Studies on the Recriticality Potential during 1F3 Reflooding

Size: px
Start display at page:

Download "Studies on the Recriticality Potential during 1F3 Reflooding"

Transcription

1 8 TH CONFERENCE ON SEVERE ACCIDENT RESEARCH ERMSAR 2017 Studies on the Recriticality Potential during 1F3 Reflooding Piotr Darnowski, Kacper Potapczyk, Konrad Świrski Institute of Heat Engineering, Warsaw University of Technology May16-18, 2017 Warsaw, Poland

2 Agenda 1. Introduction 2. Methodology 3. Results 4. Discussion 5. Conclusions 6. References 2

3 Introduction - problem statement Recriticality in BWRs B4C and steel subject to eutectic reaction with Liquidous Temp. ~1250 C Fuel has much higher degradation temperature Absorber may relocate before the fuel. Short time window. In the case of unborated water injection recriticality is possible: Ref: [1]-[8] Core spraying ECCS Feedwater restart Water slug due to steam explosion 3

4 Introduction - motivation On January 2015 Finnish VTT published MELCOR2 Fukushima Unit 3 input deck [1]. We started to study the MELCOR model and we observed the following: During the core the fuel was partially intact. Majority of control blades mass was relocated to the lower plenum. Core was reflooded with seawater [2]. Absorber mass Fuel mass 4

5 Methodology Main purpose: Assessment of the risk of recriticality SERPENT 1 & 2 - Monte Carlo neutron transport solver. MELCOR severe accident integral computer code. Data exchange framework between codes was developed to transfer MELCOR results to SERPENT models. EDF - External Data Files 5

6 Methodology - MELCOR VTT MELCOR [1] inputdeck was applied to obtain core state during the accident: water levels, fuel, temperatures, integrity. CVH core nodalization was modified. Calculations with MELCOR Absorber mass Fuel mass original VTT model (4 CVs) Control rod poison (CRP) and fuel masses distribution at the reflooding initiation time. COR package model Intact active core axial levels 6-15, radial rings 1-4. modified core (CVH) model (16 CVs). 6

7 Methodology - SERPENT 3D Full core simulations were beyond our abilities - simplified model was applied. Neutronic modelling approach was based on the research by Mostellar and Rahn [7] and research by Bassam and Witt [8]. 3D core unit cell generated using 2D burnup results. 3D models were composed of four assemblies with different burnup: 15, 22.5 and 30 GWd/tHM. Average burnup 22.5 GWd/tHM (close to 1F3 burnup). Periodic BC on horizontal surfaces and black on the top and bottom. Reference cases HFP, Cold Unrodded and Cold Rodded to assess results. Vertical cross-sections Horizontal cross-section - intact rodded FA 7

8 Methodology - SERPENT 2D SERPENT was as applied as a 2D burnup code to estimate the core inventory. Calculations for different void fractions at Hot Full Power conditions (density history). The STEP3 fuel assembly design described in OECD/NEA Criticality Benchmark Phase IIIC was applied [10]. For other data: 1F3 and PB-2 available data [11],[12],[13],[14] Decay calculations - 48h delay. Changes in reactivity due to the Iodine Pit. 2D data transferred to the 3D models. Axial burnup distribution was modelled in 3D models. 8

9 Results - reference cases Reference cases results - frame of reference for accident results. Hot Full Power, Cold Rodded and Cold Unrodded STATE Comment SERPENT 1F3 State, Temperatures, Void eigenvalue SD HFP 3D, variable T and density CR ColdRodded, 300K, 0% CUR ColdUnRodded, 300K, 0% Approach was based on the research by Mostellar and Rahn [7]. Sub-critical state for k-eff < (khfp-2sd) Super-critical state for k-eff > (khfp+2sd) Substantially sub-critical for k-eff < (kcr-2sd) Substantially super-critical for k-eff > (kcur+2sd). 9

10 Results - base case Absorber mass Fuel mass MELCOR modified model Conservative case. No boric acid No control blades Recriticality - predicted But it is not realistic case 10

11 Results - boric acid sensitivity Different concntrations: 0, 100, 250, 500, 750, 1000, 1500, 2000 ppm of nat. boron. 750 ppm definitly prevents recriticality (substantially sub-critical). 250 ppm is enought for sub-critical state. Ring 3 Ring 4 11

12 Results - control blades sensitivity Ring 3 Ring 4 No boric acid. Control blades with fixed length. Different CBSF - control blade survival fractions. CBSF = Length/Intact Length. ~2 nodes without control blades (~80 cm) may lead to recriticality. 12

13 Discussion - main issues Highly unlikely that 100% of boron will leave the core. Small fraction of boron is enough to maintain sub-criticality. Leakage in the degraded core should be very high. Boric acid accumulation in the RPV - it was transferred during earlier reflooding. In LWRs geometry is optimized and any deviations reduce reactivity Rodless core time window Max flowrate was ~11 kg/s - it is low for recriticality. It is not full core 3D model. Only axial leakage, no radial. Only one type of fuel. In 1F3 there was MOX. Simplified degradation - based on the MELCOR - no absorbers nor structures left in the core. No re-solidification and other geometry variations. Intact fuel in the core assumed to maintain its original geometry and composition. Seawater was injected it may act as a neutron poison. No kinetic/dynamics simulation - SERPENT - only k-eff for the given core state. US EPRI performed similar study with the MAAP5 and the SERPENT for the 1F2 case [15]. They used SERPENT full core 3D model and detailed core inventory calculations with PARCS/HELIOS. no significant differences between 1F2 and 1F3, at least our knowledge about the core status and accident progression doesn t allow distinguishing with respect to re-criticality 13

14 Discussion Comparison of the core water level measured by TEPCO [14] with original MELCOR model and modified model. Uncertain measurements due to severe accident conditions. Rate of water injection with fire engines (Ref [1]). It is uncertain how much water was transferred into the core. Max flowrate was ~11 kg/s. 14

15 Conclusions Recriticality was very unlikely. There are no evidence of the recriticality. Recrticiality posible only when: Water is unborated. No boric acid accumulation in the RPV and no boron (from control blades) accumulation. core is unrodded at least partially. fuel is at least partially intact. Enought water transferred with proper flowrate. Achivments: MELCOR applied with SERPENT Parametric studies of boron and control blades. Older methodology dedicated to assess recriticality was modified. It takes into account the 3D nature of the system. Fast running models - sensitivity and unceratnity studies. 15

16 References [1] Sevón, T., 2015a. A MELCOR model of Fukushima Daiichi Unit 3 Accident, Nuclear Engineering and Design, 284, [2] TEPCO, Timeline of major events at Fukushima Daiichi Nuclear Power Station Unit 3from the occurrence of the earthquake until March 13, page 110, [3] W. Frid, F. Hojerup. Severe accident recriticality analyses. Nuclear Engineering and Design 209 (2001) [4] W. Frid, F. Hojerup, I. Lindholm, J. Miettinen, L. Nilsson, E. K. Puska, H. Sjovall, 1999, Severe Accident Recriticality Analyses, SKI Report 99:32, SKI - Swedish Nuclear Power Inspectorate [5] L. Nilsson; D. Kropaczek; W. Frid, 2000, Studies of Recriticality Transients in BWRs during Reflooding: Simulate-3k Development and Analyses, PHYSOR-2000, American Nuclear Society. Advances In Reactor Physics, and Mathematics and Computation Into the Next Millennium. Pittsburgh, PA, May 7-11, 2000 [6] Hojerup, F., Miettinen, J., Nilsson, L., Puska, E., K., Sjoval, H., Anttila, M., Lindholm, I., 1997, On Recriticality during RefReflood of a Degraded Boiling Water Reactor Core, Report NKS/RAK2(97)TR-A3 [7] Mosteller, R. D., Rahn, F. J., "Monte Carlo Calculations For Recriticality During The Reflood Phase Of A Severe Accident In A Boiling Water Reactor". Nuclear Technology , [8] Bassam, I., Witt, R., Parametric Study of Recriticality in a Boiling Water Reactor Severe Accident, Nuclear Technology 107 [9] SNL, MELCOR Best Modelling Practices - State-of-the-Art Reactor Consequence Analyses Project, Sandia National Laboratories, NUREG/CR [10] OECD/NEA, 2016, Nuclide Composition and Neutron Multiplication Factor of a Boiling Water Reactor Spent Fuel Assembly for Burn-up Credit and Criticality Control of Damaged Nuclear Fuel - Burn-up Credit Criticality Safety Benchmark Phase III-C Final Report NEA/NSC/R/(2015)6, [11] Moore, R. S., Notz, K. J., 1989, Oak Ridge National Laboratory Report ORNL/TM-10902, Physical Characteristics of GE BWR Fuel Assemblies [12] Larsen, N. H., 1978, EPRI Topical Report by General Electric, Core Design and Operating Data for Cycles 1 and 2 of Peach Bottom 2. [13] TEPCO, 2013a. Plant Specifications of Unit 3, _analysis/ps-unit3-01.pdf ( ) [14] TEPCO, 2013b. Measured Data, Unit 3, Water Level in RPV, 30 November analysis/md-unit3-02.xls [15] EPRI, 2016., Technical Evaluation of Fukushima Accidents: Phase 2 Potential for Recriticality during Degraded Core Reflood. EPRI- Technical Report , Final Report April 2016 [16] Huffer, J., 2004, BWR Axial Profile, Oak Ridge National Laboratory Report, Engineered Systems Project, CAL-DSU-NU REV 00A, %20REV%200A.pdf [17] J. Leppänen. Serpent a Continuous-energy Monte Carlo Reactor Physics Burnup Calculation Code. VTT Technical Research Centre of Finland. (June 18, 2015) [18] SNL, 2011a. MELCOR Computer Code Manual, Vol. 1: Primer and Users Guide, Version 2.1., Sandia National Laboratories, NUREG/CR-6119, Vol. 1, Rev [19] SNL, 2011b. MELCOR Computer Code Manual, Vol. 2: Reference Manual, Version 2.1., Sandia National Laboratories, NUREG/CR-6119, Vol. 2, Rev [20] Scott, W. B., D. G. Harrison, R. A. Libby, R. D. Tokarz, R. D. Wooton, R. S. Denning, R. W. Tayloe, Jr., 1990, Recriticality in a BWR Following a Core. [21] P. Darnowski, K. Potapczyk, and S. Konrad, Investigation of the recriticality potential during reflooding phase of Fukushima Daiichi Unit-3 accident, Ann. Nucl. Energy, vol. 99, pp , [22] ORNL, Physical Characteristics of GE BWR Fuel Assemblies, ORNL/TM-10902, [23] US EPRI, Core Design and Operating Data for Cycle 1 and 2 of Peach Bottom 2, [24] T. Yokoyama, F. Taiki, and N. Hisashi, Study on Particle and Absorber Effects on Multiplication Factors of Debris Beds with MVP, in Data and Analysis in Nuclear Criticality Safety-I, ANS Winter Meeting 2011, [25] G. Alonso, et. Al.. Annals of Nuclear Energy, Impact of the moderation ratio over the performance of different BWR fuel assemblies [26] Huffer, J., BWR Axial Profile Oak Ridge National Laboratory Report. Engineered Systems Project, CAL-DSU-NU REV 00A %20REV%200A.pdf. 16

17 Thank you for your attention. Thank you for your attention. The research was financed by Faculty of Power and Aeronautical Engineering Dean Grant number PR 504/02052 in

18 Discussion - other issues Neutron leakage in the real 3D core ~ pcms Core shuffling patterns, different fuel, MOX fuel impact Less than 4 bundles per one blade - lower reactivity Simplified upper and lower structures. Not all FPs and higher actinides were taken into account. Noble FPs leave the core during early in-vessel it was not taken into account - Xe-135 up to pcms; Samarium up to -500 pcms and it increased in comparison to the HFP (~17%). Impurities in the cladding and structure ~-100 pcm No kinetic/dynamics simulation - SERPENT - only k-eff for the given core state. No evaporation of water due to the recriticality! 18

19 SNL MELCOR results - MELCOR 2.1 Jeffrey Cardoni Randall Gauntt, Donald Kalinich Jesse Phillips, MELCOR SIMULATIONS OF THE SEVERE ACCIDENT AT FUKUSHIMA DAIICHI UNIT 3, NUCLEAR TECHNOLOGY VOL. 186 MAY

20 Fernandez-Moguel, L. Birchley, J., Analysis of the accident in the Fukushima Daiichi nuclear power station Unit 3 with MELCOR_2.1, Annals of Nuclear Energy 83 (2015)

21 VTT results Sevón, T., 2015a. A MELCOR model of Fukushima Daiichi Unit 3 Accident, Nuclear Engineering and Design, 284,

22 SNL Report 2012 Fukushima Daiichi Accident Study, SAND , August

23 SNL Report ORNL Results - melcor Fukushima Daiichi Accident Study, SAND , August

24 EPRI - MAAP5 Report EPRI, Fukushima Technical Evaluation Phase 1 MAAP5 Analysis

25 EPRI - MAAP5 Report 25

26 EPRI - MAAP5- MELCOR Crosswalk report - 1F1 Modular Accident Analysis Program (MAAP) MELCOR Crosswalk Phase 1 Study

27 Additional slides Ref: [25] Axial burnup profiles for three assemblies used in the core unit cell model. 27

28 Additional slides 28

29 Additional slides 29

30 Additional slides Axial variation of the temperatures (left) and moderator density (right) for the reference Hot-Full-Power 3D calculations. 30

31 Modified model fuel temperaturę before the reflooding COR-TFU Ring 3 48h COR-TFU Ring 4 31

32 Additiona slides - modified core 53h state 32

33 Mod. Model fuel temperatures after reflooding 33

34 Additiona slides - orginal core 53h state 34

35 Orginal model temperatures after reflooding 35

36 Additional slides EPRI - full core results 36

37 Additional slides EPRI - full core results 37

38 Additional slides Isotopes traced in the 2D assembly burnup calculations. Bold underlined isotopes are used in the 3D criticality calculations 38

39 Additional slides Coolant axial density profile used in the burn-up full power calculations. 39

40 Additional slides OECD/NEA Phase IIIC Benchmark Results for STEP-3 assembly with 40% void and our calculations with SERPENT. 40

41 Additional slides Comparison of the average Benchmark results with void fractions 40%,70%,0% with SERPENT burnup results used in the burnup calculations. 40% void fraction case corresponds to the water density g/cc and Level 3 density is equal to g/cc. 41

Specification for Phase VII Benchmark

Specification for Phase VII Benchmark Specification for Phase VII Benchmark UO 2 Fuel: Study of spent fuel compositions for long-term disposal John C. Wagner and Georgeta Radulescu (ORNL, USA) November, 2008 1. Introduction The concept of

More information

Reactivity requirements can be broken down into several areas:

Reactivity requirements can be broken down into several areas: Reactivity Control (1) Reactivity Requirements Reactivity requirements can be broken down into several areas: (A) Sufficient initial reactivity should be installed to offset the depletion of U 235 and

More information

Experiences from Application of MELCOR for Plant Analyses. Th. Steinrötter, M. Sonnenkalb, GRS Cologne March 2nd, 2010

Experiences from Application of MELCOR for Plant Analyses. Th. Steinrötter, M. Sonnenkalb, GRS Cologne March 2nd, 2010 Experiences from Application of MELCOR 1.8.6 for Plant Analyses Th. Steinrötter, M. Sonnenkalb, GRS Cologne March 2nd, 2010 Content Introduction MELCOR 1.8.6 Analyses for the Atucha II Power Plant Modeling

More information

Final Results: PWR MOX/UO 2 Control Rod Eject Benchmark

Final Results: PWR MOX/UO 2 Control Rod Eject Benchmark Final Results: PWR MOX/UO 2 Control Rod Eject Benchmark T. Kozlowski T. J. Downar Purdue University January 25, 2006 This work has been sponsored by the U.S. Nuclear Regulatory Commission. The views expressed

More information

Journal of American Science 2014;10(2) Burn-up credit in criticality safety of PWR spent fuel.

Journal of American Science 2014;10(2)  Burn-up credit in criticality safety of PWR spent fuel. Burn-up credit in criticality safety of PWR spent fuel Rowayda F. Mahmoud 1, Mohamed K.Shaat 2, M. E. Nagy 3, S. A. Agamy 3 and Adel A. Abdelrahman 1 1 Metallurgy Department, Nuclear Research Center, Atomic

More information

severe accident progression in the BWR lower plenum and the modes of vessel failure

severe accident progression in the BWR lower plenum and the modes of vessel failure 1 For Presentation at the ERMSAR Conference held in Marseilles, France, March 24-26, 2015 severe accident progression in the BWR lower plenum and the modes of vessel failure B. R. Sehgal S. Bechta Nuclear

More information

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea

2017 Water Reactor Fuel Performance Meeting September 10 (Sun) ~ 14 (Thu), 2017 Ramada Plaza Jeju Jeju Island, Korea NUCLEAR DESIGN AND SAFETY ANALYSIS OF ACCIDENT TOLERANT FUEL CANDIDATES IN OPR1000 Wang-Kee In 1, Ser-Gi Hong 2, Tae-Wan Kim 3, Tae-Hyun Chun 1, Chang-Hwan Shin 1 1 Korea Atomic Energy Research Institute:

More information

Ensuring Spent Fuel Pool Safety

Ensuring Spent Fuel Pool Safety Ensuring Spent Fuel Pool Safety Michael Weber Deputy Executive Director for Operations U.S. Nuclear Regulatory Commission American Nuclear Society Meeting June 28, 2011 1 Insights from Fukushima Nuclear

More information

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations Journal of NUCLEAR SCIENCE and TECHNOLOGY, 32[9], pp. 834-845 (September 1995). Design and Safety Aspect of Lead and Lead-Bismuth Cooled Long-Life Small Safe Fast Reactors for Various Core Configurations

More information

Major Influential Issues on the Accident Progressions of Fukushima Daiichi NPP

Major Influential Issues on the Accident Progressions of Fukushima Daiichi NPP 1/12 Major Influential Issues on the Accident Progressions of Fukushima Daiichi NPP Summary M. Naitoh, M. Pellegrini. H. Suzuki, H. Mizouchi, and H. Okada The Institute of Applied Energy, Japan This paper

More information

Resource Evaluation of Heavy Rare Earth Derived from the Spent Gd 2 O 3 Burnable Poison in LWRs

Resource Evaluation of Heavy Rare Earth Derived from the Spent Gd 2 O 3 Burnable Poison in LWRs Journal of Energy and Power Engineering 1 (216) 237-241 doi: 1.17265/1934-8975/216.4.4 D DAVID PUBLISHING Resource Evaluation of Heavy Rare Earth Derived from the Spent Gd 2 O 3 Burnable Poison in LWRs

More information

Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors

Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors Journal of Physics: Conference Series PAPER OPEN ACCESS Safety Analysis of Pb-208 Cooled 800 MWt Modified CANDLE Reactors To cite this article: Zaki Su'ud et al 2017 J. Phys.: Conf. Ser. 799 012013 View

More information

Sodium versus Lead-Bismuth Coolants for the ENHS (Encapsulated Nuclear Heat Source) Reactor

Sodium versus Lead-Bismuth Coolants for the ENHS (Encapsulated Nuclear Heat Source) Reactor Proceedings of the Korean Nuclear Society Autumn Meeting Yongpyong, Korea, October 2002 Sodium versus Lead-Bismuth Coolants for the ENHS (Encapsulated Nuclear Heat Source) Reactor Ser Gi Hong a, Ehud Greenspan

More information

LFR core design. for prevention & mitigation of severe accidents

LFR core design. for prevention & mitigation of severe accidents LFR core design for prevention & mitigation of severe accidents Giacomo Grasso UTFISSM Technical Unit for Reactor Safety and Fuel Cycle Methods Coordinator of Core Design Work Package in the EURATOM FP7

More information

Benchmark Specification for HTGR Fuel Element Depletion. Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory

Benchmark Specification for HTGR Fuel Element Depletion. Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory I. Introduction Benchmark Specification for HTGR Fuel Element Depletion Mark D. DeHart Nuclear Science and Technology Division Oak Ridge National Laboratory Anthony P. Ulses Office of Research U.S. Nuclear

More information

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07

RELAP 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-07 Fifth International Seminar on Horizontal Steam Generators 22 March 21, Lappeenranta, Finland. 5 ANALYSIS OF PACTEL PRIMARY-TO-SECONDARY LEAKAGE EXPERIMENT PSL-7 József Bánáti Lappeenranta University of

More information

Fundamental Research Program for Removal of Fuel Debris

Fundamental Research Program for Removal of Fuel Debris International Symposium on the Decommissioning of TEPCO s Fukushima Daiichi Nuclear Power Plant Unit 1-4 1 Fundamental Research Program for Removal of Fuel Debris March 14, 2012 Tadahiro Washiya Japan

More information

Specification for Phase IID Benchmark. A. BARREAU (CEA, France) J. GULLIFORD (BNFL, UK) J.C. WAGNER (ORNL, USA)

Specification for Phase IID Benchmark. A. BARREAU (CEA, France) J. GULLIFORD (BNFL, UK) J.C. WAGNER (ORNL, USA) Specification for Phase IID Benchmark PWR-UO 2 Assembly: Study of control rods effects on spent fuel composition A. BARREAU (CEA, France) J. GULLIFORD (BNFL, UK) J.C. WAGNER (ORNL, USA) 1. Introduction

More information

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis

Verification of the MELCOR Code Against SCDAP/RELAP5 for Severe Accident Analysis Verification of the Code Against SCDAP/RELAP5 for Severe Accident Analysis Jennifer Johnson COLBERT 1* and Karen VIEROW 2 1 School of Nuclear Engineering, Purdue University, West Lafayette, Indiana 47907-2017,

More information

Research Article Void Reactivity Coefficient Analysis during Void Fraction Changes in Innovative BWR Assemblies

Research Article Void Reactivity Coefficient Analysis during Void Fraction Changes in Innovative BWR Assemblies Science and Technology of Nuclear Installations Volume, Article ID 77, 8 pages http://dx.doi.org/.//77 Research Article Void Reactivity Coefficient Analysis during Void Fraction Changes in Innovative BWR

More information

HELIOS-2: Benchmarking Against Hexagonal Lattices

HELIOS-2: Benchmarking Against Hexagonal Lattices HELIOS-2: Benchmarking Against Hexagonal Lattices Teodosi Simeonov a and Charles Wemple b a Studsvik Scandpower, GmbH., Hamburg,Germany b Studsvik Scandpower, Inc., Idaho Falls, ID, USA ABSTRACT The critical

More information

Monte Carlo analysis of the battery-type high temperature gas cooled reactor

Monte Carlo analysis of the battery-type high temperature gas cooled reactor archives of thermodynamics Vol. 38(2017), No. 4, 209 227 DOI: 10.1515/aoter-2017-0032 Monte Carlo analysis of the battery-type high temperature gas cooled reactor MARCIN GRODZKI PIOTR DARNOWSKI GRZEGORZ

More information

English - Or. English NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE. Benchmark Specification for HTGR Fuel Element Depletion

English - Or. English NUCLEAR ENERGY AGENCY NUCLEAR SCIENCE COMMITTEE. Benchmark Specification for HTGR Fuel Element Depletion Unclassified NEA/NSC/DOC(2009)13 NEA/NSC/DOC(2009)13 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 16-Jun-2009 English

More information

LBLOCA AND DVI LINE BREAK TESTS WITH THE ATLAS INTEGRAL FACILITY

LBLOCA AND DVI LINE BREAK TESTS WITH THE ATLAS INTEGRAL FACILITY LBLOCA AND DVI LINE BREAK TESTS WITH THE ATLAS INTEGRAL FACILITY WON-PIL BAEK *, YEON-SIK KIM and KI-YONG CHOI Thermal Hydraulics Safety Research Division, Korea Atomic Energy Research Institute 1045 Daedeokdaero,

More information

Accident 1 ~1X. Appendix 4A Effect of Source Term and Plume-Related Parameters on Consequences. Introduction

Accident 1 ~1X. Appendix 4A Effect of Source Term and Plume-Related Parameters on Consequences. Introduction Appendix 4A Effect of Source Term and Plume-Related Parameters on Consequences Introduction Appendix 4 documents the staff's evaluation of the offsite consequences of a spent fuel pool accident involving

More information

Isolation Condenser; water evaporation in the tank and steam into the air. Atmosphere (in Severe Accident Management, both P/S and M/S)

Isolation Condenser; water evaporation in the tank and steam into the air. Atmosphere (in Severe Accident Management, both P/S and M/S) Loss of Ultimate Heat Sink ANS AESJ AESJ Fukushima Symposium, March h4, 2012 Hisashi Ninokata, Tokyo Institute of Technology Available ultimate heat sinks at 1F1~3 1F1 (Fukushima Dai ichi Unit 1) Sea water

More information

Study on Severe Accident Progression and Source Terms in Fukushima Dai-ichi NPPs

Study on Severe Accident Progression and Source Terms in Fukushima Dai-ichi NPPs Study on Severe Accident Progression and Source Terms in Fukushima Dai-ichi NPPs October 27, 2014 H. Hoshi, R. Kojo, A. Hotta, M. Hirano Regulatory Standard and Research Department, Secretariat of Nuclear

More information

NUCLEAR FUEL AND REACTOR

NUCLEAR FUEL AND REACTOR NUCLEAR FUEL AND REACTOR 1 Introduction 3 2 Scope of application 3 3 Requirements for the reactor and reactivity control systems 4 3.1 Structural compatibility of reactor and nuclear fuel 4 3.2 Reactivity

More information

Journal of Nuclear Materials

Journal of Nuclear Materials Journal of Nuclear Materials 448 (2014) 520 533 Contents lists available at ScienceDirect Journal of Nuclear Materials journal homepage: www.elsevier.com/locate/jnucmat Preliminary assessment of accident-tolerant

More information

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS

INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS INVESTIGATION OF VOID REACTIVITY BEHAVIOUR IN RBMK REACTORS M. Clemente a, S. Langenbuch a, P. Kusnetzov b, I. Stenbock b a) Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)mbH, Garching, E-mail:

More information

VALIDATION OF RELAP5/MOD3.3 AGAINST THE PACTEL SBL-50 BENCHMARK TRANSIENT ABSTRACT

VALIDATION OF RELAP5/MOD3.3 AGAINST THE PACTEL SBL-50 BENCHMARK TRANSIENT ABSTRACT VALIDATION OF RELAP5/MOD3.3 AGAINST THE PACTEL SBL-50 BENCHMARK TRANSIENT J. Bánáti 1 *, V. Riikonen 2 ; V. Kouhia 2, H. Purhonen 2 1 Chalmers University of Technology, SE-41296 Gothenburg, Sweden 2 Lappeenranta

More information

Why CMS5? Arthur S DiGiovine 2012 International Users Group Meeting Charlotte, NC, USA May 2-3, 2012

Why CMS5? Arthur S DiGiovine 2012 International Users Group Meeting Charlotte, NC, USA May 2-3, 2012 Why CMS5? Arthur S DiGiovine 2012 Charlotte, NC, USA What Problem are We trying to Solve? Economics of Core Design Fuel enrichment Number of assemblies Cycle Length Economics of Core Operation Plant availability

More information

1. INTRODUCTION. Corresponding author. Received December 18, 2008 Accepted for Publication April 9, 2009

1. INTRODUCTION. Corresponding author.   Received December 18, 2008 Accepted for Publication April 9, 2009 DEVELOPMENT OF A SIMPLIFIED MODEL FOR ANALYZING THE PERFORMANCE OF KALIMER-600 COUPLED WITH A SUPERCRITICAL CARBON DIOXIDE BRAYTON ENERGY CONVERSION CYCLE SEUNG-HWAN SEONG *, TAE-HO LEE and SEONG-O KIM

More information

Controlled management of a severe accident

Controlled management of a severe accident July 2015 Considerations concerning the strategy of corium retention in the reactor vessel Foreword Third-generation nuclear reactors are characterised by consideration during design of core meltdown accidents.

More information

Advanced Technologies for Fuel Debris Retrieval towards Fukushima Daiichi Decommissioning

Advanced Technologies for Fuel Debris Retrieval towards Fukushima Daiichi Decommissioning Advanced Technologies for Fuel Debris Retrieval towards Fukushima Daiichi Decommissioning Eiichiro WATANABE Waste Technology Section Division of Nuclear Fuel Cycle and Waste Technology Department of Nuclear

More information

Task 1 Progress: Analysis of TREAT Minimum Critical and M8CAL Cores with SERPENT and SERPENT/PARCS

Task 1 Progress: Analysis of TREAT Minimum Critical and M8CAL Cores with SERPENT and SERPENT/PARCS Task 1 Progress: Analysis of TREAT Minimum Critical and M8CAL Cores with SERPENT and SERPENT/PARCS Volkan Seker, Matt Neuman, Nicholas Kucinski, Hunter Smith, Tom Downar University of Michigan May 24,

More information

The PARAMETER test series

The PARAMETER test series The PARAMETER test series V. Nalivaev 1, A. Kiselev 2, J.-S. Lamy 3, S. Marguet 3, V. Semishkin 4, J. Stuckert, Ch. Bals 6, K. Trambauer 6, T. Yudina 2, Yu. Zvonarev 7 1 Scientific Manufacturer Centre,

More information

Development of a DesignStage PRA for the Xe-100

Development of a DesignStage PRA for the Xe-100 Development of a DesignStage PRA for the Xe-100 PSA 2017 Pittsburgh, PA, September 24 28, 2017 Alex Huning* Karl Fleming Session: Non-LWR Safety September 27th, 1:30 3:10pm 2017 X Energy, LLC, all rights

More information

Safety Analysis of the MIT Nuclear Reactor for Conversion to LEU Fuel

Safety Analysis of the MIT Nuclear Reactor for Conversion to LEU Fuel Global Threat Reduction Initiative Safety Analysis of the MIT Nuclear Reactor for Conversion to LEU Fuel Erik H. Wilson, Floyd E. Dunn Argonne National Laboratory Thomas H. Newton Jr., Lin-wen Hu MIT Nuclear

More information

The international program Phebus FP (fission

The international program Phebus FP (fission 1The safety of nuclear reactors 1 6 Results of initial Phebus FP tests FPT-0 and FPT-1 S. BOURDON (IRSN) D. JACQUEMAIN (IRSN) R. ZEYEN (JRC/PETTEN) The international program Phebus FP (fission products)

More information

The ESBWR an advanced Passive LWR

The ESBWR an advanced Passive LWR 1 IAEA PC-Based Simulators Workshop Politecnico di Milano, 3-14 October 2011 The ES an advanced Passive LWR Prof. George Yadigaroglu, em. ETH-Zurich and ASCOMP yadi@ethz.ch 2 Removal of decay heat from

More information

Self-Sustaining Thorium-Fueled BWR

Self-Sustaining Thorium-Fueled BWR Self-Sustaining Thorium-Fueled BWR Jeffrey E. Seifried, Guanheng Zhang, Christopher R. Varela, Phillip M. Gorman, Ehud Greenspan, Jasmina L. Vujic University of California, Berkeley, Department of Nuclear

More information

3-D fuel shuffling for reduced peak burnup and increased uranium utilization of breed-and-burn reactors

3-D fuel shuffling for reduced peak burnup and increased uranium utilization of breed-and-burn reactors 3-D fuel shuffling for reduced peak burnup and increased uranium utilization of breed-and-burn reactors Jason Hou, a Staffan Qvist, b and Ehud Greenspan a a Department of Nuclear Engineering, University

More information

Experiments of the LACOMECO Project at KIT

Experiments of the LACOMECO Project at KIT Experiments of the LACOMECO Project at KIT A. MIASSOEDOV 1, M. KUZNETSOV 1, M. STEINBRÜCK 1, S. KUDRIAKOV 2 Z. HÓZER 3, I. KLJENAK 4, R. MEIGNEN 5, J.M. SEILER 6, A. TEODORCZYK 7 1 KIT, Karlsruhe (DE)

More information

Criticality Safety Study for the Disposal of Spent Nuclear Fuel in Water-Saturated Geologic Repository. Xudong Liu

Criticality Safety Study for the Disposal of Spent Nuclear Fuel in Water-Saturated Geologic Repository. Xudong Liu Criticality Safety Study for the Disposal of Spent Nuclear Fuel in Water-Saturated Geologic Repository By Xudong Liu A dissertation submitted in partial satisfaction of the requirements for the degree

More information

Side Event of IAEA General Conference. Severe Accident Analyses of Fukushima-Daiich Units 1 to 3. Harutaka Hoshi and Masashi Hirano

Side Event of IAEA General Conference. Severe Accident Analyses of Fukushima-Daiich Units 1 to 3. Harutaka Hoshi and Masashi Hirano Side Event of IAEA General Conference Severe Accident Analyses of Fukushima-Daiich Units 1 to 3 Harutaka Hoshi and Masashi Hirano Japan Nuclear Energy Safety Organization (JNES) September 17, 2012 Side

More information

A Parametric Study on Core Performance of Sodium Fast Reactors Using SERPENT Code RUBÉN GARCÍA MORENO

A Parametric Study on Core Performance of Sodium Fast Reactors Using SERPENT Code RUBÉN GARCÍA MORENO A Parametric Study on Core Performance of Sodium Fast Reactors Using SERPENT Code RUBÉN GARCÍA MORENO Master of Science Thesis Division of Nuclear Safety Royal Institute of Technology Stockholm, Sweden

More information

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING

RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Science and Technology Journal of BgNS, Vol. 8, 1, September 2003, ISSN 1310-8727 RELAP5/MOD3.2 INVESTIGATION OF A VVER-440 STEAM GENERATOR HEADER COVER LIFTING Pavlin P. Groudev, Rositsa V. Gencheva,

More information

Summary. LOCA incidents: Gas and liquid metal cooled reactors. List of LOCA incidents: 3-4

Summary. LOCA incidents: Gas and liquid metal cooled reactors. List of LOCA incidents: 3-4 Summary NTEC Module: Water Reactor Performance and Safety Lecture 13: Severe Accidents II Examples of Severe Accidents G. F. Hewitt Imperial college London List of LOCA incidents: 3-4 Water cooled reactors

More information

Full MOX Core Design in ABWR

Full MOX Core Design in ABWR GENES4/ANP3, Sep. -9, 3, Kyoto, JAPAN Paper 8 Full MOX Core Design in ABWR Toshiteru Ihara *, Takaaki Mochida, Sadayuki Izutsu 3 and Shingo Fujimaki 3 Nuclear Power Department, Electric Power Development

More information

CASL: Consortium for the Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub

CASL: Consortium for the Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub CASL: Consortium for the Advanced Simulation of Light Water Reactors A DOE Energy Innovation Hub Achievements in Addressing Challenges Facing the Light Water Reactor Industry Dave Pointer, PhD. Deputy

More information

Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development

Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development Preliminary Lessons Learned from the Fukushima Daiichi Accident for Advanced Nuclear Power Plant Technology Development A. Introduction The IAEA Report on Reactor and Spent Fuel Safety in the Light of

More information

The DENOPI project: a research program on SFP under loss-of-cooling and loss-of-coolant accident conditions

The DENOPI project: a research program on SFP under loss-of-cooling and loss-of-coolant accident conditions The DENOPI project: a research program on SFP under loss-of-cooling and loss-of-coolant accident conditions NAS meeting March 2015 N. Trégourès, H. Mutelle, C. Duriez, S. Tillard IRSN / Nuclear Safety

More information

Molten Salt Reactors (MSRs)

Molten Salt Reactors (MSRs) Molten Salt Reactors (MSRs) Dr. Charles W. Forsberg Oak Ridge National Laboratory * P.O. Box 2008 Oak Ridge TN 37830-6179 Tel: (865) 574-6783 Fax: (865) 574-9512 E-mail: forsbergcw@ornl.gov Manuscript

More information

Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor

Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor Natural Circulation Level Optimization and the Effect during ULOF Accident in the SPINNOR Reactor Ade Gafar Abdullah 1,2,*, Zaki Su ud 2, Rizal Kurniadi 2, Neny Kurniasih 2, Yanti Yulianti 2,3 1 Electrical

More information

KAPROS-E: A Modular Program System for Nuclear Reactor Analysis, Status and Results of Selected Applications.

KAPROS-E: A Modular Program System for Nuclear Reactor Analysis, Status and Results of Selected Applications. KAPROS-E: A Modular Program System for Nuclear Reactor Analysis, Status and Results of Selected Applications. C.H.M. Broeders, R. Dagan, V. Sanchez, A. Travleev Forschungszentrum Karlsruhe Institut für

More information

The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations

The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations The 2011 Tohoku Pacific Earthquake and Current Status of Nuclear Power Stations March 31, 2011 Tokyo Electric Power Company Tohoku Pacific Ocean Earthquake Time: 2:46 pm on Fri, March 11, 2011. Place:

More information

SUMMARY OF THE RESULTS FROM THE PHEBUS FPT-1 TEST FOR A SEVERE ACCIDENT AND THE LESSONS LEARNED WITH MELCOR

SUMMARY OF THE RESULTS FROM THE PHEBUS FPT-1 TEST FOR A SEVERE ACCIDENT AND THE LESSONS LEARNED WITH MELCOR SUMMARY OF THE RESULTS FROM THE PHEBUS FPT-1 TEST FOR A SEVERE ACCIDENT AND THE LESSONS LEARNED WITH MELCOR JONG-HWA PARK *, DONG-HA KIM and HEE-DONG KIM Korea Atomic Energy Research Institute, 150 Deokjin-dong,

More information

Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code

Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code Journal of Physics: Conference Series OPEN ACCESS Analysis of a Station Black-Out transient in SMR by using the TRACE and RELAP5 code To cite this article: F De Rosa et al 2014 J. Phys.: Conf. Ser. 547

More information

Primary - Core Performance Branch (CPB) Reactor Systems Branch (SRXB) 1

Primary - Core Performance Branch (CPB) Reactor Systems Branch (SRXB) 1 U.S. NUCLEAR REGULATORY COMMISSION STANDARD REVIEW PLAN OFFICE OF NUCLEAR REACTOR REGULATION NUREG-0800 (Formerly NUREG-75/087) 4.3 NUCLEAR DESIGN REVIEW RESPONSIBILITIES Primary - Core Performance Branch

More information

LEU Conversion of the University of Wisconsin Nuclear Reactor

LEU Conversion of the University of Wisconsin Nuclear Reactor LEU Conversion of the University of Wisconsin Nuclear Reactor Paul Wilson U. Wisconsin-Madison Russian-American Symposium on the Conversion of Research Reactors to Low Enriched Uranium Fuel 8-10 June 2011

More information

Development of technologies for the processing and disposal of radioactive waste

Development of technologies for the processing and disposal of radioactive waste Development of technologies for the processing and disposal of radioactive waste International Experts' Symposium on the Decommissioning of TEPCO's Fukushima Daiichi Nuclear Power Plant Unit 1-41 March

More information

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview

NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview NPP Simulators Workshop for Education - Passive PWR NPP & Simulator Overview Wilson Lam (wilson@cti-simulation.com) CTI Simulation International Corp. www.cti-simulation.com Sponsored by IAEA Modified

More information

STORAGE AND HANDLING OF NUCLEAR FUEL

STORAGE AND HANDLING OF NUCLEAR FUEL GUIDE YVL 6.8 / 27 OCTOBER 2003 STORAGE AND HANDLING OF NUCLEAR FUEL 1 GENERAL 3 2 SAFETY REQUIREMENTS FOR STORAGE AND HANDLING 3 2.1 General requirements 3 2.2 Storage systems for fresh fuel 3 2.3 Storage

More information

5th Meeting of European MELCOR User Group (EMUG): Improved In-Vessel-Retention Model

5th Meeting of European MELCOR User Group (EMUG): Improved In-Vessel-Retention Model 5th Meeting of European MELCOR User Group (EMUG): Improved In-Vessel-Retention Model Wolfgang Rapp 1, Rebekka Gehr 1,2 1 Westinghouse Germany 2 University RWTH Aachen May 2-3, 2013 1 Outline Introduction

More information

Nuclear GEOS 24705/ ENST 24705

Nuclear GEOS 24705/ ENST 24705 Nuclear GEOS 24705/ ENST 24705 Copyright E. Moyer 2012 Nuclear power just another way of making steam A nuclear plant is a big tea-kettle driving a steam turbine Nuclear engineering is all about keeping

More information

High Temperature Gas Cooled Reactors

High Temperature Gas Cooled Reactors High Temperature Gas Cooled Reactors Frederik Reitsma Gas-Cooled Reactors Technology Nuclear Power Technology Development Section Division of Nuclear Power Department of Nuclear Energy 11th GIF-IAEA Interface

More information

Introduction to Level 2 PSA

Introduction to Level 2 PSA Introduction to Level 2 PSA Dr Charles Shepherd Chief Consultant, Corporate Risk Associates CRA PSA/HFA FORUM 13-14 September 2012, Bristol Accident sequences modelled by the PSA INITIATING EVENTS SAFETY

More information

Dry storage systems and aging management

Dry storage systems and aging management Dry storage systems and aging management H.Issard, AREVA TN, France IAEA TM 47934 LESSONS LEARNED IN SPENT FUEL MANAGEMENT Vienna, 8-10 July 2014 AREVA TN Summary Dry storage systems and AREVA Experience

More information

Research in Nuclear Engineering- opportunity for Ph.D students

Research in Nuclear Engineering- opportunity for Ph.D students Warsaw University of Technology Faculty of Power and Aeronautical Engineering Institute of Heat Engineering Power Engineering Division Research in Nuclear Engineering- opportunity for Ph.D students September

More information

Neutronic analysis of light water Small Modular Reactor with flexible fuel configurations

Neutronic analysis of light water Small Modular Reactor with flexible fuel configurations Scholars' Mine Masters Theses Student Research & Creative Works Spring 2015 Neutronic analysis of light water Small Modular Reactor with flexible fuel configurations Brendan Dsouza Follow this and additional

More information

Overview of the ASTEC V2.0-rev1 validation

Overview of the ASTEC V2.0-rev1 validation Overview of the ASTEC V2.0-rev1 validation P. Chatelard (IRSN), S. Arndt (GRS), B. Atanasova (INRNE) G. Bandini (ENEA), A. Bleyer (IRSN), T. Brähler (RUB) M. Buck (IKE), I. Kljenak (JSI), B. Kujal (UJV)

More information

BARC BARC PASSIVE SYSTEMS RELIABILITY ANALYSIS USING THE METHODOLOGY APSRA. A.K. Nayak, PhD

BARC BARC PASSIVE SYSTEMS RELIABILITY ANALYSIS USING THE METHODOLOGY APSRA. A.K. Nayak, PhD BARC PASSIVE SYSTEMS RELIABILITY ANALYSIS USING THE METHODOLOGY APSRA A.K. Nayak, PhD Reactor Engineering Division Bhabha Atomic Research Centre Trombay, Mumbai 400085, India INPRO Consultancy Meeting

More information

Multiphase Flow Dynamics 4

Multiphase Flow Dynamics 4 Multiphase Flow Dynamics 4 Nuclear Thermal Hydraulics von Nikolay I Kolev 1. Auflage Multiphase Flow Dynamics 4 Kolev schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Thematische

More information

BEMUSE PHASE II: COMPARISON AND ANALYSIS OF THE RESULTS REV. 1

BEMUSE PHASE II: COMPARISON AND ANALYSIS OF THE RESULTS REV. 1 DIPARTIMENTO DI INGEGNERIA MECCANICA, NUCLEARE E DELLA PRODUZIONE - UNIVERSITA' DI PISA 56100 PISA - ITALY BEMUSE PHASE II: COMPARISON AND ANALYSIS OF THE RESULTS REV. 1 A. Petruzzi, F. D Auria Workshop

More information

SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES

SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES VTT Nuclear Energy Markku Hänninen, Ismo Karppinen, Jaakko Miettinen, Eija-Karita Puska, Jukka Ylijoki, Ari Silde, Olli Tiihonen March, 2009 FORTUM Nuclear Services Ltd. Kari Porkholm, Harri Kontio APROS

More information

Self-Sustaining Thorium Boiling Water Reactors

Self-Sustaining Thorium Boiling Water Reactors Sustainability 2012, 4, 2472-2497; doi:10.3390/su4102472 Article OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Self-Sustaining Thorium Boiling Water Reactors Francesco Ganda

More information

Available online at ScienceDirect. Energy Procedia 71 (2015 ) 69 77

Available online at  ScienceDirect. Energy Procedia 71 (2015 ) 69 77 Available online at www.sciencedirect.com ScienceDirect Energy Procedia 71 (2015 ) 69 77 The Fourth International Symposium on Innovative Nuclear Energy Systems, INES-4 Self-sustaining thorium-fueled reduced

More information

SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES

SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES VTT Jukka Ylijoki, Ismo Karppinen, Eija-Karita Puska, Ari Silde May, 2015 FORTUM Kari Porkholm, Harri Kontio APROS VALIDATION SELECTED VALIDATION CASES RELATED TO NUCLEAR SAFETY ANALYSES and TRAINING SIMULATORS

More information

EXPERIMENTAL ACTIVITIES FOR GSI-191

EXPERIMENTAL ACTIVITIES FOR GSI-191 INTRODUCTION Generic Safety Issue 191 (GSI-191), Assessment of Debris Accumulation on PWR Sump Performance, can be categorized into the head loss through a debris bed on the strainer (the upstream effect)

More information

Nuclear accident in Fukushima-I nuclear power plant: Critical Analysis

Nuclear accident in Fukushima-I nuclear power plant: Critical Analysis Nuclear accident in Fukushima-I nuclear power plant: Critical Analysis Sara Silva Pinto Wahnon Under supervision of José Joaquim Gonçalves Marques and Carlos António Abreu Fonseca Varandas Instituto Superior

More information

Workgroup Thermohydraulics. The thermohydraulic laboratory

Workgroup Thermohydraulics. The thermohydraulic laboratory Faculty of Mechanical Science and Engineering Institute of Power Engineering Professorship of Nuclear Energy and Hydrogen Technology Workgroup Thermohydraulics The thermohydraulic laboratory Dr.-Ing. Christoph

More information

Module 06 Boiling Water Reactors (BWR)

Module 06 Boiling Water Reactors (BWR) Module 06 Boiling Water Reactors (BWR) 1.10.2015 Prof.Dr. Böck Vienna University oftechnology Atominstitute Stadionallee 2 A-1020 Vienna, Austria ph: ++43-1-58801 141368 boeck@ati.ac.at Contents BWR Basics

More information

English text only NUCLEAR ENERGY AGENCY COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS

English text only NUCLEAR ENERGY AGENCY COMMITTEE ON THE SAFETY OF NUCLEAR INSTALLATIONS Unclassified NEA/CSNI/R(2015)18 NEA/CSNI/R(2015)18 Unclassified Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 29-Mar-2016 English text

More information

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level

Nuclear Power Plant Safety Basics. Construction Principles and Safety Features on the Nuclear Power Plant Level Nuclear Power Plant Safety Basics Construction Principles and Safety Features on the Nuclear Power Plant Level Safety of Nuclear Power Plants Overview of the Nuclear Safety Features on the Power Plant

More information

Chapter 3 Accident of Fukushima Daiichi Nuclear Power Plant: Sequences, Fission Products Released, Lessons Learned

Chapter 3 Accident of Fukushima Daiichi Nuclear Power Plant: Sequences, Fission Products Released, Lessons Learned Chapter 3 Accident of Fukushima Daiichi Nuclear Power Plant: Sequences, Fission Products Released, Lessons Learned Jun Sugimoto Abstract The nuclear accident that occurred at the Fukushima Daiichi Nuclear

More information

International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015

International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015 International Thorium Energy Conference 2015 (ThEC15) BARC, Mumbai, India, October 12-15, 2015 Feasibility and Deployment Strategy of Water Cooled Thorium Breeder Reactors Naoyuki Takaki Department of

More information

CANDU Safety Basis: Limiting & Compensating for Positive Reactivity Insertion

CANDU Safety Basis: Limiting & Compensating for Positive Reactivity Insertion CANDU Safety Basis: Limiting & Compensating for Positive Reactivity Insertion Albert Lee PhD IX International School on Nuclear Power, November 14-17, 2017 - Copyright - A world leader Founded in 1911,

More information

EM 2 : A Compact Gas-Cooled Fast Reactor for the 21 st Century. Climate Change and the Role of Nuclear Energy

EM 2 : A Compact Gas-Cooled Fast Reactor for the 21 st Century. Climate Change and the Role of Nuclear Energy EM 2 : A Compact Gas-Cooled Fast Reactor for the 21 st Century Presented at the Canon Institute for Global Studies Climate Change Symposium Climate Change and the Role of Nuclear Energy By Dr. Robert W.

More information

Involvement of EDF in the Halden Reactor Project: a long-term cooperation in R&D

Involvement of EDF in the Halden Reactor Project: a long-term cooperation in R&D Involvement of EDF in the Halden Reactor Project: a long-term cooperation in R&D Atoms For the Future 2016 Session: Nuclear Fuel 28/06/2016 Alexandre Lavoil alexandre.lavoil@edf.fr EDF SEPTEN/CN OUTLINE

More information

Calculation of Pellet Radial Power Distributions with Monte Carlo and Deterministic Codes

Calculation of Pellet Radial Power Distributions with Monte Carlo and Deterministic Codes Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.301-305 (2011) TECHNICAL MATERIAL Calculation of Pellet Radial Power Distributions with Monte Carlo and Deterministic Codes Motomu SUZUKI *, Toru

More information

ANICCA CODE AND THE BELGIAN NUCLEAR FUEL CYCLE

ANICCA CODE AND THE BELGIAN NUCLEAR FUEL CYCLE ANICCA CODE AND THE BELGIAN NUCLEAR FUEL CYCLE TECHNICAL WORKSHOP : DYNAMIC NUCLEAR FUEL CYCLE 06-08 July, 2016 Ivan Merino Rodriguez Contents ANICCA Introduction Structure General Input The Belgian Nuclear

More information

Thermal Hydraulic Simulations of the Angra 2 PWR

Thermal Hydraulic Simulations of the Angra 2 PWR Thermal Hydraulic Simulations of the Angra 2 PWR Javier González-Mantecón, Antonella Lombardi Costa, Maria Auxiliadora Fortini Veloso, Claubia Pereira, Patrícia Amélia de Lima Reis, Adolfo Romero Hamers,

More information

Design of Traditional and Advanced CANDU Plants. Artur J. Faya Systems Engineering Division November 2003

Design of Traditional and Advanced CANDU Plants. Artur J. Faya Systems Engineering Division November 2003 Design of Traditional and Advanced CANDU Plants Artur J. Faya Systems Engineering Division November 2003 Overview Canadian Plants The CANDU Reactor CANDU 600 and ACR-700 Nuclear Steam Supply Systems Fuel

More information

Reactor Start Up and Low Power Operation

Reactor Start Up and Low Power Operation Reactor Start Up and Low Power Operation Chapter 14 John Groh, WNTD Refresher Training, May 1997 Summary of Course This lesson, about a half day long, reviews reactor physics and nuclear safety concerns

More information

BWR LOWER PLENUM DEBRIS BED MODELS FOR MELCOR* S. A. Hodge, L. J. Ott ABSTRACT

BWR LOWER PLENUM DEBRIS BED MODELS FOR MELCOR* S. A. Hodge, L. J. Ott ABSTRACT I BWR LOWER PLENUM DEBRIS BED MODELS FOR MELCOR* S. A. Hodge, L. J. Ott Oak Ridge National Laboratory Oak Ridge, Tennessee 37831 CONF-911079--1 ABSTRACT DE92 001975 Work is underway at Oak Ridge National

More information

Uncertainty of the pebble flow to power peak factor

Uncertainty of the pebble flow to power peak factor IAEA Technical Meeting on Re-evaluation of Maximum Operating Temperatures and Accident Conditions for High Temperature Reactor (HTR) Fuel and Structural Materials Uncertainty of the pebble flow to power

More information

A DYNAMIC ASSESSMENT OF AUXILIARY BUILDING CONTAMINATION AND FAILURE DUE TO A CYBER-INDUCED INTERFACING SYSTEM LOSS OF COOLANT ACCIDENT

A DYNAMIC ASSESSMENT OF AUXILIARY BUILDING CONTAMINATION AND FAILURE DUE TO A CYBER-INDUCED INTERFACING SYSTEM LOSS OF COOLANT ACCIDENT A DYNAMIC ASSESSMENT OF AUXILIARY BUILDING CONTAMINATION AND FAILURE DUE TO A CYBER-INDUCED INTERFACING SYSTEM LOSS OF COOLANT ACCIDENT Z.K. Jankovsky The Ohio State University Columbus, USA Email: jankovsky.3@osu.edu

More information

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria

Module 06 Boiling Water Reactors (BWR) Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Module 06 Boiling Water Reactors (BWR) Prof.Dr. H. Böck Vienna University of Technology /Austria Atominstitute Stadionallee 2, 1020 Vienna, Austria Contents BWR Basics Technical Data Safety Features Reactivity

More information

Best Practices Applied to Deterministic Severe Accident and Source Term Analyses for PSA Level 2 for German NPPs

Best Practices Applied to Deterministic Severe Accident and Source Term Analyses for PSA Level 2 for German NPPs Best Practices Applied to Deterministic Severe Accident and Source Term Analyses for PSA Level 2 for German NPPs Dr. Martin Sonnenkalb Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbh, Cologne,

More information