radial Turbine Preliminary Design and Modelling Shadreck M. Situmbeko University of Botswana, Gaborone, Botswana; University of KwaZulu-Natal, Durban, RSA; Freddie L. Inambao University of KwaZulu-Natal,

More information

2. The data at inlet and exit of the turbine, running under steady flow, is given below.

2. The data at inlet and exit of the turbine, running under steady flow, is given below. 3 rd week quiz 1. Identify the correct path of fluid flow in a steam power plant. a) Steam turbine-pump-boiler-condenser. b) Economizer- evaporator- superheater. c) Pump-turbine-condenser-evaporator. d)

More information

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India

K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar , India Thermodynamic Analysis of Combined ORC-VCR System Using Low Grade Thermal Energy K.S. Rawat 1, H. Khulve 2, A.K. Pratihar 3 1,3 Department of Mechanical Engineering, GBPUAT, Pantnagar-263145, India 2 Department

More information

THE EFFECT OF HEAT EXCHANGER DESIGN ON THE RETURN ON INVESTMENT OF A GEOTHERMAL POWER PLANT

THE EFFECT OF HEAT EXCHANGER DESIGN ON THE RETURN ON INVESTMENT OF A GEOTHERMAL POWER PLANT THE EFFECT OF HEAT EXCHANGER DESIGN ON THE RETURN ON INVESTMENT OF A GEOTHERMAL POWER PLANT Denny Budisulistyo 1, Michael Southon 1 and Susan Krumdieck 1 1 University of Canterbury, Private Bag 4800, Christchurch,

More information

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION

UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2008 MIE 411H1 F - THERMAL ENERGY CONVERSION Exam Type: X Examiner: J.S. Wallace You may use your copy of the

More information

Applied Thermal Engineering xxx (2016) xxx-xxx. Contents lists available at ScienceDirect. Applied Thermal Engineering

Applied Thermal Engineering xxx (2016) xxx-xxx. Contents lists available at ScienceDirect. Applied Thermal Engineering Applied Thermal Engineering xxx (2016) xxx-xxx Contents lists available at ScienceDirect Research Paper ARTICLE INFO Article history: Received 22 May 2016 Received in revised form 19 June 2016 Accepted

More information

Thermodynamics and Efficiency Analysis Toolbox 6 Sustainable Energy

Thermodynamics and Efficiency Analysis Toolbox 6 Sustainable Energy Thermodynamics and Efficiency Analysis Toolbox 6 Sustainable Energy Energy chains and overall versus individual efficiencies Playing by the rules - First Law energy conservation - Second Law - entropy

More information

Thermodynamic Comparison of Organic Rankine Cycles Employing Liquid-Flooded Expansion or a Solution Circuit

Thermodynamic Comparison of Organic Rankine Cycles Employing Liquid-Flooded Expansion or a Solution Circuit Purdue University Purdue e-pubs CTRC Research Publications Cooling Technologies Research Center 2013 Thermodynamic Comparison of Organic Rankine Cycles Employing Liquid-Flooded Expansion or a Solution

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 08 Aug p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 08 Aug p-issn: Thermodynamic analysis and comparison of various organic fluids for ORC in Gas turbine-organic Rankine combined cycle plant with solar reheating and regeneration of ORC fluid Dr. R.S. Mishra 1, Dharmendra

More information

Guidance page for practical work electricity production from geothermal energy

Guidance page for practical work electricity production from geothermal energy Guidance page for practical work electricity production from geothermal energy 1) Objectives of the practical work The project objective is to study the operation of power plants using geothermal energy

More information

Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander

Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander Energy 30 (2005) 1162 1175 www.elsevier.com/locate/energy Exergy analysis of transcritical carbon dioxide refrigeration cycle with an expander Jun Lan Yang, Yi Tai Ma*, Min Xia Li, Hai Qing Guan Thermal

More information

Thermodynamic Simulation of Steam Power Cycles using GUI- MatLab Interfaces

Thermodynamic Simulation of Steam Power Cycles using GUI- MatLab Interfaces RESEARCH ARTICLE OPEN ACCESS Thermodynamic Simulation of Steam Power Cycles using GUI- MatLab Interfaces Pedro F. Arce, Nian F. Vieira Chemical Engineering Department, School Engineering of Lorena, University

More information

Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis

Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2006 Enhancement of CO2 Refrigeration Cycle Using an Ejector: 1D Analysis Elias

More information

Utilization of THERMOPTIM Optimization Method

Utilization of THERMOPTIM Optimization Method Utilization of THERMOPTIM Optimization Method Thermoptim optimization method is dedicated to complex systems where a large number of fluids exchange heat, the overall behaviour of the system being governed

More information

Optimization of operating parameters for a 600MW Rankine cycle based Ultra Supercritical power plant

Optimization of operating parameters for a 600MW Rankine cycle based Ultra Supercritical power plant Optimization of operating parameters for a 600MW Rankine cycle based Ultra Supercritical power plant Peyyala Nagasubba Rayudu 1, Dr. K. GovindaRajulu 2 1 Research Scholar, Dept. of ME, JNTUA, Anantapuramu

More information

Efficiency Comparison between the Steam Cycle and the Organic Rankine Cycle for Small Scale Power Generation

Efficiency Comparison between the Steam Cycle and the Organic Rankine Cycle for Small Scale Power Generation Efficiency Comparison between the Steam Cycle and the Organic Rankine Cycle for Small Scale Power Generation B. Vanslambrouck a,, I. Vankeirsbilck a, M. van den Broek a, S. Gusev a, M. De Paepe b a Department

More information

Lecture No.3. The Ideal Reheat Rankine Cycle

Lecture No.3. The Ideal Reheat Rankine Cycle Lecture No.3 The Ideal Reheat Rankine Cycle 3.1 Introduction We noted in the last section that increasing the boiler pressure increases the thermal efficiency of the Rankine cycle, but it also increases

More information

Thermal and Exergy Analysis of Counter Flow Induced Draught Cooling Tower

Thermal and Exergy Analysis of Counter Flow Induced Draught Cooling Tower International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Thermal

More information

Thermodynamic analysis of a regenerative gas turbine cogeneration plant

Thermodynamic analysis of a regenerative gas turbine cogeneration plant Journal of KUMAR Scientific et al: & Industrial THERMODYNAMIC Research ANALYSIS OF A REGENERATIVE GAS TURBINE COGENERATION PLANT Vol. 69, March 2010, pp. 225-231 225 Thermodynamic analysis of a regenerative

More information

A Combined Thermal System with an Air-cooled Organic Rankine Cycle (ORC)

A Combined Thermal System with an Air-cooled Organic Rankine Cycle (ORC) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 61 (2014 ) 137 141 The 6 th International Conference on Applied Energy ICAE2014 A Combined Thermal System with an Air-cooled Organic

More information

USING LIQUID AIR AS A WAY TO STORE ENERGY

USING LIQUID AIR AS A WAY TO STORE ENERGY 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT2011 8 th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics 11 July 13 July 2011 Pointe

More information

1. To improve heat exchange between a gas & a liquid stream in a heat exchanger, it is decided to use fins. Correct the suitable option.

1. To improve heat exchange between a gas & a liquid stream in a heat exchanger, it is decided to use fins. Correct the suitable option. 1. To improve heat exchange between a gas & a liquid stream in a heat exchanger, it is decided to use fins. Correct the suitable option. a) Fins are generally attached on gas side. b) Fins are generally

More information

Organic Rankine Cycles

Organic Rankine Cycles Organic Rankine Cycles Giovanni Manente University of Padova University of Ljubljana, April 2017 Photograph of a 250-kW ORC prototype. (1) Preheater, (2) evaporator, (3) turbine, (4) generator, (5) condenser,

More information

SUPERCRITICAL HEAT TRANSFER AND HEAT EXCHANGER DESIGN FOR ORGANIC RANKINE APPLICATION

SUPERCRITICAL HEAT TRANSFER AND HEAT EXCHANGER DESIGN FOR ORGANIC RANKINE APPLICATION SUPERCRITICAL HEAT TRANSFER AND HEAT EXCHANGER DESIGN FOR ORGANIC RANKINE APPLICATION Lazova M* Kaya A, Huisseune H and De Paepe M *Author for correspondence Department of Flow, Heat and Combustion Mechanics,

More information

- 2 - SME Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency:

- 2 - SME Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency: - 2 - Q1. (a) Briefly explain how the following methods used in a gas-turbine power plant increase the thermal efficiency: i) regenerator ii) intercooling between compressors (6 marks) (b) Air enters a

More information

Available online at ScienceDirect. Energy Procedia 110 (2017 )

Available online at   ScienceDirect. Energy Procedia 110 (2017 ) Available online at www.sciencedirect.com ScienceDirect Energy Procedia 110 (2017 ) 492 497 1st International Conference on Energy and Power, ICEP2016, 14-16 December 2016, RMIT University, Melbourne,

More information

Modeling of Electricity Generation Using Medium-Temperature Geothermal Resources in Greece

Modeling of Electricity Generation Using Medium-Temperature Geothermal Resources in Greece Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19-25 April 2015 Modeling of Electricity Generation Using Medium-Temperature Geothermal Resources in Greece Anastasios Stamatis and Nikolaos

More information

On the use of heat pumps in total site heat integration

On the use of heat pumps in total site heat integration Computers and Chemical Engineering 27 (2003) 1707/1719 www.elsevier.com/locate/compchemeng On the use of heat pumps in total site heat integration Miguel J. Bagajewicz *, Andrés F. Barbaro Department of

More information

Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation

Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation Available online at www.sciencedirect.com Solar Energy 83 (2009) 605 613 www.elsevier.com/locate/solener Analysis of zeotropic mixtures used in low-temperature solar Rankine cycles for power generation

More information

Comparative assessment of refrigerants and non refrigerants as working fluids for a low temperature Organic Rankine Cycle

Comparative assessment of refrigerants and non refrigerants as working fluids for a low temperature Organic Rankine Cycle INSTITUTE OF TECHNOLOGY, NIRMA UNIVERSITY, AHMEDABAD 382 481, 08-10 DECEMBER, 2011 1 Comparative assessment of refrigerants and non refrigerants as working fluids for a low temperature Organic Rankine

More information

Chapter 9: Vapor Power Systems

Chapter 9: Vapor Power Systems Chapter 9: Vapor Power Systems Table of Contents Introduction... 2 Analyzing the Rankine Cycle... 4 Rankine Cycle Performance Parameters... 5 Ideal Rankine Cycle... 6 Example... 7 Rankine Cycle Including

More information

Modelling and Simulation of Solar-Biomass Hybrid Trigeneration using ORC-VCC

Modelling and Simulation of Solar-Biomass Hybrid Trigeneration using ORC-VCC Modelling and Simulation of Solar-Biomass Hybrid Trigeneration using ORC-VCC Dr. Kamal Kishore Khatri 1, M. Sai Praneeth 2 1 Associate Professor and Head, 2 Undergraduate student, Mechanical Engineering

More information

Organic Rankine Cycle Configurations

Organic Rankine Cycle Configurations Proceedings European Geothermal Congress 2007 Unterhaching, Germany, 30 May-1 June 2007 Organic Rankine Cycle Configurations Uri Kaplan Ormat Technologies, Inc., 6225 Neil Road, Suite 300 - Reno, NV 89511-1136,

More information

Optimal Selection of Using Fluids (HFC, HCFC, HFC) for an Organic Rankine Cycle Utilising a Low Temperature Geothermal Energy Source

Optimal Selection of Using Fluids (HFC, HCFC, HFC) for an Organic Rankine Cycle Utilising a Low Temperature Geothermal Energy Source 215 5th International Conference on Environment Science and Engineering Volume 83 of IPCBEE (215) DOI: 1.7763/IPCBEE. 215. V83. 8 Optimal Selection of Using Fluids (HFC, HCFC, HFC) for an Organic Rankine

More information

A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat

A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat K. Fraňa, M. Müller Abstract A presentation of the design of the Organic Rankine cycle (ORC) with heat regeneration and superheating

More information

Parametric Study of a Vapor Compression Refrigeration Cycle Using a Two-Phase Constant Area Ejector

Parametric Study of a Vapor Compression Refrigeration Cycle Using a Two-Phase Constant Area Ejector Vol:7, No:, 01 Parametric Study of a Vapor Compression Refrigeration Cycle Using a Two-Phase Constant Area Ejector E. Elgendy International Science Index, Mechanical and Mechatronics Engineering Vol:7,

More information

A DUAL LOOP ORGANIC RANKINE CYCLE UTILIZING BOIL-OFF GAS IN LNG TANKS AND EXHAUST OF MARINE ENGINE. * Corresponding Author ABSTRACT 1.

A DUAL LOOP ORGANIC RANKINE CYCLE UTILIZING BOIL-OFF GAS IN LNG TANKS AND EXHAUST OF MARINE ENGINE. * Corresponding Author ABSTRACT 1. Paper ID: 144, Page 1 A DUAL LOOP ORGANIC RANKINE CYCLE UTILIZING BOIL-OFF GAS IN LNG TANKS AND EXHAUST OF MARINE ENGINE Taehong Sung 1, Sang Youl Yoon 2*, Kyung Chun Kim 3* 1,3 School of Mechanical Engineering,

More information

Energy Analysis of Supercritical Water and Ammonia (Kalina) Power Cycle

Energy Analysis of Supercritical Water and Ammonia (Kalina) Power Cycle OPEN ACCESS World Sustainability Forum 204 Conference Proceedings Paper http://www.sciforum.net/conference/wsf-4 Energy Analysis of Supercritical Water and Ammonia (Kalina) Power Cycle Abtin Ataei, Mehdi

More information

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS

OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS OPTIMIZATION OF PARAMETERS FOR HEAT RECOVERY STEAM GENERATOR (HRSG) IN COMBINED CYCLE PLANTS Muammer Alus, Milan V. Petrovic University of Belgrade-Faculty of Mechanical Engineering, Laboratory of Thermal

More information

Chapter 5: Thermodynamic Processes and Cycles

Chapter 5: Thermodynamic Processes and Cycles Chapter 5: Thermodynamic Processes and Cycles 5-6) This problem examines the Rankine heat engine introduced in Figure 5-5. Saturated steam at T = 250 C enters the turbine and the condenser operates at

More information

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET

ME ENGINEERING THERMODYNAMICS UNIT III QUESTION BANK SVCET 1. A vessel of volume 0.04m 3 contains a mixture of saturated water and steam at a temperature of 250 0 C. The mass of the liquid present is 9 kg. Find the pressure, mass, specific volume, enthalpy, entropy

More information

Exergetic and economic analysis of Kalina cycle for low temperature geothermal sources in Brazil

Exergetic and economic analysis of Kalina cycle for low temperature geothermal sources in Brazil PROCEEDINGS OF ECOS 2012 - THE 25 TH INTERNATIONAL CONFERENCE ON EFFICIENCY, COST, OPTIMIZATION, SIMULATION AND ENVIRONMENTAL IMPACT OF ENERGY SYSTEMS JUNE 26-29, 2012, PERUGIA, ITALY Exergetic and economic

More information

SIMULATION OF A THERMODYNAMIC CYCLE WITH ORGANIC ABSORBENTS AND CO 2 AS WORKING FLUID

SIMULATION OF A THERMODYNAMIC CYCLE WITH ORGANIC ABSORBENTS AND CO 2 AS WORKING FLUID SIMULATION OF A THERMODYNAMIC CYCLE WITH ORGANIC ABSORBENTS AND CO 2 AS WORKING FLUID Huijuan Chen Department of Chemical Engineering, University of South Florida, Tampa, FL 33620, USA D. Yogi Goswami

More information